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This is the note for the STAGE talk at MIT on the étale Brauer obstructions and insuffi-

ciencies. We make the following conventions. Throughout this note, base field k will always

be a number field, although many of the results can be extended to global function fields.

We will call a k-variety nice if it is smooth, projective, and geometrically integral. A = Ak

is the ring of adèles in k. For a k-varietyX ,X := X ×Spec k Spec k is its base change to the

algebraic closure k of k. A torsor f : Y → X , if not stated otherwise, is an fppf torsor under

a linear k-group G.

1. Etale Brauer-Manin and Comparisons

Recall the definition of the descent obstruction

(1) X(A)desc :=
⋂

linear G

⋂
f∈H1(X,G)

⋃
τ∈H1(k,G)

f τ (Zτ (A))

We can form new obstructions by applying obstructions to finite étale covers of the variety

X . Let F be an obstruction. Then we define

(2) X(A)ét,F :=
⋂

finite étale G

⋂
f∈H1(X,G)

⋃
τ∈H1(k,G)

f τ (Zτ (A)F )

and call it the étale F -obstruction. A priori, these étale variants of obstructions look stronger.

But the following theorem will show we do not actually obtain new obstructions from these

constructions.

Theorem 1.1.

(3) X(A)ét,Br = X(A)ét,desc = X(A)desc = X(A)desc,desc
1
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The last inequality is the main theorem of [1], which has been briefly discussed last time.

We will therefore focus on the rest of the theorem. In order to prove the theorem, we shall

show the inclusions

(4) X(A)desc ⊆ X(A)ét,desc ⊆ X(A)ét,Br ⊆ X(A)desc

Themiddle inclusion is easy: it is a direct consequence of the fact that the descent obstruction

is stronger than the Brauer-Manin obstruction. We sketch the proofs for the first and the third

inclusions. (Both of the two inclusions are based on arguments in [6].)

Theorem 1.2 ([5]). Let G be a finite k-group. Then

(5) X(A)desc =
⋃

τ∈H1(k,G)

f τ (Zτ (A)desc)

In particular, X(A)desc ⊆ X(A)ét,desc.

The key ingredients are the following propositions.

Proposition 1.3 (Stoll). Let X be proper over k and Y → X be a torsor. For any (Pv) ∈
X(A)desc, there exists a twist Y τ → X of Y → X satisfying the following: for any surjective
X-torsor morphism Z → Y τ , there exists a twist Zσ → Y τ such that (Pv) lies in the image of
Zσ(A)

Proof. Recall the fact that there are only finitely many twists of a given torsor that contain

adelic points. □

This proposition simply says that for any adelic point, we can start with any torsor and

find a torsor from which the adelic point descend.

Proposition 1.4. Let Y → X be a torsor under a finite k-group, Z → Y a torsor. Then there
exists a torsor V → X and a surjective X-torsor morphism h : V → Y such that V admists a
surjective Y -torsor morphism to Z .

Z Y

V X

finite k-grouph∃

Sketch of proof. The construction of V is simple. Let R□/□(□) be the Weil restriction. Then

we can take V := RY/X(Z)×X Y . One can verify that V → Y is a torsor under the Y -group

RY/X(GY ). One then carefully verifies that V → Z is a surjective Y -torsor morphism. □

Proof of Theorem 1.2. Notice that f τ (Y τ (A)desc) ⊆ X(A)desc. So the inclusion X(A)desc ⊇⋃
τ∈H1(k,G) f

τ (Y τ (A)desc) is obvious. To the the opposite inclusion, let (Pv) ∈ X(A)desc,
X ′ → X be a torsor under a finite k-group, f : Y → X a twist of X ′ → X satis-

fying Proposition 1.3. It suffices to show (Pv) lifts to a point in Y (A)desc. Suppose (Pv)
does not lift. Then f−1((Pv)) is covered by

{
f−1((Pv)) ∩ (Y (A) \ Y (A)f )

}
all torsors f :Z→Y

.
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Since f−1((Pv)) is compact (it is a product of finite sets), there exists f1, . . . , fn such that{
f−1((Pv)) ∩ (Y (A) \ Y (A)fi)

}
i=1,...,n

cover f−1((Pv)). Let g : Z → Y be the fiber product

of all fi, which is a torsor under some group G. Let h : V → Y be a surjective X-torsor

morphism satisfying Proposition 1.4 under group H . Then by Proposition 1.3, there exists

σ ∈ H1(k,H) such that (Pv) lifts to a point (Mv) in V σ(A). Let ρ ∈ H1(k,G) be the image

of τ under the homomorphism H → G. Then V σ → Y factors through Zρ → Y , and the

image of (Mv) in Zρ(A) has image in f−1((Pv))∩Y (A)g by construction, contradiction. □

Now we show the third inclusion.

Theorem 1.5 ([2]). Let X be a nice, projective k-variety. Then

(6) X(A)ét,Br ⊂ X(A)desc

We need another version of Stoll’s argument, Harari’s theorem, and one more proposition.

Proposition 1.6 (Stoll). Let X be a nice k-variety and (Pv) ∈ X(A)ét,Br be an adelic point.
Let g : Y → X be a torsor under a finite k-groupG. Then there exists a twist Y τ → X , a torsor
V → X under a finite k-group H , and an X-torsor morphism V → Y τ such that (Pv) lies in
the image of V (A)Br.

Recall we define the connected obstruction to be

(7) X(A)conn :=
⋂

connected linear G

⋂
f∈H1(X,G)

⋃
τ∈H1(k,G)

f τ (Zτ (A))

Theorem 1.7 (Harari 2002). X(A)Br = X(A)conn

Proposition 1.8. Let (Pv) ∈ X(A)ét,Br and f : Z → X a torsor under a linear k-groupG. Let

(8) 1 → H = G0 → G → F → 1

be an exact squence of k-groups, where H = G0 is the central connected component of G. Let
Y → X be a torsor under F induced by Z → X and Y τ → X be a twist satisfying Stoll’s
argument. Then τ ∈ H1(k, F ) lifts to a 1-cocycle σ ∈ H1(k,G).

Proof of Theorem 1.5. Now take (Pv) ∈ X(A)ét,Br
and G a linaer k-group. Then a torsor

f : Z → X under G factors as

Z

Y

X

H

F

G
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We want to show (Pv) lifts into Zσ(A) for some σ ∈ H1(k,G). By Proposition 1.8, one has

τ ∈ H1(k, F ) satisfying Stoll’s argument which lifts to σ ∈ H1(k,G). Explicitly, by Stoll’s

argument, one get the following diagram

V Y τ

X

ψ

Q F τ

Consider then the twist fσ : Zσ → X (under Gσ
). One then has

R Zσ

V Y τ

X X

Hσ

Q

=

F τ

ψ

Hσ

Gσ

We then apply the fact that the connected obstruction is equal to the Brauer-Manin obstruc-

tion (Harari) to the connected linear group Hσ
: V (A)Br

is contained in V (A)g:R→V
. In par-

ticular, if (Qv) ∈ V (A)Br
is an adelic point above (Pv), then it can be lifted to (R′

v) ∈ Rµ(A)
for some cocycle µ ∈ H1(k,Hσ). Then we pass this adelic point to (Rv) ∈ Zσµ(A) = Zρ(A).
We conclude that (Pv) ∈ X(A)f . □

2. Insufficiency

For simplicity, we assume the base field k is a number field (although many of the con-

structions also work for k being a global function field). Recall we have seen for several times

that Châtelet surfaces can provide examples of insufficiency of obstructions. With this idea,

we are now going to construct a nice variety based on Châtelet surfaces, on which the etale

Brauer-Manin obstruction fails.

Fix a ∈ k∗
and fix coprime seprable degree-4 polynomials P∞(x), P0(x) ∈ k[x] such that

the Châtelet surface V∞ given by

(9) y2 − az2 = P∞(x)

over k satisfies V∞(A) ̸= ∅ but V∞(k) = ∅.

Proposition 2.1. There exists a nice Châtelet surface V∞ given by

(10) y2 − az2 = P∞(x)

over k violating the Hasse principle.

Let (u, v) and (w, x) be coordinates on two P1
k. Let P̃∞(w, x), P̃0(w, x) the homogeniza-

tions of P∞ and P0. Define a section

(11) s1 := u2P̃∞(w, x) + v2P̃0(w, x) ∈ Γ(P1×P1,O(2, 4))
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Let Z1 ⊂ P1×P1
be the zero locus of s1 and F ⊂ P1

be the branch locus of Z1
pr1−−→ P1

. Let

α1 : V → P1×P1
be the conic bundle given by

(12) y2 − az2 = s1

Choose C to be a nice curve over k such that C(k) is finite and nonempty and a surjective

morphism γ : C → P1
etale over F such that γ(C(k)) = {∞}. Now let X := V ×P1 C ,

where P1
is the first component. X is the vareity that we need. Relations between these

vareities are summarized in the following diagram.

X V

C ×P1 P1×P1

C P1

(γ,id)

γ

α1

pr1

α

pr1

β β1

Now we show

Theorem 2.2. X(k) = ∅ but X(A)et,Br ̸= ∅.

We show the theorem in steps.

Lemma 2.3. X(k) = ∅.

Proof. Since γ(C(k)) = {∞} but V∞(k) = ∅, one has X(k) = ∅. □

Lemma 2.4. X(A)Br ⊇ V∞(A)× C(k)

Proof. Denote □ the base change to algebraic closure. We first notice that Br(C ×P1) ∼=
Br(C) = 0. Recall the Hochschild-Serre spectral sequence induces

(13) Br k → Br1(X) → H1(k,Pic X) → H3(k,Gm)

Since X is a P1
-bundle over B = C × P1

, Br(X) = 0. Together with the fact that

H1(k,Gm) = 0, one has a commutative diagram

0 Br k BrB H1(k,Pic B) 0

0 Br k BrX H1(k,Pic X) 0

with exact rows.

Claim2.5. We claim that since the degeneracy locusZ ofX → B is nice, one hasH1(k,Pic B) ∼=
H1(k,Pic X).
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Thus, BrB ∼= BrX . Similarly, one has BrC ∼= BrB. Now if βA : X(A) → C(A) is the
map induced by β, then

(14) X(A)Br = β−1
A (C(A)Br) ⊇ β−1

A (C(k)) = V∞(A)× C(k).

□

Now we apply the same arguments to étale covers of X .

Theorem 2.6. X(A)ét,Br ⊇ V∞ × C(k).

Proof. Let G be a finite étale k-group and f : Y → X be a G-torsor. Notice since X →
C ×P1

has geometrically simply connected fibers, one has an equivalence between FEt(X)
and FEt(C) induced by the projectionX → C . Thus, f : Y → X is induced from aG-torsor

D → C , i.e.

Y X

D C

g

Now Y → D is just like X → C . So we may apply all arguments previously on X → C to

Y → D and obtain

(15) Y σ(A)Br ⊇ V∞(A)×Dσ(k)

Thus, we see that

(16)

⋃
σ∈H1(k,G)

fσ(Y σ(A)Br) ⊇ V∞(A)× C(k)

In conclusion, we see that X(A)ét,Br ⊇ V∞ × C(k). □

3. Appendix

Proposition 3.1 (Birational Invariance of Br(X)). Let X and X ′ be nice varieties over a
number field k. If X and X ′ are birational, then Br(X) and Br(X ′) are isomorphic.

Proof. See [4] Corollary 6.8.7. □

Proposition 3.2 (SGA 1 IX 6.8). Soit f : X → S unmorphisme propre surjectif de présentation
finie, à fibres géom’etriquement connexes. Alors f est un morphisme de descente effective pour
la catégorie fibrée des préschémas étales finis sur d’autres. Le foncteur S ′ 7→ X×S S

′ induit une
équivalence de la catégorie des préschémas étales et finis sur S avec la catégorie des préschémas
étales et finis sur X qui induisent sur chaque fibre Xs un revêtement géométriquement trivial.

Now in our example,X → C×P1
has geometric fibers isomorphic toP1

or two copies of

P1
intersecting at double points. Thus, every finite étale covering ofX satisfies the condition

in the proposition and therefore, one has an equivalence

(17) FEt(X)
∼−→ FEt(C ×P1)

∼−→ FEt(C)
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We also summarize the arguments in [6]. A weaker version, as used in [2], reads as follows.

Proposition 3.3. Let X be a nice k-variety and (Pv) ∈ X(A)ét,Br be an adelic point. Let
g : Y → X be a torsor under a finite k-group G. Then there exists a twist Y τ → X , a torsor
Z → X under a finite k-group H , and an X-torsor morphism Z → Y τ such that (Pv) lies in
the image of Z(A)Br.
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