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Non-cyclic abelian groups?

For non-cyclic abelian groups, it’s a bit more subtle a problem.

For example, suppose we want to find a Galois extension with group G
that is isomorphic to Z3 × Z3?

Consider Q(ζ49) and Q(ζ9) where

Gal(Q(ζ49)/Q) ∼= Zφ(49) = Z42
∼= Z7 × Z6

∼= Z7 × Z3 × Z2

Gal(Q(ζ9)/Q) ∼= Zφ(9) = Z6
∼= Z2 × Z3

so, for 9 · 49 = 441 we have

Gal(Q(ζ441)/Q) ∼= Zφ(441)
∼= Z7 × Z2 × Z2 × Z3 × Z3

Timothy Kohl (Boston University) MA542 Lecture April 28, 2025 2 / 21



So Gal(Q(ζ441)/Q) ∼= (Z7 × Z2 × Z2)× (Z3 × Z3) which means we can
find a subgroup H ∼= Z7 × Z2 × Z2, which yields a factor group

G/H ∼= (Z7 × Z2 × Z2)× (Z3 × Z3)/(Z7 × Z2 × Z2)
∼= Z3 × Z3

and this quotient is the Galois group of Q(ζ441)H/Q.

So indeed, we can (with some work) find Galois extensions of Q with
abelian Galois groups of any type we wish, all given as subfields of
cyclotomic extensions.
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non-abelian Galois Groups

For non-abelian Galois groups, we look at a slightly different setup.

Theorem

For every n there exists a field extension L/K such that Gal(L/K ) ∼= Sn.

And as a consequence we have:

Corollary

For any finite group G, there exists a field extension E/K such that
Gal(L/E ) ∼= G.

Before looking at the proof of the theorem, let’s examine why the corollary
is true.

It has to do with a very general result about groups and their
permutations.
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Definition

For a finite set X , let Perm(X ) be the set of all permutations of X , also
sometimes denoted Sym(X ) or SX .

The most familiar example of this is for X = {1, 2, . . . , n} where
Perm(X ) = Sn, the nth symmetric group.

For a given group G , we can view the underlying set of elements of G as a
set which can be permuted like any other set.

This gives rise to the following important idea.

Definition

For G a finite group, the left regular representation is the function
λ : G → Perm(G ) defined by λ(g)(h) = gh for each h ∈ G .
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The reason λ : G → Perm(G ) makes sense is that for each g ∈ G and
elements h1, h2 ∈ G we have that gh1 = gh2 if and only if h1 = h2.

This means that if G = {h1, h2, . . . , hn} then for g ∈ G we get a
re-arrangement, i.e. permutation in that gh ∈ G for each h ∈ G so
G = {gh1, gh2, . . . , ghn} where, by the above observation, ghi = ghj
implies hi = hj .
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To give an example of how this works, suppose we have G = Z3 = {0, 1, 2}
where now, since G is ’additive’, we have λ(g)(h) = g + h.

So now, consider λ(1) where λ(1)(0) = 1 + 0 = 1, λ(1)(1) = 1 + 1 = 2
and λ(1)(2) = 1 + 2 = 0 which means we can write λ(1) in cycle notation
as

λ(1) = (0, 1, 2)

and similarly λ(2) = (0, 2, 1) and λ(0) = ()

Recall that the trivial permutation is written in cycle notation as ’()’.
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A different example is for
G = D3 = 〈x , t | x3 = 1, t2 = 1, xt = tx−1〉 = {1, x , x2, t, tx , tx2} and
here we can compute λ(x) where now

λ(x)(1) = x · 1 = x

λ(x)(x) = x · x = x2

λ(x)(x2) = x · x2 = 1

λ(x)(t) = x · t = tx2

λ(x)(tx) = x · tx = t

λ(x)(tx2) = x · tx2 = tx

which can be represented in cycle notation as (1, x , x2)(t, tx2, tx).
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There are two key observations about λ : G → Perm(G ).

First, λ is a group homomorphism since
λ(g1g2)(h) = g1g2h = g1(g2h) = λ(g1)(λ(g2)(h)) = (λ(g1) ◦ λ(g2))(h).

Second, λ is one-to-one. If we compute ker(λ) we find that λ(g)(h) = h
for all h ∈ G implies that gh = h which implies that g = e, that is λ(g) is
the identity permutation, only if g = e, so ker(λ) = {e}.

We also observe that if |G | = n then, clearly
Perm(G ) ∼= Perm({1, 2, . . . , n}) = Sn.

This observation, together with the fact that λ is 1-1 yields the following
theorem.
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Theorem (Cayley)

If |G | = n then there exists a subgroup of Sn isomorphic to G .

As λ : G → Perm(G ) ∼= Sn is one-to-one then λ(G ) is a subgroup of
Perm(G ) that is isomorphic to G .

So what this implies is that Sn in some sense contains ’every group of
order n’ in that a group with n elements can be embedded in its group of
permutations, and this group of permutations (of a set with n elements) is
isomorphic to Sn.

We shall see subsequently how to apply this to infer that every finite group
G is a Galois group, but a bit more foundation is needed.
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non-abelian Galois Groups

We aim to cover the following two facts.

Theorem

For every n there exists a field extension L/K such that Gal(L/K ) ∼= Sn.

Corollary

For any finite group G, there exists a field extension E/K such that
Gal(L/E ) ∼= G.

The one caveat is that K is not Q, and indeed the fields we will be dealing
with are not number fields, like Q etc., that we’ve been examining up till
now.
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Definition

For n ≥ 1 let Q(x1, . . . , xn) = Frac(Q[x1, . . . , xn]) which is the field of rational
functions in n variables with coefficients in Q.

Consider now the elementary symmetric functions {f1, . . . , fn}

f1 =

n
∑

i=1

xi = x1 + x2 + · · ·+ xn

f2 =
∑

1≤i<j≤n

xixj = x1x2 + x1x3 + · · · + xn−1xn

f3 =
∑

1≤i<j<k≤n

xixjxk = x1x2x3 + · · ·+ · · ·+ xn−2xn−1xn

...

fn = x1x2 · · · xn
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For example, with n = 4 we have

f1 = x1 + x2 + x3 + x4

f2 = x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4

f3 = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4

f4 = x1x2x3x4

and to give a sense of the number of terms, for any n and any r ≤ n the

symmetric function fr has

(

n
r

)

terms since one is adding up all possible

expressions in r of the n variables.
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Symmetric ’expressions’ arise quite naturally when looking at the
factorization of ’ordinary’ polynomials as products of linear terms.

For example, if g(x) = (x − α)(x − β) then g(x) = x2 − (α+ β)x + αβ,
namely g(x) = x2 − f1(α, β)x + f2(α, β).

If g(x) = (x − α)(x − β)(x − γ) then

g(x) = x3 − (α+ β + γ)x2 + (αβ + αγ + βγ)x − (αβγ)

= x3 − f1(α, β, γ)x
2 + f2(α, β, γ)x − f3(α, β, γ)

and this pattern holds in general.
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Namely, if we define f0(x1, . . . , xn) = 1 then for monic g(x) with roots
α1, α2, . . . , αn we have

g(x) =

n
∑

k=0

(−1)k fk(α1, . . . , αn)x
n−k

and indeed, the ’symmetry’ of these functions (in general) corresponds to
the ’symmetry’ that arises when these roots are permuted by the action of
a Galois group. (More on this later.)
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The reason the fr are called symmetric is that, if
f (x1, x2, . . . , xn) ∈ Q(x1, . . . , xn) then σ ∈ Sn acts on this function by
shuffling variables, namely σ(f (x1, . . . , xn)) = f (xσ(1), xσ(2), . . . , xσ(n)).

For example, if f (x1, x2, x3) = x1 + x2x
2
3 + x22 and σ = (1, 2, 3) then

σ(f (x1, x2, x3)) = x2 + x3x
2
1 + x23 .

So what we have is that σ ∈ Sn induces an automorphism of Q(x1, . . . , xn)
since one can verify that σ(f + g) = σ(f ) + σ(g) and σ(fg) = σ(f )σ(g),
and clearly σ acts in a 1-1 fashion and every element of Q(x1, . . . , xn) is
σ(f ) for some other f ∈ Q(x1, . . . , xn). (Exercise!)

So what makes the fr we defined earlier ’symmetric’?
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So we have that each σ ∈ Sn acts as an automorphism of Q(x1, . . . , xn)
which begs the question as to what is Q(x1, . . . , xn)Sn?

Proposition

For a given n ≥ 1 with associated elementary symmetric functions
f1, . . . , fn we have Q(x1, . . . , xn)Sn = Q(f1, . . . , fn), namely the field
generated adjoining {f1, . . . , fn} to Q (which includes all sums, differences,
products, and quotients of the fi ).

For a basic example, consider σ = (1, 2, 3) ∈ S3 and f1 = x1 + x2 + x3 then
σ(f1) = xσ(1) + xσ(2) + xσ(3) = x2 + x3 + x1 = x1 + x2 + x3 = f1.

Similarly, f1, f2, f3 are all unchanged if acted on by any σ ∈ S3 since a
rearrangement of the variables gives an expression which is a
re-arrangement of the original function, but which equals the original
function.
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So if K = Q(f1, . . . , fn) and L = Q(x1, . . . , xn) then L/K is Galois with
Gal(L/K ) = Sn.

The reason L is Galois over K is that K is exactly the fixed field of Sn and
that [L : K ] = n! = |Sn|.

Example: n = 2, f1 = x1 + x2 and f2 = x1x2 and observe that Q(f1, f2)
does not contain ’x1’ and ’x2’ as independent elements.

However, if we adjoin x1 to Q(f1, f2) then we note that
f2 · 1 + (−1) · x1 = x2 so that Q(f1, f2)(x1) contains x2 so it equals
Q(x1, x2) which means Q(x1, x2) is a Q(f1, f2) vector space with basis
{1, x1}, so it has dimension 2 = 2!, i.e. [Q(x1, x2) : Q(f1, f2)] = 2! = |S2|.
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In general, we can exhibit a basis of Q(x1, . . . , xn) over Q(f1, . . . , fn),
specifically

B = {xe11 xe22 · · · xenn | 0 ≤ et < t}

which means e1 = 0, e2 = 0, 1, e3 = 0, 1, 2 etc. yielding the fact that
|B| = n!.

Example:
n = 2 → B = {x01 x

0
2 , x

0
1 x

1
2} = {1, x2}

n = 3 → B = {1, x2, x2x3, x2x
2
3 , x3, x

2
3}.
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So now that we’ve established the existence of a Galois extension E/F
with Gal(E/F ) ∼= Sn we can use Cayley’s theorem.

Specifically, if G is a group of order n, then G embeds as a subgroup of
Sn, which means that, there exists a subgroup H ≤ Gal(E/F ) ∼= Sn such
that H ∼= G .

This means that Gal(E/EH) = H ∼= G and we’re done.

So what about finding a Galois extension E/F where say F ⊇ Q with
Gal(E/F ) ∼= G?
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There are various results which imply, for example that there do exist
Galois extensions E/Q where the Galois group Gal(E/Q) ∼= Sn for every
n ≥ 2.

What this implies therefore is that for any group G , there is an
intermediate field Q ⊆ K ⊆ E such that Gal(E/K ) ∼= G , but whether
there exists a Galois extension of Q with an arbitrary Galois group G is
still an open question.

The strongest result that is known is that every solvable group is
’realizable’ over Q as a Galois group.

It’s known also that many simple groups (those with no normal subgroups)
are realizable as Galois groups over Q, for example An for n ≥ 5 as well as
others.
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