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Now if E/Q is a splitting field of Φn(x) then E must contain ζ a primitive

nth root of unity, where without loss of generality, ζ = ζn = e
2πi
n and so

it’s clear that E = Q(ζ).

Recall that all the roots of Φn(x) are of the form ζk where k ∈ U(n).

Moreover, observe that if C = 〈ζ〉 then C is cyclic of order n, and its
generators are precisely these primitive nth roots ζk for k ∈ U(n).
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And so, if we consider Aut(C ) then ψi ∈ Aut(C ) if and only if ψi (ζ) = ζki

for some ki ∈ U(n) and that
ψi (ψj(ζ)) = (ζkj )ki = ζkjki = ζkikj = ψj(ψi (ζ)).

That is Aut(C ) ∼= U(n) and, moreover, if σ ∈ Gal(Q(ζ)/Q) then
σ(ζ) = ζk for some k ∈ U(n).

ergo Gal(Q(ζ)/Q) ∼= U(n) ∼= Aut(C ) = Aut(〈ζ〉).
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We note also that, as Gal(Q(ζn)/Q) is abelian, it is solvable, so therefore
all the roots of unity, principally ζn itself is expressible as combinations of
radicals of different types.

What is also interesting is that this implies that the values of the
trigonometric functions cos(2π

n
) and sin(2π

n
) are algebraic numbers.

Another, somewhat random, but interesting related fact is that for any
prime p, one has

Q(ζp) ⊇ Q(
√
p) if p ≡ 1( mod 4)

Q(ζp) ⊇ Q(
√−p) if p ≡ 3( mod 4)
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The study of cyclotomic fields also touches on some deeper ideas, in
particular those relating to ’what kind of groups arise as Galois groups’?

For cyclotomic fields, we have just established that Gal(Q(ζ)/Q) ∼= U(n)
is abelian, so let’s explore the nature of these groups.

Later on we will consider questions of what types of extensions have
abelian Galois groups in general.
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As we saw earlier, U(p) = Zp −{0} is actually a cyclic group of order φ(p) = p− 1,
and what’s kind of interesting (in and of itself) is the question of what is the
so-called ’least primitive root’, that is, the least r ∈ U(p) such that U(p) = 〈r〉.

We can give a small table which shows an interesting pattern:
p r

2 1

3 2

5 2

7 3

11 2

13 2

17 3

19 2

23 5

29 2

31 3

37 2
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It seems that ’2’ is frequently the least primitive root, but it is not known
if it ever ’stops’ being the least primitive root after some point.

Indeed, looking further, there are many primes for which 2 is the least
primitive root:

3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, 179,

181, 197, 211, 227, 269, 293, 317, 347, 349, 373, 379, 389, 419, 421, 443, 461,

467, 491, 509, 523, 541, 547, 557, 563, 587, 613, 619, 653, 659, 661, 677, 701, 709

Does this sequence (A001122 on http://oeis.org) stop? Who knows?
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The case of U(p) begs the question of whether U(n) is cyclic in general?
i.e. Is U(n) ∼= Zφ(n)?

The answer is no, but we can give some specific facts about the structure
of U(n).

FACTS:

U(n) is cyclic if n = 1, 2, 4, pk , 2pk for p an odd prime.

φ(pk) = pk − pk−1 = pk−1(p − 1). (Exercise)

φ(ab) = φ(a)φ(b) if gcd(a, b) = 1

U(8) = {1, 3, 5, 7} ∼= Z2 × Z2

U(16) = {1, 3, 5, 7, 9, 11, 13, 15} ∼= Z4 × Z2

U(2k) ∼= Z2k−2 × Z2 for k ≥ 3
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And to joint these facts together we have a fundamental fact:

Proposition

U(ab) ∼= U(a)× U(b) if gcd(a, b) = 1.

The demonstration of this follows very closely to how one proves that
Zab

∼= Za × Zb if gcd(a, b) = 1.
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As such, we can compute U(n) for n = pe11 pe22 · · · pemm by determining
U(peii ) using the above facts we enumerated.

For example:

U(15) = U(3 · 5) = U(3)× U(5) ∼= Z2 × Z4

U(20) = U(4 · 5) = U(4)× U(5) ∼= Z2 × Z4

U(60) = U(4 · 3 · 5) = U(4)× U(3)× U(5) ∼= Z2 × Z2 × Z4
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Which groups can appear as Galois groups?

Our study of cyclotomic extensions is a nice lead in to this question.

We begin by quoting the following fairly deep fact known as the
Kronecker-Weber Theorem

Theorem

If E/Q is a Galois where Gal(E/Q) is abelian, then there exists and n ≥ 1
such that E ⊆ Q(ζn).

Now we are not going to attempt to prove this, but we can give a parallel
analysis which deals with the determination of field extensions of Q have a
cyclic Galois group.
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Theorem

For every n, there exists a field extension E/Q such that Gal(E/Q) ∼= Zn.

To begin the proof of this result, we first quote another fairly deep
theorem, this one from number theory, about primes in ’arithmetic
progression’.

Theorem (Dirichlet)

Given a, d integers which are relatively prime, then the sequence

a, a + d , a+ 2d , . . . contains infinitely many primes.

And for our purposes, one prime in this sequence is enough, and we see
that any such prime is congruent to ’a’ mod d .

Timothy Kohl (Boston University) MA542 Lecture April 25, 2025 12 / 16



So given our ’n’, certainly gcd(1, n) = 1 so consider the sequence
1, 1 + n, 1 + 2n, 1 + 3n, . . . which by Dirichlet’s theorem contains a prime
p with property that p ≡ 1(mod n).

Consider now Q(ζp)/Q where Gal(Q(ζp)/Q) = 〈σ〉 ∼= Zp−1 and let
E = Q(ζp)〈σn〉.

We have that |〈σn〉| = p−1
n

which is an integer since p ≡ 1(mod n).

Moreover, by FTGT, [Q(ζp) : Q(ζp)〈σn〉] = |〈σn〉| = p−1
n

and thus
[Q(ζp)〈σn〉 : Q] = n since

[Q(ζp) : Q(ζp)〈σn〉][Q(ζp)〈σn〉 : Q] = [Q(ζp) : Q] = p − 1

and since 〈σn〉 ⊳ 〈σ〉 then Q(ζp)〈σn〉/Q is Galois with group
〈σ〉/〈σn〉 ∼= Zp−1/Z p−1

n

∼= Zn.
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For example, say n = 3 then p = 7 works since 7 ≡ 1(mod 3) and for
Gal(Q(ζ7)/Q) = 〈σ〉 we have σ(ζ7) = ζ37 and so consider now
〈σ3〉 = {I , σ3}, namely |σ3| = 6

3 = 2.

Let α = I (ζ7) + σ3(ζ7) = ζ7 + ζ67 and observe that

σ3(α) = σ3(ζ7 + ζ67 )

= σ3(ζ7) + σ3(ζ67 )

= ζ67 + ζ367

= ζ67 + ζ17

= α
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If we let

β = σ(α) = ζ37 + ζ47

γ = σ2(α) = ζ27 + ζ57

then we note that

σ3(β) = σ3(σ(α))

= σ(σ3(α))

= σ(α)

= β

σ3(γ) = σ3(σ2(α))

= σ2(σ3(α))

= σ2(α)

= γ

which means α, β, γ ∈ Q(ζ7)〈σ3〉
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Since Φ7(x) = x6 + x5 + · · ·+ x +1 then ζ67 + ζ57 + · · ·+ ζ7 +1 = 0 and so

α+ β + γ = 1

αβ + βγ + γα = −2

αβγ = 1

which implies that (x − α)(x − β)(x − γ) = x3 + x2 − 2x + 1 ∈ Q[x ] is a
polynomial whose splitting field is E = Q(ζ7)〈σ3〉 and that E = Q(α), and

that irr(α,Q) = x3 + x2 − 2x + 1.

And again we note that β, γ ∈ E too.

The point is that not only can we prove that there are Galois extensions of
Q with any arbitrary cyclic group as their Galois group, but we can
generally describe the extension in some detail.
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