BRAUER-MANIN OBSTRUCTION

XINYU ZHOU

Contents

1.	Etale Brauer-Manin and Comparisons	1
2.	Insufficiency	4
3.	Appendix	6
References		7

This is the note for the STAGE talk at MIT on the étale Brauer obstructions and insufficiencies. We make the following conventions. Throughout this note, base field k will always be a number field, although many of the results can be extended to global function fields. We will call a k-variety nice if it is smooth, projective, and geometrically integral. $\mathbb{A} = \mathbb{A}_k$ is the ring of adèles in k. For a k-variety $X, \overline{X} := X \times_{\text{Spec } k} \text{Spec } \overline{k}$ is its base change to the algebraic closure \overline{k} of k. A torsor $f: Y \to X$, if not stated otherwise, is an fppf torsor under a linear k-group G.

1. ETALE BRAUER-MANIN AND COMPARISONS

Recall the definition of the descent obstruction

(1)
$$X(\mathbb{A})^{\operatorname{desc}} := \bigcap_{\operatorname{linear} G} \bigcap_{f \in H^1(X,G)} \bigcup_{\tau \in H^1(k,G)} f^{\tau}(Z^{\tau}(\mathbb{A}))$$

We can form new obstructions by applying obstructions to finite étale covers of the variety X. Let F be an obstruction. Then we define

(2)
$$X(\mathbb{A})^{\acute{e}t,F} := \bigcap_{\text{finite \acute{e}tale } G} \bigcap_{f \in H^1(X,G)} \bigcup_{\tau \in H^1(k,G)} f^{\tau}(Z^{\tau}(\mathbb{A})^F)$$

and call it *the étale* F*-obstruction*. A priori, these étale variants of obstructions look stronger. But the following theorem will show we do not actually obtain new obstructions from these constructions.

Theorem 1.1.

(3)
$$X(\mathbb{A})^{\acute{e}t,\mathrm{Br}} = X(\mathbb{A})^{\acute{e}t,\mathrm{desc}} = X(\mathbb{A})^{\mathrm{desc}} = X(\mathbb{A})^{\mathrm{desc},\mathrm{desc}}$$

XINYU ZHOU

The last inequality is the main theorem of [1], which has been briefly discussed last time. We will therefore focus on the rest of the theorem. In order to prove the theorem, we shall show the inclusions

(4)
$$X(\mathbb{A})^{\text{desc}} \subseteq X(\mathbb{A})^{\text{\acute{e}t,desc}} \subseteq X(\mathbb{A})^{\text{\acute{e}t,Br}} \subseteq X(\mathbb{A})^{\text{desc}}$$

The middle inclusion is easy: it is a direct consequence of the fact that the descent obstruction is stronger than the Brauer-Manin obstruction. We sketch the proofs for the first and the third inclusions. (Both of the two inclusions are based on arguments in [6].)

Theorem 1.2 ([5]). Let G be a finite k-group. Then

(5)
$$X(\mathbb{A})^{\operatorname{desc}} = \bigcup_{\tau \in H^1(k,G)} f^{\tau}(Z^{\tau}(\mathbb{A})^{\operatorname{desc}})$$

In particular, $X(\mathbb{A})^{\text{desc}} \subseteq X(\mathbb{A})^{\acute{e}t, \text{desc}}$.

The key ingredients are the following propositions.

Proposition 1.3 (Stoll). Let X be proper over k and $Y \to X$ be a torsor. For any $(P_v) \in X(\mathbb{A})^{\text{desc}}$, there exists a twist $Y^{\tau} \to X$ of $Y \to X$ satisfying the following: for any surjective X-torsor morphism $Z \to Y^{\tau}$, there exists a twist $Z^{\sigma} \to Y^{\tau}$ such that (P_v) lies in the image of $Z^{\sigma}(\mathbb{A})$

Proof. Recall the fact that there are only finitely many twists of a given torsor that contain adelic points. \Box

This proposition simply says that for any adelic point, we can start with any torsor and find a torsor from which the adelic point descend.

Proposition 1.4. Let $Y \to X$ be a torsor under a finite k-group, $Z \to Y$ a torsor. Then there exists a torsor $V \to X$ and a surjective X-torsor morphism $h: V \to Y$ such that V admists a surjective Y-torsor morphism to Z.

Sketch of proof. The construction of V is simple. Let $R_{\Box/\Box}(\Box)$ be the Weil restriction. Then we can take $V := R_{Y/X}(Z) \times_X Y$. One can verify that $V \to Y$ is a torsor under the Y-group $R_{Y/X}(G_Y)$. One then carefully verifies that $V \to Z$ is a surjective Y-torsor morphism. \Box

Proof of Theorem 1.2. Notice that $f^{\tau}(Y^{\tau}(\mathbb{A})^{\text{desc}}) \subseteq X(\mathbb{A})^{\text{desc}}$. So the inclusion $X(\mathbb{A})^{\text{desc}} \supseteq \bigcup_{\tau \in H^1(k,G)} f^{\tau}(Y^{\tau}(\mathbb{A})^{\text{desc}})$ is obvious. To the the opposite inclusion, let $(P_v) \in X(\mathbb{A})^{\text{desc}}$, $X' \to X$ be a torsor under a finite k-group, $f : Y \to X$ a twist of $X' \to X$ satisfying Proposition 1.3. It suffices to show (P_v) lifts to a point in $Y(\mathbb{A})^{\text{desc}}$. Suppose (P_v) does not lift. Then $f^{-1}((P_v))$ is covered by $\{f^{-1}((P_v)) \cap (Y(\mathbb{A}) \setminus Y(\mathbb{A})^f)\}_{\text{all torsors } f:Z \to Y}$.

2

Since $f^{-1}((P_v))$ is compact (it is a product of finite sets), there exists f_1, \ldots, f_n such that $\{f^{-1}((P_v)) \cap (Y(\mathbb{A}) \setminus Y(\mathbb{A})^{f_i})\}_{i=1,\ldots,n}$ cover $f^{-1}((P_v))$. Let $g: Z \to Y$ be the fiber product of all f_i , which is a torsor under some group G. Let $h: V \to Y$ be a surjective X-torsor morphism satisfying Proposition 1.4 under group H. Then by Proposition 1.3, there exists $\sigma \in H^1(k, H)$ such that (P_v) lifts to a point (M_v) in $V^{\sigma}(\mathbb{A})$. Let $\rho \in H^1(k, G)$ be the image of τ under the homomorphism $H \to G$. Then $V^{\sigma} \to Y$ factors through $Z^{\rho} \to Y$, and the image of (M_v) in $Z^{\rho}(\mathbb{A})$ has image in $f^{-1}((P_v)) \cap Y(\mathbb{A})^g$ by construction, contradiction. \Box

Now we show the third inclusion.

Theorem 1.5 ([2]). Let X be a nice, projective k-variety. Then

(6)
$$X(\mathbb{A})^{\acute{e}t,\mathrm{Br}} \subset X(\mathbb{A})^{\mathrm{desc}}$$

We need another version of Stoll's argument, Harari's theorem, and one more proposition.

Proposition 1.6 (Stoll). Let X be a nice k-variety and $(P_v) \in X(\mathbb{A})^{\acute{e}t,\operatorname{Br}}$ be an adelic point. Let $g: Y \to X$ be a torsor under a finite k-group G. Then there exists a twist $Y^{\tau} \to X$, a torsor $V \to X$ under a finite k-group H, and an X-torsor morphism $V \to Y^{\tau}$ such that (P_v) lies in the image of $V(\mathbb{A})^{\operatorname{Br}}$.

Recall we define the connected obstruction to be

(7)
$$X(\mathbb{A})^{\operatorname{conn}} := \bigcap_{\operatorname{connected linear} G} \bigcap_{f \in H^1(X,G)} \bigcup_{\tau \in H^1(k,G)} f^{\tau}(Z^{\tau}(\mathbb{A}))$$

Theorem 1.7 (Harari 2002). $X(\mathbb{A})^{Br} = X(\mathbb{A})^{conn}$

Proposition 1.8. Let $(P_v) \in X(\mathbb{A})^{\acute{e}t,\operatorname{Br}}$ and $f: Z \to X$ a torsor under a linear k-group G. Let

(8)
$$1 \to H = G^0 \to G \to F \to 1$$

be an exact squence of k-groups, where $H = G^0$ is the central connected component of G. Let $Y \to X$ be a torsor under F induced by $Z \to X$ and $Y^{\tau} \to X$ be a twist satisfying Stoll's argument. Then $\tau \in H^1(k, F)$ lifts to a 1-cocycle $\sigma \in H^1(k, G)$.

Proof of Theorem 1.5. Now take $(P_v) \in X(\mathbb{A})^{\acute{e}t,\operatorname{Br}}$ and G a linear k-group. Then a torsor $f: \mathbb{Z} \to X$ under G factors as

We want to show (P_v) lifts into $Z^{\sigma}(\mathbb{A})$ for some $\sigma \in H^1(k, G)$. By Proposition 1.8, one has $\tau \in H^1(k, F)$ satisfying Stoll's argument which lifts to $\sigma \in H^1(k, G)$. Explicitly, by Stoll's argument, one get the following diagram

Consider then the twist $f^{\sigma}: Z^{\sigma} \to X$ (under G^{σ}). One then has

We then apply the fact that the connected obstruction is equal to the Brauer-Manin obstruction (Harari) to the connected linear group $H^{\sigma}: V(\mathbb{A})^{\mathrm{Br}}$ is contained in $V(\mathbb{A})^{g:R \to V}$. In particular, if $(Q_v) \in V(\mathbb{A})^{\mathrm{Br}}$ is an adelic point above (P_v) , then it can be lifted to $(R'_v) \in R^{\mu}(\mathbb{A})$ for some cocycle $\mu \in H^1(k, H^{\sigma})$. Then we pass this adelic point to $(R_v) \in Z^{\sigma\mu}(\mathbb{A}) = Z^{\rho}(\mathbb{A})$. We conclude that $(P_v) \in X(\mathbb{A})^f$.

2. Insufficiency

For simplicity, we assume the base field k is a number field (although many of the constructions also work for k being a global function field). Recall we have seen for several times that Châtelet surfaces can provide examples of insufficiency of obstructions. With this idea, we are now going to construct a nice variety based on Châtelet surfaces, on which the etale Brauer-Manin obstruction fails.

Fix $a \in k^*$ and fix coprime seprable degree-4 polynomials $P_{\infty}(x), P_0(x) \in k[x]$ such that the Châtelet surface V_{∞} given by

$$(9) y^2 - az^2 = P_{\infty}(x)$$

over k satisfies $V_{\infty}(\mathbb{A}) \neq \emptyset$ but $V_{\infty}(k) = \emptyset$.

Proposition 2.1. There exists a nice Châtelet surface V_{∞} given by

$$y^2 - az^2 = P_{\infty}(x)$$

over k violating the Hasse principle.

Let (u, v) and (w, x) be coordinates on two \mathbf{P}_k^1 . Let $\tilde{P}_{\infty}(w, x)$, $\tilde{P}_0(w, x)$ the homogenizations of P_{∞} and P_0 . Define a section

(11)
$$s_1 := u^2 \tilde{P}_{\infty}(w, x) + v^2 \tilde{P}_0(w, x) \in \Gamma(\mathbf{P}^1 \times \mathbf{P}^1, \mathcal{O}(2, 4))$$

Let $Z_1 \subset \mathbf{P}^1 \times \mathbf{P}^1$ be the zero locus of s_1 and $F \subset \mathbf{P}^1$ be the branch locus of $Z_1 \xrightarrow{pr_1} \mathbf{P}^1$. Let $\alpha_1 : V \to \mathbf{P}^1 \times \mathbf{P}^1$ be the conic bundle given by

$$(12) y^2 - az^2 = s_1$$

Choose C to be a nice curve over k such that C(k) is finite and nonempty and a surjective morphism $\gamma : C \to \mathbf{P}^1$ etale over F such that $\gamma(C(k)) = \{\infty\}$. Now let $X := V \times_{\mathbf{P}^1} C$, where \mathbf{P}^1 is the first component. X is the variety that we need. Relations between these varieties are summarized in the following diagram.

Now we show

Theorem 2.2. $X(k) = \emptyset$ but $X(\mathbb{A})^{et, \operatorname{Br}} \neq \emptyset$.

We show the theorem in steps.

Lemma 2.3. $X(k) = \emptyset$.

Proof. Since
$$\gamma(C(k)) = \{\infty\}$$
 but $V_{\infty}(k) = \emptyset$, one has $X(k) = \emptyset$.

Lemma 2.4. $X(\mathbb{A})^{\mathrm{Br}} \supseteq V_{\infty}(\mathbb{A}) \times C(k)$

Proof. Denote $\overline{\Box}$ the base change to algebraic closure. We first notice that $Br(\overline{C \times \mathbf{P}^1}) \cong Br(\overline{C}) = 0$. Recall the Hochschild-Serre spectral sequence induces

(13)
$$\operatorname{Br} k \to \operatorname{Br}^1(X) \to H^1(k, \operatorname{Pic} \overline{X}) \to H^3(k, \mathbf{G}_m)$$

Since X is a \mathbf{P}^1 -bundle over $B = C \times \mathbf{P}^1$, $Br(\overline{X}) = 0$. Together with the fact that $H^1(k, \mathbf{G}_m) = 0$, one has a commutative diagram

with exact rows.

Claim 2.5. We claim that since the degeneracy locus Z of $X \to B$ is nice, one has $H^1(k, \operatorname{Pic} \overline{B}) \cong H^1(k, \operatorname{Pic} \overline{X})$.

Thus, Br $B \cong$ Br X. Similarly, one has Br $C \cong$ Br B. Now if $\beta_{\mathbb{A}} : X(\mathbb{A}) \to C(\mathbb{A})$ is the map induced by β , then

(14)
$$X(\mathbb{A})^{\mathrm{Br}} = \beta_{\mathbb{A}}^{-1}(C(\mathbb{A})^{\mathrm{Br}}) \supseteq \beta_{\mathbb{A}}^{-1}(C(k)) = V_{\infty}(\mathbb{A}) \times C(k).$$

Now we apply the same arguments to étale covers of X.

Theorem 2.6. $X(\mathbb{A})^{\acute{e}t,\operatorname{Br}} \supseteq V_{\infty} \times C(k).$

Proof. Let G be a finite étale k-group and $f : Y \to X$ be a G-torsor. Notice since $X \to C \times \mathbf{P}^1$ has geometrically simply connected fibers, one has an equivalence between FEt(X) and FEt(C) induced by the projection $X \to C$. Thus, $f : Y \to X$ is induced from a G-torsor $D \to C$, i.e.

Now $Y\to D$ is just like $X\to C.$ So we may apply all arguments previously on $X\to C$ to $Y\to D$ and obtain

(15) $Y^{\sigma}(\mathbb{A})^{\mathrm{Br}} \supseteq V_{\infty}(\mathbb{A}) \times D^{\sigma}(k)$

Thus, we see that

(16)
$$\bigcup_{\sigma \in H^1(k,G)} f^{\sigma}(Y^{\sigma}(\mathbb{A})^{\mathrm{Br}}) \supseteq V_{\infty}(\mathbb{A}) \times C(k)$$

In conclusion, we see that $X(\mathbb{A})^{\acute{e}t,\operatorname{Br}} \supseteq V_{\infty} \times C(k)$.

3. Appendix

Proposition 3.1 (Birational Invariance of Br(X)). Let X and X' be nice varieties over a number field k. If X and X' are birational, then Br(X) and Br(X') are isomorphic.

Proof. See [4] Corollary 6.8.7.

Proposition 3.2 (SGA 1 IX 6.8). Soit $f : X \to S$ un morphisme propre surjectif de présentation finie, à fibres géom'etriquement connexes. Alors f est un morphisme de descente effective pour la catégorie fibrée des préschémas étales finis sur d'autres. Le foncteur $S' \mapsto X \times_S S'$ induit une équivalence de la catégorie des préschémas étales et finis sur S avec la catégorie des préschémas étales et finis sur X qui induisent sur chaque fibre X_s un revêtement géométriquement trivial.

Now in our example, $X \to C \times \mathbf{P}^1$ has geometric fibers isomorphic to \mathbf{P}^1 or two copies of \mathbf{P}^1 intersecting at double points. Thus, every finite étale covering of X satisfies the condition in the proposition and therefore, one has an equivalence

(17)
$$\operatorname{FEt}(X) \xrightarrow{\sim} \operatorname{FEt}(C \times \mathbf{P}^1) \xrightarrow{\sim} \operatorname{FEt}(C)$$

We also summarize the arguments in [6]. A weaker version, as used in [2], reads as follows.

Proposition 3.3. Let X be a nice k-variety and $(P_v) \in X(\mathbb{A})^{\acute{e}t,\operatorname{Br}}$ be an adelic point. Let $g: Y \to X$ be a torsor under a finite k-group G. Then there exists a twist $Y^{\tau} \to X$, a torsor $Z \to X$ under a finite k-group H, and an X-torsor morphism $Z \to Y^{\tau}$ such that (P_v) lies in the image of $Z(\mathbb{A})^{\operatorname{Br}}$.

References

- Cao, Y. (2020). Sous-groupe de Brauer invariant et obstruction de descente itérée. Algebra & Number Theory, 14(8), 2151-2183.
- [2] Demarche, C. (2009). Obstruction de descente et obstruction de Brauer-Manin étale. Algebra & Number Theory, 3(2), 237-254.
- [3] Poonen, B. (2010). Insufficiency of the Brauer-Manin obstruction applied to étale covers. Annals of Mathematics, 171(3), 2157-2169.
- [4] Poonen B. (2017). Rational points on varieties. American Mathematical Society.
- [5] Skorobogatov, A. (2009). Descent obstruction is equivalent to étale Brauer-Manin obstruction. Mathematische Annalen, 344(3), 501-510.
- [6] Stoll, M. (2007). Finite descent obstructions and rational points on curves. Algebra & Number Theory, 1(4), 349-391.