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1. Divided power structures

In this note, we introduce some basic concepts about PD structures, which are the basis of

the theory of crystalline cohomology. Our main reference is Chapter 3 of [BO78].

Divided power structures (PD structures for short) are a formalism that makes sense of

xn/n! in an arbitary ring.

Definition 1.1 (Divided powers). Let A be a ring, and I ⊂ A an ideal. A divided power
structure on I is a collection of maps

γi : I → A i ∈ Z≥0

such that

(1) ∀x ∈ I , γ0(x) = 1, γ1(x) = x, and γi(x) ∈ I, i ≥ 1.

(2) ∀x, y ∈ I , γk(x+ y) =
∑

i+j=k γi(x)γj(x)

(3) ∀x, y ∈ I , γk(λx) = λkγk(x)
1
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(4) x ∈ I , γi(x)γj(x) =
(
i+j
j

)
γi+j(x), where(

i+ j

i

)
=

(i+ j)!

i!j!

(5) γp(γq(x)) = Cp,qγpq(x), where

Cp,q =
(pq)!

p!(q!)p

Example 1.2. (1) (0) is a PD ideal with γi(0) = 0,∀i ≥ 1.

(2) Let A be a Q-algebra. Then there exists a unique PD structure for any ideal I ⊂ A

given by γn(x) = xn/n!.

(3) Suppose A has characteristic p > 0 (i.e. pA = 0). Then an ideal I has a PD structure

only if Iis nilpotent: Axioms (1) and (4) imply

n!γn(x) = xn ∀n ≥ 0

But then p!γp(x) = 0 = xp
.

(4) Let A = V be a DVR of mixed characteristic (0, p) with a uniformizer π and residue

field k. Write p = uπe
, where e is called the absolute ramification index of V . Then

(π) has PD if and only if e ≤ p− 1.

Proof.

Lemma 1.3 (Legendre’s formula). Let n =
∑

aip
i ∈ Z with 0 ≤ ai < p. Then

ordp(n!) =
1

p− 1

∑
ai(p

i − 1)

Thus,

ordπ(γn(π)) = n− ordπ(n!)

= n− e ordp(n!)

=
∑

aip
i − e

p− 1

∑
ai(p

i − 1)

=
1

p− 1

∑
ai[p

i(p− 1− e) + e]

=
p− 1− e

p− 1
n+ e

∑
ai

p− 1

□

So γn(π) ∈ (π) if and only if the last quantity above is greater than 0 for any ai;

this is equivalent to p− 1− e ≥ 0, i.e., p− 1 ≥ e.

Some terminologies
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Definition 1.4. A PD morphism (A, I, γ) → (B, I, δ) is

• f : A → B a homomorphism of rings such that

• f(I) ⊂ J

• δn(f(x)) = f(γn(x)),∀n,∀x ∈ I .

Definition 1.5. Let (A, I, γ) be a PD algebra. A sub-ideal J ⊂ I is said to be a sub PD ideal
if γi(x) ∈ J,∀x ∈ J,∀i ≥ 1.

Lemma 1.6. If (A, I, γ) is a PD algebra and J ⊂ A is an ideal, then there exists a unique PD
structure γ̄ on I = I(A/J) such that (A, I, γ) → (A/J, I, γ̄) is a PD morphism if and only if
J ∩ I ⊂ I is a sub PD ideal.

Lemma 1.7. If I is a PD ideal, then In ⊂ I is a sub PD ideal ∀n ≥ 1.

Lemma 1.8. Let (I, γ) and (J, δ) be PD ideals. Suppose I ∩ J is a sub PD ideal of I and J and
suppose γ and δ agree on I ∩ J . Then there exists a unique PD structure on K = I + J such
that I and J are sub PD ideals.

Example 1.9. (p) ⊂ W has a unique PD structure. (pn) = (p)n ⊂ W are sub PD ideals. So

we have an induced PD structure on (Wm, (p)) for each m. We will show in later sections

that Wm in general has many PD structures.

The notion of PD morphism is natural but rather restrictive. We want to introduce a more

flexible notion.

Definition 1.10. Let (A, I, γ) be a PD algebra, andB anA-algebra. We say γextendstoBifthereisaPDstructureonIBsuchthat(A, I, γ) →
(B, IB, γ̄) is a PD morphism.

Proposition 1.11. If I is principal, then γ extends to any B.

Proof. Write I = (g) and f : A → B. We set γ̄k(b · f(g)) := bkγ̄k(f(g)) = bkf(γk(g)) for

any b ∈ B. □

Proposition 1.12. Let (A, I, γ) and B as above, and let (J, δ) be a PD ideal of B. Then the
following are equivalent:

(1) γ extends to B and γ̄ = δ on IB ∩ J .
(2) K = IB + J has a unique PD structure δ̄ such that (A, I, γ) → (B,K, δ̄) and

(B, J, δ̄) → (B,K, δ) are PD morphisms.
(3) There exists an ideal K ′ ⊃ IB + J with a PD structure δ′ such that (A, I, γ) →

(B,K ′, δ′) and (B, J, δ) → (B,K ′, δ′) are PD morphisms.
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Definition 1.13. PD structures γ, δ are called compatible if the equivalent conditions above
are satisfied.

Now we discuss the main result on PD structures.

Theorem 1.14. Let (A, I, γ) be a PD algebra, B an A-algebra, I ⊂ B an ideal. Then there
exists a B-algebra DB,γ(J) with a PD ideal (J̄ , γ̄) such that

(1) JDB,γ(J) ⊂ J̄

(2) γ̄ is compatible with γ

(3) the following universal property is satisfied:

Hom(A,I,γ)

(
(DB,γ(J), J̄ , γ̄), (C,K, δ)

)
= Hom(A,I) ((B, J), (C,K))

functorially in PD algebras (C,K, δ) over (A, I, γ).

If B′
is a B-algebra, then there is a natural map

DB,γ(J)⊗B B′ → DB′,γ′(JB′)

It is an isomorphism if B′
is flat over B.

2. Globalization

We shall now discuss the globalization of the theory of PD structures. This is nothing but

a sheaf-theoretic reformulation of the results above.

We also introduce the PD analogue of infinitesimal neighborhoods.

Definition 2.1. Let (A, I, γ) be a PD algebra. For n ≥ 1, define

I [n] := ⟨γi1(x1), · · · γik(xk) |
∑

ij ≥ n, x ∈ I⟩

Example 2.2. ConsiderW = W (k)with its canonical PD structure. Then (p)[n] = (pν)where

ν = inf
k≥n

{vp(pk/k!)}.

Proposition 2.3. I [n] ⊂ I is a sub PD ideal. I [n]I [m] ⊂ I [n+m].

Lemma 2.4. Let (A, I, γ) be a PD algebra, and f ∈ A be an element. Then the localization
(Af , If ) has a canonical PD structure γf and (A, I, γ) → (Af , If , γf ) is PD:

γf,n(x/f
k) := γn(x)/f

kn
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Thus, we get a sheaf of PD algebras on SpecA (Recall that the basic opens SpecAf with

f ∈ A form a basis for the Zariski topology on SpecA).

Let S be a scheme, and I ⊂ OS be a quasi-coherent sheaf of ideals with PD structure γ.

Let X be an S-scheme, B a quasi-coherent OX-algebra, and J ⊂ B a quasi-coherent sheaf

of ideals. Then DB,γ(J ) is a quasi-coherent OX-algebra.

We usually consider closed immersion i : X → Y with ideal J (of S-schemes). Here

(S, I, γ) is as above. We have the PD envelope

DX,γ(Y ) := DOY ,γ(J)

We also write

DX,γ(Y ) := Spec
Y
DX,γ(Y ).

Definition 2.5. Assume X → Y is a closed immersion of S-schemes.

Dn
X,γ(Y ) := DX,γ(Y )/J̄ [n+1]

is called the n-th PD neighborhood of X in Y .

Example 2.6. If X → Y is a closed immersion of varieties over a char-0 field (e.g. C), then
Dn

X,γ(Y ) ∼= OY /Jn
. So PD neighborhoods recover formal neighborhoods in characteristic

0.

3. Example of PD algebras and envelopes: PD polynomial algebras

We first introduce the PD polynomial algebra. Let A be a ring. Consider the following

graded A-algebra

A⟨x1, . . . , xn⟩ =
⊕
ik≥0

Ax
[i1]
1 · · ·x[in]

n

with the following properties:

(1) The multiplication is given by

x[i]
p x

[j]
p =

(i+ j)!

i!j!
x[i+j]
p

(2) xp = x
[1]
p

This looks like a PD structure. In fact, it comes from the augmentation ideal

I =
⊕

at least one ik>0

Ax
[i1]
1 · · · x[in]

n

in A⟨x1, . . . , xn⟩ with a PD structure γ such that γn(xi) = x
[n]
i
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More generally, one can construct a PD algebra (Γ(M),Γ+(M), γM) out of anyA-module

M (not required to be finitely generated)which satisfies a list of nice properties, andA⟨x1, . . . , xn⟩
is the special case whereM = An

the rank-n free module.

The PD polynomial algebra A⟨x1, . . . , xn⟩ plays a special role in the construction of PD

envelopes. Let M = An
, B = Sym•

A(M) ∼= A[x1, . . . , xn]. Let γ = 0 be the trivial PD

structure on the ideal (0) ⊂ A, and J = (x1, . . . , xn) ⊂ B be the augmentation ideal.

The PD envelopeDB,0(J) is just the PD polynomial algebra A⟨x1, . . . , xn⟩. PD envelopes

in the special case (A, I, γ)with f : (A, I) → (B, J) (i.e., f(I) ⊂ J ) are constructed similarly

from certain (Γ(M),Γ+(M), γM). But one needs to carefully quotient out some additional

relations.

Nevertheless, if (S, I, γ) is a PD scheme, and X → Y is a closed immersion of smooth S-

schemes with mOY = 0 for some positive integer m, then Zariski locally, the PD envelope

DX,γ(Y ) is isomorphic to the PD polynomial algebra over OX in codim(X, Y ) variables.

That is, if d = codim(X, Y ) then Zariski locally,

DX,γ(Y ) ∼= OX⟨x1, . . . , xd⟩.

4. PD structures on rings of truncated Witt vectors

Let k be a perfect field, and letW = W (k) be the ring of Witt vectors. WriteWm = W/pm

for the rings of (m-)truncated Witt vectors.

Over the ideal (p) ⊂ W , there is a unique PD structure γcan
(the ad hoc notation stands

for "canonical PD structure") given by

γcan
n (x) =

xn

n!

The existence is clear. To see this is unique, we again notice that Axioms 1) and 4) imply that

any PD structure γ on (p) satisfies

n!γn(x) = xn.

But then γ = γcan
.

By the basic properties of PD structures, the canonical (unique) PD structure γcan
induces

a PD structure, again denoted as γcan
, onWm for anym. Our next goal is then to show there

are other PD structures onWm.

Notice again by Axioms 1) and 4), we have a unique choice for γn for n < p given by

γn(x) =
xn

n!
.
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Assume 2 ≤ m ≤ p. For n = p, we have

p!γp(p) = pp = 0,

which implies γp(p) ∈ (pm−1).

Lemma 4.1. With the notations as above, for any u ∈ Wm, there is a PD structure γ on Wm

with γp(p) = u · pm−1.

The proof of this lemma is long and will be given in Section 6.

5. Maybe something/everything is wrong?

Finally, I would like to mention that some key proofs adopted from Roby’s works in

Berthelot’s thesis may not be reliable. The reference is the blog post by Kevin Buzzard:

https://xenaproject.wordpress.com/2024/12/11/fermats-last-theorem-how-its-going/

In summary, Antoine Chambert-Loir and Maria Ines de Frutos Fernandez (yes, our BU

friend), with the aid of Lean, found that there is flaw in the construction in Berthelot’s thesis

of the PD algebra (Γ(M),Γ+(M), γM) for an A-module M . The problem seems to be that

Roby’s “Les algebres a puissances divisees”, published in Bull Sci Math, 2ieme serie, 89, 1965,

pages 75-91. Lemme 8 (on p86) is false. I have not found a copy of the paper, so I don’t

know what the statement actually is. But Brian Conrad pointed out that the construction of

(Γ(M),Γ+(M), γM) in Berthelot-Ogus should be correct. So the crisis is resolved.

(But Ogus said there are others errors in the book, which are fixable.)

6. Proof of Lemma 4.1

We define

γn(p) =


pn

n!
0 < n < p

u · pm−1 n = p

0 n > p

For any element x = ap ∈ (p) (a ∈ Wm), we define

γn(ap) = anγn(p)

The rest is to check γ satisfies the Axioms. Axioms 1) and 3) are satisfied by construction.

https://xenaproject.wordpress.com/2024/12/11/fermats-last-theorem-how-its-going/
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Axiom 2). Write x = ap and y = bp for a, b ∈ Wm. On one hand,

γk(ap+ bp) = γk((a+ b)p) =


(a+ b)k pk

k!
0 < k < p

(a+ b)pupm−1 k = p

0 k > p

Write Sk :=
∑

i+j=k γi(x)γj(y)

If k < p, then

Sk =
∑
i+j=k

pi

i!

pj

j!
aibj

= γk(ap+ bp)

If k = p, then

Sp =

p−1∑
i=1

pp−1

(p− 1)!

p!

i!j!
aibp−i + γp(p)(a

p + bp)

So

Sk − γp(ap+ bp) =

[(
pp−m

(p− 1)!
− u

)
pm−1

] p−1∑
i=1

p!

i!(p− i)!
aibp−i

= pm
(

pp−m

(p− 1)!
− u

) p−1∑
i=1

(p− 1)!

i!(p− i)!
aibp−i

= 0

Now assume k > p. In this case γk(ap+ bp) = 0. There are three subcases.

• Subcase 1. k > 2p:

Sk =
∑
i+j=k

γi(x)γj(y) = 0

since both i > p and j > p.

• Subcase 2. k = 2p:

S2p = γp(ap)γp(bp) = apbpu2p2m−2

where p2m−2 = 0 since m ≥ 2.

• Subcase 3. k < 2p:

Sk = γk−p(x)γp(y) + · · ·+ γp(x)γk−p(y)

The first and the last terms are:

γk−p(x)γp(y) =
ak−ppk−p

(k − p)!
u · bppm−1 =

ak−p

(k − p)!
u · bppk−p+m−1 = 0
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since k − p+m− 1 ≥ m, and

γp(x)γk−p(y) = 0

by "symmetry".

Each of the rest terms in the sum is of the form

γk−p+i(x)γp−i(y) =
ak−p+ipk−p+i

(k − p+ i)!

bp−ipp−i

(p− i)!
= 0

Axiom 4).

• Subcase 1. i+ j < p:

γi(p)γj(p) =
pipj

i!j!
=

(
i+ j

i

)
γi+j(p)

• Subcase 2. i+ j > 2p:

γi(p)γj(p) = 0 =

(
i+ j

i

)
γi+j(p)

• Subcase 3. i+ j = 2p:

γp(p)γp(p) = u2p2m−2 = 0

since 2m− 2 ≥ m.

• Subcase 4. i+ j = p: If i ̸= p and j ̸= p, then

γi(p)γj(p) =
aipi

i!

bjpj

j!
=

ai

i!

bj

j!
pp = 0

On the other hand (
p

i

)
γp(p) =

(p− 1)!

i!(p− i)!
upm = 0

If i = p, then

γp(p)γ0(p) = γp(p) =

(
p

0

)
γp(p)

The case j = 0 is similar.

• Subcase 5. p < i + j < 2p: We may assume i ≤ j. If j > p, then apparently,

γi(p)γj(p) = 0. So we assume j ≤ p. Then

γi(p)γj(p) =
pi

i!

pj

j
= 0

since i+ j > p.
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Axiom 5).

γi(γj(p)) =


γi(p

j/j!) 0 < j < p

γi(up
m−1) j = p

γi(0) j > p

Assume 0 < j < p.

• Subcase 1. i < p:

γi(p
j/j!) =

pij

i!(j!)i
=

(ij)!

i!(j!)i
γij(p) = Ci,jγij(p)

• Subcase 2. i = p: If j > 1, then

γp(p
j/j!) =

ppj−p

(j!)p
u · pm−1 = 0 = Cp,jγpj(p)

since pj − p+m− 1 ≥ m. If j = 1, then

γp(p
j/j!) =

pp−p

(1!)p
u · pm−1 = u · pm−1 = Cp,1γp(p)

• Subcase 3. i > p:

γi(p
j/j!) = 0 = Ci,jγij(p)

since both i > p and ij > p.

Assume j = p.

• Subcase 1. i < p: If i > 1, then

γi(up
m−1) = uip(m−2)ip

i

i!
= 0 = Ci,pγip(p)

since ip > p. If i = 1, then

γ1(up
m−1) = upm−1 = C1,pγp(p)

• Subcase 2. i = p:

γp(up
m−1) = upp(m−2)p · upm−1 = 0 = Cp,pγp2(p)

since (m− 2)p+m− 1 ≥ m.

• Subcase 3. i > p:

γi(up
m−1) = 0 = Ci,pγip(p)

The case j > p is trivial.

This completes the proof of Lemma 1.
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7. Determination of all possible PD structures on truncated Witt vectors

Lemma 7.1. Assume 2 ≤ m ≤ p. Let γ be a PD structure on Wm. Then γn(p) = 0 for any
n > p. Therefore, the PD structures constructed in Lemma 4.1 are the only ones forWm.

Proof. As discussed before, we have γk(p) = pk/k! for 1 ≤ k < p. Assume γp(p) = u · pm−1

for some u ∈ Wm. We will prove the statement by induction.

By Axiom 4),

γp(p)γ1(p) = u · pm−1 · p = 0 =

(
p+ 1

p

)
γp+1(p) = (p+ 1)γp+1(p).

So γp+1(p) = 0. Now assume γk(p) = 0 for all p < k < n. If p ∤ n, then the relation

γn−1(p)γ1(p) = 0 =

(
n

n− 1

)
γn(p) = n · γn(p)

shows γn(p) = 0. If p|n, i.e., n = mp for somem > 1, then by Axiom 5),

γm(γp(p)) = 0 = Cm,pγmp(p)

where LHS is 0 because γm = 0 by the induction hypothesis asm < mp. Observe p does not

divide Cm,p. So γmp(p). □

Corollary 7.2. If k = Fp, then there are exactly p PD structures onWm
∼= Z /pm for 2 ≤ m ≤

p.

Proof. By Lemma 4.1 and Lemma 7.1, a PD structure on Wm(Fp) is determined by the value

γp(p) = u · pm−1
, where u ∈ Wm(Fp). There are exactly p possible values. □
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