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This is the note for the STAGE talk at MIT on the étale Brauer obstructions and insuffi-
ciencies. We make the following conventions. Throughout this note, base field £ will always
be a number field, although many of the results can be extended to global function fields.
We will call a k-variety nice if it is smooth, projective, and geometrically integral. A = Ay
is the ring of adéles in k. For a k-variety X, X := X Xgpec & Spec k is its base change to the
algebraic closure k of k. A torsor f : Y — X, if not stated otherwise, is an fppf torsor under
a linear k-group G.

1. ETALE BRAUER-MANIN AND COMPARISONS

Recall the definition of the descent obstruction
(1) A= ) U @)
linear G fe H1(X,G) Te H (k,G)

We can form new obstructions by applying obstructions to finite étale covers of the variety
X. Let F' be an obstruction. Then we define

2) X = N N U remwn
finite étale G fe H1(X,G) TeH! (k,G)

and call it the étale F'-obstruction. A priori, these étale variants of obstructions look stronger.
But the following theorem will show we do not actually obtain new obstructions from these
constructions.

Theorem 1.1.

(3) X(A) ét,Br _ X(A) ét,desc _ X(A)desc _ X(A)desc’desc
1
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The last inequality is the main theorem of [1], which has been briefly discussed last time.
We will therefore focus on the rest of the theorem. In order to prove the theorem, we shall
show the inclusions

(4) X(A)desc C X(A)ét,desc C X(A)ét’Br C X(A)desc

The middle inclusion is easy: it is a direct consequence of the fact that the descent obstruction
is stronger than the Brauer-Manin obstruction. We sketch the proofs for the first and the third
inclusions. (Both of the two inclusions are based on arguments in [6].)

Theorem 1.2 ([5]). Let G be a finite k-group. Then
(5) X(A)desc _ U fT(ZT (A)desc)

reH(k,G)

In particular, X (A)de¢ C X (A)édese,

The key ingredients are the following propositions.

Proposition 1.3 (Stoll). Let X be proper over k and Y — X be a torsor. For any (P,) €
X (A)dese, there exists a twist YT — X of Y — X satisfying the following: for any surjective
X -torsor morphism Z — Y7, there exists a twist Z° — Y7 such that (P,) lies in the image of
Z7(A)

Proof. Recall the fact that there are only finitely many twists of a given torsor that contain
adelic points. U

This proposition simply says that for any adelic point, we can start with any torsor and
find a torsor from which the adelic point descend.

Proposition 1.4. Let Y — X be a torsor under a finite k-group, Z — Y a torsor. Then there
exists a torsor V' — X and a surjective X -torsor morphism h : V' — Y such that V' admists a
surjective Y -torsor morphism to Z.

J ——Y

EIT % lﬁnitek—gmup

V — X

Sketch of proof. The construction of V' is simple. Let R,(0J) be the Weil restriction. Then
we can take V := Ry,x(Z) x x Y. One can verify that V' — Y is a torsor under the Y -group
Ry/x(Gy). One then carefully verifies that V' — Z is a surjective Y -torsor morphism. [

Proof of Theorem 1.2. Notice that f7(Y7(A)4¢) C X (A)dec, So the inclusion X (A)desc D
Uremn.o) fT(Y7(A)4) is obvious. To the the opposite inclusion, let (P,) € X (A)dese,
X' — X be a torsor under a finite k-group, f : Y — X a twist of X’ — X satis-
fying Proposition 1.3. It suffices to show (P,) lifts to a point in Y (A)d¢. Suppose (P,)
does not lift. Then f~'((P,)) is covered by {f~*((P,)) N (Y(A)\ Y (A)))}

all torsors f:Z—Y"
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Since f (( »)) is compact (it is a product of finite sets), there exists fi, ..., f,, such that
{7 (PN (A)\Y(A))} | cover f7H((P,)). Letg : Z — Y be the fiber product

.....

of all fi, Which is a torsor under some group G. Let h : V' — Y be a surjective X-torsor
morphism satisfying Proposition 1.4 under group H. Then by Proposition 1.3, there exists
o € H'(k, H) such that (P,) lifts to a point (M,) in V°(A). Let p € H'(k, G) be the image
of 7 under the homomorphism H — G. Then V7 — Y factors through Z” — Y, and the
image of (M,) in Z”(A) has image in f~'((P,)) NY (A)¢ by construction, contradiction. [

Now we show the third inclusion.
Theorem 1.5 ([2]). Let X be a nice, projective k-variety. Then
(6) X(A)ét,Br C X(A>desc

We need another version of Stoll’s argument, Harari’s theorem, and one more proposition.

Proposition 1.6 (Stoll). Let X be a nice k-variety and (P,) € X(A)®P" be an adelic point.
Letg : Y — X be a torsor under a finite k-group G. Then there exists a twist Y™ — X, a torsor
V' — X under a finite k-group H, and an X -torsor morphism V' — Y7 such that (P,) lies in
the image of V (A)Br

Recall we define the connected obstruction to be

(7) x@ayem= N N U iz

connected linear G fe H1(X,G) e H! (k,G)
Theorem 1.7 (Harari 2002). X (A)B" = X (A)conn
Proposition 1.8. Let (P,) € X (A)5" and f : Z — X a torsor under a linear k-group G. Let

(8) l1-H=G"-G—=F—>1

be an exact squence of k-groups, where H = G° is the central connected component of G. Let
Y — X be a torsor under F' induced by Z — X and Y™ — X be a twist satisfying Stoll’s
argument. Then T € H'(k, F) lifts to a 1-cocycle e € H'(k, G).

Proof of Theorem 1.5. Now take (P,) € X (A)¢P" and G a linaer k-group. Then a torsor
f:Z — X under G factors as
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We want to show (P,) lifts into Z°(A) for some 0 € H'(k, G). By Proposition 1.8, one has
7 € HY(k, F) satisfying Stoll’s argument which lifts to 0 € H'(k, G). Explicitly, by Stoll’s
argument, one get the following diagram

Vv id s Y™
N
X

Consider then the twist f7 : Z7 — X (under G?). One then has

R—— Z°

b )

V — Y7 a°
P

o~/

X — X
We then apply the fact that the connected obstruction is equal to the Brauer-Manin obstruc-
tion (Harari) to the connected linear group H?: V (A)P" is contained in V (A)9 %~V In par-
ticular, if (Q,) € V(A)P" is an adelic point above (P,), then it can be lifted to (R) € R*(A)
for some cocycle i € H'(k, H?). Then we pass this adelic point to (R,) € Z7*(A) = Z*(A).
We conclude that (P,) € X (A)7. O

2. INSUFFICIENCY

For simplicity, we assume the base field £ is a number field (although many of the con-
structions also work for k being a global function field). Recall we have seen for several times
that Chatelet surfaces can provide examples of insufficiency of obstructions. With this idea,
we are now going to construct a nice variety based on Chételet surfaces, on which the etale
Brauer-Manin obstruction fails.

Fix a € k* and fix coprime seprable degree-4 polynomials P..(z), Py(z) € k[z] such that
the Chatelet surface V,, given by
9) y* — az® = Py(z)
over k satisfies Vo, (A) # 0 but V. (k) = 0.

Proposition 2.1. There exists a nice Chatelet surface V,, given by
(10) y* — az® = Po(z)
over k violating the Hasse principle.

Let (u,v) and (w, x) be coordinates on two P}. Let P (w, z), Py(w, z) the homogeniza-
tions of P,, and F,. Define a section

(11) s1 = u?Py(w, z) + v*Py(w, z) € T(P* x P, 0(2,4))
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Let Z; C P! x P! be the zero locus of s; and F' C P! be the branch locus of Z; £ P!, Let
a1 : V — P! x P! be the conic bundle given by

(12) y: — a2t = s

Choose C' to be a nice curve over k such that C'(k) is finite and nonempty and a surjective
morphism v : C — P! etale over F such that 7(C(k)) = {o0}. Now let X := V xp1 C,
where P! is the first component. X is the vareity that we need. Relations between these
vareities are summarized in the following diagram.

X —V

al \ B ar | \ A1
C x Pl 2% pr oy p
pr1l Pr1l

c—"1 s p!

Now we show

Theorem 2.2. X (k) = 0 but X (A)HBr £ .

We show the theorem in steps.

Lemma 2.3. X (k) = (.

Proof. Since v(C(k)) = {oo} but Vi (k) = 0, one has X (k) = 0. O
Lemma 2.4. X (A)P" DV (A) x C(k)

Proof. Denote [J the base change to algebraic closure. We first notice that Br(C' x P') =

Br(C') = 0. Recall the Hochschild-Serre spectral sequence induces
(13) Brk — Br'(X) — H'(k,Pic X) — H*(k,G,,)
Since X is a P'-bundle over B = C x P!, Br(X) = 0. Together with the fact that

H'(k,G,,) = 0, one has a commutative diagram

0 » Brk y Br B —— H'(k,Pic B) —— 0

] l

0 » Brk > Br X —— H!(k,Pic X) —— 0

with exact rows.

Claim 2.5. We claim that since the degeneracy locus Z of X — B is nice, one has H'(k,Pic B) =
H'(k,Pic X).
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Thus, Br B = Br X. Similarly, one has Br C' = Br B. Now if 54 : X(A) — C(A) is the
map induced by [, then

(14) X(A)% =B (C(A)T) 2 B (C (k) = Voo (&) x C(k).

Now we apply the same arguments to étale covers of X.
Theorem 2.6. X (A)éB DV, x C(k).

Proof. Let GG be a finite étale k-group and f : ¥ — X be a G-torsor. Notice since X —
C x P has geometrically simply connected fibers, one has an equivalence between FEt(X)
and FEt(C') induced by the projection X — C. Thus, f : ¥ — X is induced from a G-torsor
D — C,ie.

g
—

D <
Q) +— X

—

Now Y — D is just like X — C. So we
Y — D and obtain

=

ay apply all arguments previously on X — C' to

(15) Y7(A)% 2 Vie(A) x D7 (k)
Thus, we see that
(16) U 77 (a)") 2 Vie(A) x C(k)
G H (k,G)
In conclusion, we see that X (A)¢“B" D Vo x O(k). O

3. APPENDIX

Proposition 3.1 (Birational Invariance of Br(X)). Let X and X' be nice varieties over a
number field k. If X and X' are birational, then Br(X) and Br(X') are isomorphic.

Proof. See [4] Corollary 6.8.7. 0

Proposition 3.2 (SGA 11X 6.8). Soit f : X — S un morphisme propre surjectif de présentation
finie, a fibres géom’etriquement connexes. Alors f est un morphisme de descente effective pour
la catégorie fibrée des préschémas étales finis sur d’autres. Le foncteur S' — X x g S induit une
équivalence de la catégorie des préschémas étales et finis sur .S avec la catégorie des préschémas
étales et finis sur X qui induisent sur chaque fibre X un revétement géométriquement trivial.

Now in our example, X — C' x P! has geometric fibers isomorphic to P' or two copies of
P! intersecting at double points. Thus, every finite étale covering of X satisfies the condition
in the proposition and therefore, one has an equivalence

(17) FEt(X) = FEt(C x P') = FEt(O)
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We also summarize the arguments in [6]. A weaker version, as used in [2], reads as follows.

Proposition 3.3. Let X be a nice k-variety and (P,) € X(A)®P" be an adelic point. Let
g 'Y — X be a torsor under a finite k-group . Then there exists a twist Y™ — X, a torsor
Z — X under a finite k-group H, and an X -torsor morphism Z — Y™ such that (P,) lies in
the image of Z(A)5r.
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