Turn in #1

The complex numbers are defined as

$$\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}\$$

where

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

 $(a+bi)(c+di) = (ac-bd) + (ad+bc)i$

and

$$\mathbb{R} \times \mathbb{R} = \{ (a, b) \mid a, b \in \mathbb{R} \}$$

where

$$(a, b) + (c, d) = (a + c, b + d)$$

 $(a, b)(c, d) = (ac, bd)$

(a) We've said that \mathbb{C} is a vector space over \mathbb{R} and that the same is true for $\mathbb{R} \times \mathbb{R}$. The set $\{1, i\}$ is a basis for \mathbb{C} over \mathbb{R} . Find a basis for $\mathbb{R} \times \mathbb{R}$ and determine if \mathbb{C} and $\mathbb{R} \times \mathbb{R}$ are isomorphic as vector spaces? Explain.

(b) We know that \mathbb{C} is a field. Is $\mathbb{R} \times \mathbb{R}$ a field? Is it a domain?

(c) Does $\mathbb{R} \times \mathbb{R}$ contain '*i*'?

[10 points]