Problem Set

1. Find the value of $\phi(20)$.
2. Find the value of $\phi(60)$.

3 . Find the value of $\phi(63)$.
4. Find the value of $\phi(97)$.
5. Find the value of $\phi(341)$.
6. Find the value of $\phi(561)$.
7. Find the value of $\phi(8800)$.
8. Show that if n is odd, then $\phi(2 n)=\phi(n)$.
9. Show that if n is even, then $\phi(2 n)=2 \phi(n)$.
10. Let x be the smallest positive integer such that

$$
2^{x} \equiv 1 \quad \bmod 63
$$

Find x, and verify that $x \mid \phi(63)$.
11. Find the last three digits of 7^{9999}.
12. (a) The positive divisors of 6 are $1,2,3$, and 6 . Compute $\phi(1)+\phi(2)+\phi(3)+$ $\phi(6)$.
(b) The positive divisors of 8 are 1,2 , 4 , and 8 . Compute $\phi(1)+\phi(2)+\phi(4)+$ $\phi(8)$.
(c) The positive divisors of 9 are 1,3 , and 9 . Compute $\phi(1)+\phi(3)+\phi(9)$.
(d) Let $n \geq 1$. Make a conjecture about the value of

$$
\sum_{d \mid n} \phi(d)
$$

where the sum is taken over all of the divisors d of n. Try to prove that your conjecture is correct. To prove that your conjecture is correct, it may be useful to use the result of the next problem.
13. Recall that a function f is said to be multiplicative if $f(m n)=f(m) f(n)$ for all integers m and n such that $(m, n)=1$. We know that Euler's ϕ-function is multiplicative. Suppose that f is a multiplicative function, and define a new function $g(n)$ as follows:

$$
g(n)=f\left(d_{1}\right)+f\left(d_{2}\right)+\cdots+f\left(d_{r}\right),
$$

where $d_{1}, d_{2}, \ldots, d_{r}$ are the divisors of n. Show that $g(n)$ is multiplicative.
14. What can you say about n if the value of $\phi(n)$ is a prime number? What if the value of $\phi(n)$ is the square of a prime number.
15. Find at least five different numbers n such that $\phi(n)=160$.
16. Suppose that the integer n satisfies $\phi(n)=1000$. Make a list of all the primes that might possibly divide n. Use this information to find all integers n that satisfy $\phi(n)=1000$.
17. Find all values of n that satisfy each of the following equations:
(a) $\phi(n)=n / 2$
(b) $\phi(n)=n / 3$
(c) $\phi(n)=n / 6$
18. Find the remainder of

$$
10^{10}+10^{10^{2}}+\cdots+10^{10^{10}}
$$

upon division by 7 .
19. (a) For each integer $2 \leq a \leq 10$, find the last four digits of a^{1000}.
(b) Based on your experiments in (a), and further experiments if necessary, give a simple criterion that allows you to predict the last four digits of a^{1000} from the value of a.
(c) Prove that your criterion in (b) is correct.
20. Show that for all natural numbers s, there is an integer n divisible by s such that the sum of the digits of n is equal to s.
21. Prove that $504 \mid\left(n^{9}-n^{3}\right)$ for all integers $n \geq 1$.
22. Prove that for any odd integer $n>0, n \mid\left(2^{n!}-1\right)$.
23. Prove that for every natural number n there exists some power of 2 whose final n digits are all ones and twos.
24. Prove that there exists a positive integer k such that $k \cdot 2^{n}+1$ is composite for every positive integer n.
25. Suppose that p and q are different odd primes and that a is an integer such that $(a, p q)=1$. Show that

$$
a^{\phi(p q) / 2} \equiv 1 \quad \bmod p q .
$$

26. Show that if $n>2$, then $2 \mid \phi(n)$.
27. In this series of exercises, you will prove the Euler-Fermat Theorem. Let n be an integer greater than or equal to 1 , and let a be an integer such that $(a, n)=1$. Let

$$
1=b_{1}<b_{2}<\cdots<b_{\phi(n)}<n
$$

be the $\phi(n)$ numbers between 0 and n that are relatively prime to n.

