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Ordinal Numbers (continued)

We saw previously the following result:

Theorem (Law of Trichotomy for Ordinals)

Given any two ordinal numbers β and γ, exactly of one of the follow ing

holds:

β < γ, β = γ, β > γ

In parallel to this we can prove the following result for cardinal numbers.

Theorem (Law of Trichotomy for Cardinals)

Given any two cardinal numbers b and a, exactly of one of the follow ing

holds:

b < a, b = a, b > a
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Proof.

The proof of this result is actually a quite straightforward application of
the result we showed for ordinals.

The one fact that needs to be applied is that given sets A,B with certain
cardinalities a, b, by the well ordering principle there exist orderings �A

and �B where (A,�A) and (B ,�B) are well ordered sets.

Thus for α = ot(A,�A) and β = ot(B ,�B) either β < α, β = α,or
β > α.

If α = β then clearly |A| =c |B | since an order isomorphism A → B is a
bijection.

If α < β then it means that (A,�A) is isomorphic to an initial segement of
(B ,�B) which implies that |A| <c |B |.

And a similar argument yields that α > β implies |A| >c |B |.
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What should be apparent from our development of the ordinals is that,
while they represent well-orderings of sets, they too are well ordered under
the < relation based upon the comparison of initial segments.

Theorem

Let Φ be a set of ordinal numbers then (Φ, <) is a well-ordered set.

Proof.

Assume that Φ is non-empty since the empty set is trivially well-ordered.

Let φ ∈ Φ be an ordinal in Φ and if φ isn’t the first element then consider
the segment sΦ(φ) which is well-ordered.

Since sΦ(φ) ∩ Φ is a subset, it is well ordered and so has a first element,
call it α.

Therefore α is the first element of Φ so Φ is well ordered.
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Before we consider the enumeration of the ordinals (which we can do, to a
point) we come back to a definition we bypassed earlier.

Definition

Let ω2 be the set ω · ω which is built on the set ω × ω with the order
〈b1, a1〉 � 〈b2, a2〉 if b1 < b2, or if b1 = b2 then a1 < a2.

This is basically definining the so-called lexicographic or ’dictionary
ordering’ on ω × ω where

〈0, 0〉 < 〈1, 0〉 < 〈2, 0〉 < · · · <

〈0, 1〉 < 〈1, 1〉 < 〈2, 1〉 < · · · <

〈0, 2〉 < 〈1, 2〉 < 〈2, 2〉 < · · · <

And inductively we define ωn = ωn−1 · ω although we can simply define it
to mean ωn (n-tuples) of natural numbers with lexicographic ordering.
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With this in mind, we can list the ordinals starting with 0 = ∅:

0, 1, . . . , n, . . .

ω, ω + 1, . . . , ω + n, . . .

ω · 2, ω · 2 + 1, . . . , ω · 2 + n, . . .

...

ω · ω = ω2, ω2 + 1, . . . , ω2 + n, . . . , ω2 + ω, . . .

ω2 · 2, ω2 · 2 + 1, . . . , ω2 · 2 + n, . . . , ω2 · 2 + ω, . . .

...

ω2 · ω = ω3, ω3 + 1, . . . , ω3 + n, . . .

... and

ωω, . . .
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We are not going to delve into all the curious properties of ordinal
arithmetic, but we can make a few observations.

First, on the previous page we noted the ordinal ωω which is viewed as the
limit of the sequence of exponentiated ordinals ω, ω2, . . . where ωn is
viewed as the set of n-tuples of natural numbers with lexicographic
ordering.

This in turn is viewable as the set of all functions f : {0, . . . , n− 1} → ω in
that each n-tuple exactly corresponds to the image for f ({0, . . . , n − 1}).
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As such, ωω is viewed as the set

⋃

n∈ω

ωn

which is the set of all functions F : {0, . . . , n − 1} → ω for some n ∈ ω.

So in particular it is not the set of all functions ω → ω since these powers
of ω are in a countable hierarchy of ordinal numbers, and indeed ωω is still
a countable set, being the countable union of countable sets.
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In the table of ordinals given above, we organized them in such a way that
for a given ordinal α, all the successors α+ n for n ∈ ω follow it, but that
’above’ each of these successors is an ordinal which is not a successor.

Definition

An ordinal α is a limit ordinal if it is not of the form β + 1 for some other
ordinal β.

The primary examples in the table are ω, ω · 2,ω · 3 . . . , ω2, ω2 · 2, . . . , ωω.

So basically, between any successive limit ordinals α and β = α+ ω we
have

α,α + 1, . . . , α+ ω

where α+ ω has no immediate predecessor.
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In the construction of ωω as ⋃

n∈ω

ωn

this union of the chain {ωn} is what is termed the supremum which is
actualy what is used to define any limit ordinal since this includes all
ordinals in the chain.

Each of these has a successor, but the supremum by construction has no
predecessor so is therefore a limit ordinal as per the definition given
previously.
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What is also rather fascinating is that the ordinals in this hierarchy can be
expressed using what is known as Cantor Normal Form namely as

ωα1c1 + ωα2c2 + · · ·+ ωαk ck

where k is a natural number, ci are positive integers and
α1 > α2 > · · · > αk are ordinals.

So we have something analogous to a ’base 10’ representation, but rather
it’s a ’base ω’ expression.
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Moving farther up the heirarchy, we can contemplate the limit of the
exponentiation operation

ω, ωω, ωωω

, ωωω
ω

, . . .

to obtain a ’tower’ ωωω

..
.

which can be thought as the first ordinal ε that
satisfies the ’fixed point’ equation

εω = ε

namely that under the exponentiation map β 7→ ωβ it is a fixed point.

Indeed this one is denoted ε0, and as it is a countable limit, it is a
countable ordinal.
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Beyond countable ordinals, we know that every set with a given cardinality
can be well-ordered to give rise to an ordinal number.

All the numbers in this list (except for the finite sets n ∈ ω) are the
countable ordinals, and therefore all have cardinality ’aleph-0’, that is ℵ0

the cardinality of ω.

As such there is an ordinal number with cardinality c namely that of the
continuum R.

Moreover, by the well-ordering of any set of ordinals, there must be a
’first’ such uncountable ordinal.
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We can subdivide the ordinals into various categories or classes according
to the cardinality of the underlying set.

We have the finite ordinals of course, and then we have the ’first’ infinite
ordinal, and we can therefore track the cardinalities in terms of ordinals.

Definition

Let ℵ0 be the cardinality of the set of countable ordinals.
And for each ordinal α, let ℵα+1 be the least ordinal of cardinality greater

than ℵα.

But as we observed there must be a first uncountable ordinal which we
designate ω1, and a set A with this ordinal type must be uncountable.
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Another tantalizing question is where c sit in the sequence of alephs?
Our speculation is that c = ℵ1 since it’s certainly not ℵ0 so basically this
yet another manifestation of the continuum hypothesis.

Or, framed in terms of power sets, we have that c = 2ℵ0 so does this mean
that 2ℵ0 (the cardinality of the power set of a set of cardinality ℵ0) equals
ℵ1?
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More generally, the Generalized Continuum Hypothesis, is that statement
that

ℵk+1 = 2ℵk

namely that each higher cardinal number is the power set of the previous
one.

We know, of course, that a given set and its power set do not have the
same cardinality, but this does not necessarily imply the generalized
continuum hypothesis above.
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To finish the discussion of ordinals, we discuss the following ’paradox’
which is reminiscent of the Russell paradox.

The Burali-Forti Antimony, (Cesare Burali-Forti)

If we allow the set Γ of all ordinal numbers, then (Γ, <) is well-ordered.
Thus Γ has an ordinal number, which we can call γ.

However, we must therefore have γ ∈ Γ.

So if α ∈ Γ then α < γ, but for any ordinal α we can form the successor
ordinal α+ 1 which also must lie in Γ and therefore satisfy α+ 1 < γ.

However, this implies that γ + 1 ∈ Γ but then we have a contradiction,
namely that γ + 1 < γ.

Therefore, no such set of all ordinals exists.
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However, one does see the use (in the text for example) of the term ’On’
for the class of ordinal numbers, i.e.

On := {α : α is an ordinal}

which is more of a bookkeeping device.

For example, when one wants to take the union of a collection of sets,
indexed by ordinal numbers, we can use the On to make clear the indices
are ordinals.
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