Turn in #7

(1) Let *E* be an extension field of *F* and let $\alpha \in E$ be algebraic of odd degree over *F* (i.e. $[F(\alpha) : F]$ is odd). Show that α^2 is also algebraic over *F* and that $F(\alpha) = F(\alpha^2)$.

[5 points]

(2) Find the minimal polynomial p(x) for $\alpha = \sqrt{3 - \sqrt{6}}$ over \mathbb{Q} and prove that it *is* irreducible.

Is $\mathbb{Q}(\alpha)$ a splitting field for p(x)? Explain.

[15 points]