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Non-cyclic abelian groups?

For non-cyclic abelian groups, it's a bit more subtle a problem.

For example, suppose we want to find a Galois extension with group G
that is isomorphic to Z3 X Z3?

Consider Q(Cag) and Q({9) where

Ga/(Q(C4g)/Q) Z¢ 49) Z42 = Z7 X Z6 = Z7 X Z3 X Z2
Gal(Q(¢o)/Q) = Zy(9) = Ze = 7o X L3

so, for 9 - 49 = 441 we have

Gal(Q(Ca41)/Q) = Zy(aary = Zz X Zp X Zp x L3 X L3
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So Gal(Q(Ca41)/Q) = (Z7 X Zy x Z3) % (Z3 x Z3) which means we can
find a subgroup H = Z7 x Zy X Z;, which yields a factor group

G/H% (Z7 ><Z2 XZQ) X (Z3 XZ3)/(Z7 ><Z2 XZ2)
=73 X 73

and this quotient is the Galois group of Q(Casa1)H/Q.
So indeed, we can (with some work) find Galois extensions of Q with

abelian Galois groups of any type we wish, all given as subfields of
cyclotomic extensions.
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non-abelian Galois Groups

For non-abelian Galois groups, we look at a slightly different setup.

For every n there exists a field extension L/K such that Gal(L/K) = Sp,.

And as a consequence we have:

For any finite group G, there exists a field extension E /K such that
Gal(L/E) = G.

Before looking at the proof of the theorem, let's examine why the corollary
is true.

It has to do with a very general result about groups and their
permutations.
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Definition

For a finite set X, let Perm(X) be the set of all permutations of X, also
sometimes denoted Sym(X) or Sx.

The most familiar example of this is for X = {1,2,..., n} where
Perm(X) = S, the n" symmetric group.

For a given group G, we can view the underlying set of elements of G as a
set which can be permuted like any other set.

This gives rise to the following important idea.

Definition
For G a finite group, the left regular representation is the function

A : G — Perm(G) defined by A(g)(h) = gh for each h € G.
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The reason A : G — Perm(G) makes sense is that for each g € G and
elements hy, ho € G we have that ghy = ghy if and only if hy = hy.

This means that if G = {hy, ha,..., h,} then for g € G we get a
re-arrangement, i.e. permutation in that gh € G for each h € G so

G = {gh1,gh2,...,ghn} where, by the above observation, gh; = gh;
implies h; = h;.
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To give an example of how this works, suppose we have G = Z3 = {0, 1,2}
where now, since G is 'additive’, we have \(g)(h) = g + h.

So now, consider A(1) where A\(1)(0) =1+0=1 A(1)(1)=1+1=2
and A\(1)(2) = 1+ 2 = 0 which means we can write A(1) in cycle notation
as

A1) =(0,1,2)
and similarly A\(2) = (0,2,1) and A\(0) = ()

Recall that the trivial permutation is written in cycle notation as '()’.
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A different example is for
G=D3={(x,t|x3=1,t>=1,xt=tx1) = {1,x,x%, t, tx, tx*} and
here we can compute A(x) where now

Ax)(1)=x-1=x
Ax)(x) = x - x = x?
AX)(x*)=x-x2=1
AX)(t) = x - t = tx?
AX)(tx) =x-tx =t
AX)(tx?) = x - tx? = tx

which can be represented in cycle notation as (1, x, x?)(t, tx?, tx).
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There are two key observations about A : G — Perm(G).

First, A is a group homomorphism since
ANg182)(h) = g182h = g1(g2h) = A(g1)(A(g2)(h)) = (A(g1) o A(g2))(h).

Second, \ is one-to-one. If we compute ker(\) we find that A\(g)(h) = h
for all h € G implies that gh = h which implies that g = e, that is A(g) is
the identity permutation, only if g = e, so ker()\) = {e}.

We also observe that if |G| = n then, clearly
Perm(G) = Perm({1,2,...,n}) = S,.

This observation, together with the fact that X is 1-1 yields the following
theorem.
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Theorem (Cayley)

If |G| = n then there exists a subgroup of S, isomorphic to G.

As \: G — Perm(G) = S, is one-to-one then \(G) is a subgroup of
Perm(G) that is isomorphic to G.

So what this implies is that S, in some sense contains 'every group of
order n' in that a group with n elements can be embedded in its group of
permutations, and this group of permutations (of a set with n elements) is
isomorphic to S,,.

We shall see subsequently how to apply this to infer that every finite group
G is a Galois group, but a bit more foundation is needed.
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non-abelian Galois Groups

We aim to cover the following two facts.

For every n there exists a field extension L/K such that Gal(L/K) = Sp,.

For any finite group G, there exists a field extension E /K such that
Gal(L/E) = G.

The one caveat is that K is not Q, and indeed the fields we will be dealing
with are not number fields, like QQ etc., that we've been examining up till

now.

11 /21
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Definition

For n > 1 let Q(x1,-..,xn) = Frac(Q[xi,. .., xa]) which is the field of rational
functions in n variables with coefficients in Q.

Consider now the elementary symmetric functions {fi,...,f,}

n
A=Y xi=xi+x+ - +x

i—1
fh= g XiXj = X1X2 + X1X3 + *+* + Xp_1Xp
1<i<j<n
3 = E XiXjXk = X1X2X3 4+ -+ + -+ 4 Xp_2Xn—1Xn
1<i<j<k<n

fo=x1x0 Xn
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For example, with n = 4 we have

fi=x1+x+x3+xs
f2 = X1X2 + X1X3 + X1X4 + XoX3 + XoXg + X3X4
f3 = X1X0X3 + X1 X0X4 + X1X3X4 + X2X3X4

f4 — X1X2X3X4

and to give a sense of the number of terms, for any n and any r < n the
. . n : . : :
symmetric function f, has (r) terms since one is adding up all possible

expressions in r of the n variables.
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Symmetric 'expressions’ arise quite naturally when looking at the
factorization of 'ordinary’ polynomials as products of linear terms.

For example, if g(x) = (x — a)(x — B) then g(x) = x? — (a + B)x + af,
namely g(x) = x> — fi(a, B)x + h(a, B).

If g(x) = (x — a)(x — B)(x —7) then

g(x) = — (a4 B+ )% + (B + ay + By)x — (af7)
=x3 — fi(a, B,7)x<* + h(a, B,7)x — fi(a, B,7)

and this pattern holds in general.
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Namely, if we define fo(x1,...,x,) =1 then for monic g(x) with roots
Q1,00,...,0, we have

n

g(x) =) (1)fflar,...,an)x""*

k=0

and indeed, the 'symmetry’ of these functions (in general) corresponds to
the 'symmetry’ that arises when these roots are permuted by the action of
a Galois group. (More on this later.)
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The reason the f, are called symmetric is that, if
f(x1,x2,...,xn) € Q(x1,...,%) then o € S, acts on this function by
shuffling variables, namely o (f(x1,...,Xa)) = f(X5(1); Xs(2); Xo(n))-

For example, if f(x1,x2,x3) = x1 + x2x2 + x5 and o = (1,2,3) then
O'(f(Xl,Xz,X3)) = X2 + X3X12 + Xg.

So what we have is that o € S, induces an automorphism of Q(x,...,xs)
since one can verify that o(f + g) = o(f) + o(g) and o(fg) = o(f)o(g),
and clearly o acts in a 1-1 fashion and every element of Q(xi,...,xp) is

o(f) for some other f € Q(xi,...,xpn). (Exercise!)

So what makes the f, we defined earlier 'symmetric’?
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So we have that each o € S, acts as an automorphism of Q(xi,. .., xp)
which begs the question as to what is Q(x1, ..., X»)s,?

Proposition

For a given n > 1 with associated elementary symmetric functions

fl,..., T we have Q(x1,...,xn)s, = Q(f,..., 1), namely the field
generated adjoining {fi,...,f,} to Q (which includes all sums, differences,
products, and quotients of the f;).

For a basic example, consider o = (1,2,3) € S3 and f; = x; + x2 + x3 then
o(f1) = Xo(1) T Xo(2) + Xo(3) = X2+ X3 +x1 = X1 + 2 +x3 = f1.

Similarly, f1, >, f3 are all unchanged if acted on by any o € S3 since a
rearrangement of the variables gives an expression which is a
re-arrangement of the original function, but which equals the original
function.
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Soif K=Q(f,...,f,) and L =Q(xi,...,x,) then L/K is Galois with
Gal(L/K) = S,.

The reason L is Galois over K is that K is exactly the fixed field of S, and
that [L: K] = n! =|S,|.

Example: n=2, i = x; + x2 and f, = x1x» and observe that Q(f1, f2)
does not contain 'x;' and 'xp' as independent elements.

However, if we adjoin x; to Q(f1, f2) then we note that

fr-14(—1)-x1 = x» so that Q(f1, ~2)(x1) contains x so it equals

Q(x1, x2) which means Q(x1,x2) is a Q(f1, f2) vector space with basis
{1,x1}, so it has dimension 2 = 2!, i.e. [Q(x1,x) : Q(f1, h)] =2! =|S|.
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In general, we can exhibit a basis of Q(xi,...,x,) over Q(f1,...,f,),
specifically
B={xi"x5?--xg" | 0 < e < t}

which means e =0, & = 0,1, e3 =0,1,2 etc. yielding the fact that
|B| = nl.

Example:
n=2—B= {X1X2,X1X2} ={1,x}

2 2
n=3— B=/{1,x,xx3,XXx5,X3,X5 }.
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So now that we've established the existence of a Galois extension E/F
with Gal(E/F) = S, we can use Cayley's theorem.

Specifically, if G is a group of order n, then G embeds as a subgroup of
Sp, which means that, there exists a subgroup H < Gal(E/F) = S, such
that H = G.

This means that Gal(E/Ey) = H = G and we're done.

So what about finding a Galois extension E/F where say F O Q with
Gal(E/F) = G?
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There are various results which imply, for example that there do exist
Galois extensions E/Q where the Galois group Gal(E/Q) = S, for every
n>2.

What this implies therefore is that for any group G, there is an
intermediate field Q C K C E such that Gal(E/K) = G, but whether
there exists a Galois extension of Q with an arbitrary Galois group G is
still an open question.

The strongest result that is known is that every solvable group is
'realizable’ over Q as a Galois group.

It's known also that many simple groups (those with no normal subgroups)
are realizable as Galois groups over QQ, for example A, for n > 5 as well as
others.
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