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Definitions 2.1.12. We writeMn(R) for the set of n×nmatrices over the real numbers,
R. We shall make use of the binary operation of matrix multiplication, which is defined
as follows. If

A =

⎛⎜⎝ a11 . . . a1n

...
an1 . . . ann

⎞⎟⎠ and B =

⎛⎜⎝ b11 . . . b1n
...

bn1 . . . bnn

⎞⎟⎠ ,

then the product AB is the matrix whose ij-th coordinate is

cij =
n∑
k=1

aikbkj = ai1b1j + · · ·+ ainbnj .

We write I = In for the n×n identity matrix: the matrix whose diagonal entries are
all equal to 1 and whose off-diagonal entries are all equal to 0.

Thus, I2 =
(

1 0
0 1

)
, I3 =

(
1 0 0
0 1 0
0 0 1

)
, etc.

The properties we need here regarding matrix multiplication are few. We shall discuss
matrices in greater detail in Section 7.10 and Chapter 10.

Lemma 2.1.13. Multiplication of n × n matrices gives an associative binary operation
on Mn(R). Moreover, In is an identity element for this operation. Thus, Mn(R) is a
monoid under matrix multiplication.

The invertible elements in this monoid structure onMn(R) are precisely the invertible
matrices in the usual sense. As such, they merit a name.

Definition 2.1.14. We write Gln(R) for Inv(Mn(R)), the group of invertible elements
of Mn(R). We call it the n-th general linear group of R.

Later in this chapter, we shall construct two infinite families of finite nonabelian
groups, the dihedral groups and the quaternionic groups, as explicit subgroups of Gln(R)
for n = 2 and 4, respectively. We shall show in Chapter 10 that every finite group is a
subgroup of Gln(R) for some value of n.

It is sometimes useful to study partial inverses in a monoid.

Definitions 2.1.15. Let X be a monoid with identity element e. If x, y ∈ X with
xy = e, then we say that x is a left inverse for y and that y is a right inverse for x.

Exercises 2.1.16.
1. Let M be the set of all nonzero integers. Then M is a monoid under multiplication.

What is Inv(M)?

† 2. Let G be a group and let x, y ∈ G. Show that x and y commute if and only if
x2y2 = (xy)2.

† 3. Let G be a group such that x2 = e for all x ∈ G. Show that G is abelian.

4. Let G be a group and let x1, . . . , xk ∈ G. Show that (x1 . . . xk)−1 = x−1
k . . . x−1

1 .

5. Let G be a group and let x, y ∈ G. Show that x and y commute if and only if
(xy)−1 = x−1y−1.

6. Let G be a group and let x, y ∈ G. Suppose there are three consecutive integers n
such that xnyn = (xy)n. Show that x and y commute.



CHAPTER 2. GROUPS: BASIC DEFINITIONS AND EXAMPLES 19

7. Let G be an abelian group and let x, y ∈ G. Show that xnyn = (xy)n for all n ∈ Z.

8. Verify that multiplication of n× n matrices is associative.

9. Show that Gl1(R) is isomorphic to R×, the group of non-zero real numbers under
multiplication.

10. Show that Gln(R) is nonabelian for n ≥ 2.

11. Let

G =
{(

a b
0 c

) ∣∣∣∣ b ∈ R, a, c ∈ Q and ac �= 0
}
.

Show that G is a group under matrix multiplication. Is G abelian?

12. Let X be a monoid. Suppose that x ∈ X has a left inverse, y, and a right inverse,
z. Show that y = z, and that x is invertible with inverse y.

† 13. Let X be a monoid with the property that every element of X has a left inverse.
Show that X is a group.

14. Let X be a finite monoid with the left cancellation property: if xy = xz, then
y = z. Show that X is a group.

15. Let X be a finite set with an associative binary operation. Suppose this operation
has both the left and the right cancellation properties. Show that X is a group.

2.2 Subgroups

One can tell quite a bit about about a group by knowing its subgroups.

Definitions 2.2.1. A subset S of a group G is said to be closed under multiplication if
for x and y in S, the product xy is also in S.

A subset H of G is said to be a subgroup if it is nonempty and closed under multi-
plication, and if for each x ∈ H, the inverse element x−1 is also in H.

Examples 2.2.2.
1. The groups Z and Q are subgroups of R.

2. The inclusions below are all inclusions of subgroups.

Q×
+ ⊂ Q×

∩ ∩
R×

+ ⊂ R×

3. Z+ ⊂ R×
+ is closed under multiplication, but is not a subgroup, because the inverses

in R×
+ of the non-identity elements of Z+ do not lie in Z+.

4. Any group G is a subgroup of itself.

5. For any group G, consider the subset {e} ⊂ G, consisting of the identity element
alone. Because e · e = e and e−1 = e, {e} is a subgroup of G, called the trivial
subgroup, or identity subgroup. By abuse of notation (i.e., for convenience), we
shall generally write e in place of {e} for this subgroup. (When the identity element
is called 1 or 0, we shall write 1 or 0 for the trivial subgroup as well.)
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Example 2.2.16. We write D6 for the dihedral group of order 6. As will become clear
later, the following is the lattice of subgroups of D6.

D6

〈b〉 〈a〉 〈ab〉 〈ab2〉

e
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Here, 〈b〉 has order 3, while 〈a〉, 〈ab〉, and 〈ab2〉 have order 2. The upward-slanted lines
represent the inclusions of subgroups.

Because the elements of monoids don’t necessarily have inverses, the definition of a
submonoid will have to be different from that of a subgroup.

Definition 2.2.17. A submonoid of a monoid M is a subset which is closed under
multiplication and contains the identity element.

Exercises 2.2.18.
1. Show that in the real numbers R, the cyclic subgroup generated by 1 is the integers.

In particular, Z is cyclic.

2. In Z, show that 〈n〉 = Z if and only if n = ±1.

3. Consider the group, Q×
+, of positive rational numbers under multiplication. What

are the elements of 〈2〉 ⊂ Q×
+?

4. Consider the group Q× of nonzero rational numbers under multiplication. What
are the elements of 〈−1〉 ⊂ Q×? What are the elements of 〈−2〉?

† 5. Let M be a monoid. We can define the positive powers of the elements in M in
exactly the same way that positive powers in a group are defined. We have m1 = m
for all m ∈ M , and the higher powers are defined by induction: mk = mk−1m.
Show that for m ∈M and for i, j ≥ 1, we have

(a) mi ·mj = mi+j , and

(b) (mi)j = mij .

6. In Z, show that 〈2, 3〉 = Z.

7. In Z, show that 〈3n, 5n〉 = 〈n〉 for any n ∈ Z.

8. In the group, Q×
+, of positive rational numbers under multiplication, show that

〈2, 3〉 is not a cyclic subgroup. In other words, there is no rational number q such
that 〈2, 3〉 = 〈q〉.

9. Show that Q×
+ is generated by the set of all prime numbers.

10. Show that the group Q× of nonzero rational numbers is generated by the set
consisting of −1 and all of the prime numbers.
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11. Let G be a group and let a, b ∈ G such that aba−1 ∈ 〈b〉. Show that H =
{aibj | i, j ∈ Z} is a subgroup of G. Deduce that H = 〈a, b〉.

12. In Z, show that 〈2〉 ∩ 〈3〉 = 〈6〉.
13. In Z, show that 〈m〉∩ 〈n〉 = 〈k〉, where k is the least common multiple of m and n.

14. In the group Q×
+ of positive rational numbers under multiplication, show that

〈2〉 ∩ 〈3〉 = 1. Here, 1 is the trivial subgroup of Q×
+.

15. Let M be a monoid. Show that the group of invertible elements Inv(M) is a
submonoid of M .

16. Show that not every submonoid of a group is a group.

17. Show that every submonoid of a finite group is a group.

2.3 The Subgroups of the Integers

One of the simplest yet most powerful results in mathematics is the Euclidean Algorithm.
We shall use it here to identify all subgroups of Z and to derive the properties of prime
decomposition in Z.

Theorem 2.3.1. (The Euclidean Algorithm2) Let m and n be integers, with n > 0.
Then there are integers q and r, with 0 ≤ r < n, such that m = qn+ r.

Proof First, we assume that m ≥ 0, and argue by induction on m. If m < n, we may
take q = 0 and r = m. If m = n, we take q = 1 and r = 0. Thus, we may assume that
m > n and that the result holds for all non-negative integers less than m.

In particular, the induction hypothesis gives

m− 1 = q′n+ r′,

for integers q′ and r′ with 0 ≤ r′ < n. If r′ < n− 1, we may take q = q′ and r = r′ + 1
for the desired result. Otherwise, m = (q′ + 1)n, and the proof for m ≥ 0 is complete.

If m < 0, then −m is positive, and hence −m = q′n + r′ with 0 ≤ r′ < n. If r′ = 0,
this gives m = −q′n. Otherwise, we have m = −q′n− r′. Subtracting and adding a copy
of n on the right of the equation gives m = (−q′ − 1)n+ (n− r′), and since 0 < r′ < n,
we have 0 < n− r′ < n as well.

We shall use this to characterize the subgroups of Z. The subgroups we already know
are the cyclic ones:

〈n〉 = {qn | q ∈ Z}.

We shall next show that these are all the subgroups of Z. First, note that ifH is a nonzero
subgroup of Z, then there must be a nonzero element in it, and hence, by closure under
inverses, a positive element. Since the set of positive integers less than or equal to a
given one is finite, there is a unique smallest positive element in it.

2The terminology that we’ve chosen here is not universal. There are some mathematicians who refer
to Theorem 2.3.1 as the Division Algorithm, and use the term Euclidean Algorithm for the procedure
for calculating greatest common divisors, outlined in Problem 3 of Exercises 2.3.18.


