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1. DIVIDED POWER STRUCTURES

In this note, we introduce some basic concepts about PD structures, which are the basis of
the theory of crystalline cohomology. Our main reference is Chapter 3 of [BO78].

Divided power structures (PD structures for short) are a formalism that makes sense of

x™/n! in an arbitary ring.

Definition 1.1 (Divided powers). Let A be a ring, and I C A an ideal. A divided power
structure on [ is a collection of maps

’}/ZI—)A 'L.GZZO

such that

(1) Ve € I, y(z) =1, 1(x) =z, and y;(x) € I,i > 1.

@ Ve,ye L (v +y) = ZiJrj:k Yi(z )y ()

(3) Va,y € I, yie(Az) = Moy ()
1
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(@) = € Ly(a)y(x) = (57)7usy(x), where

J

(5) 1p(1(®)) = CpgVpe(x), where

Example 1.2. (1) (0) is a PD ideal with ;(0) = 0,Vi > 1.

(2) Let A be a Q-algebra. Then there exists a unique PD structure for any ideal I C A
given by v, (z) = z™/nl.

(3) Suppose A has characteristic p > 0 (i.e. pA = 0). Then an ideal [ has a PD structure
only if Iis nilpotent: Axioms (1) and (4) imply

ny,(z) =2" ¥Yn>0
But then plvy,(x) = 0 = aP.

(4) Let A =V be a DVR of mixed characteristic (0, p) with a uniformizer 7 and residue
field k. Write p = un®, where e is called the absolute ramification index of /. Then
(m) has PD if and only ife < p — 1.

Proof.

Lemma 1.3 (Legendre’s formula). Letn = a;p’ € Z with0 < a; < p. Then
1 i
ord,(n!) = p—1 > i - 1)
Thus,

ord,(v,(m)) = n — ord,(n!)

=n — eord,(n!)

Zzaipi—pilzai(l’i—l)

1 )
-1 ai[p'(p—1—e)+e
— 1= A
:un+ezal
p—1 p—1

O

So y,(m) € (m) if and only if the last quantity above is greater than 0 for any a;;
this is equivalenttop — 1 —e > 0,ie,p—1 > e.

Some terminologies



DIVIDED POWER STRUCTURES 3
Definition 1.4. A PD morphism (A, I,7v) — (B, 1,0) is

o [: A — B ahomomorphism of rings such that
o f(I)CJ
o 5,(f(2)) = f(yala)), V0,V € I

Definition 1.5. Let (A, I,~y) be a PD algebra. A sub-ideal J C [ is said to be a sub PD ideal
ify;(z) € Vo € JVi > 1.

Lemma 1.6. If (A, I,7) is a PD algebra and J C A is an ideal, then there exists a unique PD
structure ¥ on I = I(A/J) such that (A, I,7) — (A/J,1,7) is a PD morphism if and only if
J NI C 1 isasubPD ideal

Lemma 1.7. If I is a PD ideal, then I" C I is a sub PD ideal Vn > 1.

Lemma 1.8. Let (I,7) and (J, 6) be PD ideals. Suppose I N J is a sub PD ideal of I and J and
suppose v and o agree on I N J. Then there exists a unique PD structure on K = I + J such
that I and J are sub PD ideals.

Example 1.9. (p) C W has a unique PD structure. (p™) = (p)™ C W are sub PD ideals. So
we have an induced PD structure on (W,,, (p)) for each m. We will show in later sections
that W, in general has many PD structures.

The notion of PD morphism is natural but rather restrictive. We want to introduce a more

flexible notion.

Definition 1.10. Let (A, I, v) be aPD algebra, and B an A-algebra. We say ~yextendstoBi fthereisaP Dstructt
(B, IB,%) is a PD morphism.

Proposition 1.11. If [ is principal, then -y extends to any B.

Proof. Write I = (g) and f : A — B. We set 3(b - f(9)) := V*3.(f(g9)) = b* f(7(g)) for
any b € B. 0

Proposition 1.12. Let (A, 1,~) and B as above, and let (.J, ) be a PD ideal of B. Then the
following are equivalent:

(1) v extends to B andy =90 on IBN J.

(2) K = IB + J has a unique PD structure § such that (A,I,7v) — (B, K,§) and
(B, J,0) = (B, K, §) are PD morphisms.

(3) There exists an ideal K' O IB + J with a PD structure &' such that (A,I,v) —
(B,K',0") and (B, J,6) — (B, K', ") are PD morphisms.
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Definition 1.13. PD structures v, J are called compatible if the equivalent conditions above
are satisfied.

Now we discuss the main result on PD structures.

Theorem 1.14. Let (A, 1,7) be a PD algebra, B an A-algebra, I C B an ideal. Then there

exists a B-algebra D ., (J) with a PD ideal (J,7) such that

(1) JDp~(J) C J
(2) 7 is compatible with ~y
(3) the following universal property is satisfied:

Homa 1,9 (D54 (J), J. %), (C, K. 8)) = Homa,ry (B, J), (C, K))
functorially in PD algebras (C, K, §) over (A, I,7).
If B’ is a B-algebra, then there is a natural map
Dg.(J)®p B"— Dp/ (JB')

It is an isomorphism if B’ is flat over B.

2. GLOBALIZATION

We shall now discuss the globalization of the theory of PD structures. This is nothing but

a sheaf-theoretic reformulation of the results above.

We also introduce the PD analogue of infinitesimal neighborhoods.
Definition 2.1. Let (A, I, ) be a PD algebra. For n > 1, define
I = (i (@), v () | )iy 2,z € 1)
Example 2.2. Consider W = W (k) with its canonical PD structure. Then (p)") = (p”) where
v = Inf oy (/).
Proposition 2.3. I C I is a sub PD ideal. ™™ c [in+m],

Lemma 2.4. Let (A, 1,7) be a PD algebra, and f € A be an element. Then the localization
(Ay, Iy) has a canonical PD structure vy and (A, 1,~v) — (Ay, If,y) is PD:

V(@) f5) = ()
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Thus, we get a sheaf of PD algebras on Spec A (Recall that the basic opens Spec Ay with
f € A form a basis for the Zariski topology on Spec A).

Let S be a scheme, and I C Og be a quasi-coherent sheaf of ideals with PD structure 7.
Let X be an S-scheme, B a quasi-coherent O x-algebra, and J C B a quasi-coherent sheaf
of ideals. Then Dp(J) is a quasi-coherent O x -algebra.

We usually consider closed immersion ¢ : X — Y with ideal J (of S-schemes). Here
(S,1,7) is as above. We have the PD envelope

Dx4(Y) := Doy 4(J)

We also write
Dx(Y) := Spec, Dx,(Y).

Definition 2.5. Assume X — Y is a closed immersion of S-schemes.
Dy (V) = Dx,(Y)/ "
is called the n-th PD neighborhood of X in Y.

Example 2.6. If X — Y is a closed immersion of varieties over a char-0 field (e.g. C), then
D% (Y) = Oy /J". So PD neighborhoods recover formal neighborhoods in characteristic
0.

3. ExAMPLE OF PD ALGEBRAS AND ENVELOPES: PD POLYNOMIAL ALGEBRAS

We first introduce the PD polynomial algebra. Let A be a ring. Consider the following
graded A-algebra

A<ZE1, . e ,:L“n> —= @AI[IZI] .« xkn]

i1>0
with the following properties:
(1) The multiplication is given by
OE Gl ) L e
pp il

(2) @, =z
This looks like a PD structure. In fact, it comes from the augmentation ideal

at least one i3, >0

in A(zy, ..., x,) with a PD structure v such that v, (z;) = xz[n]
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More generally, one can construct a PD algebra (I'(M), ' (M), v;) out of any A-module
M (not required to be finitely generated) which satisfies a list of nice properties, and A(x1, . .., ;)
is the special case where M = A" the rank-n free module.

The PD polynomial algebra A(xq,...,x,) plays a special role in the construction of PD
envelopes. Let M = A", B = Sym%(M) = Alzy,...,x,]. Let v = 0 be the trivial PD
structure on the ideal (0) C A, and J = (21,...,x,) C B be the augmentation ideal.

The PD envelope Dpg (/) is just the PD polynomial algebra Az, ..., z,). PD envelopes
in the special case (A, I,y)with f : (A, I) — (B, J) (ie., f(I) C J)are constructed similarly
from certain (I'(M), T (M), ~vy). But one needs to carefully quotient out some additional
relations.

Nevertheless, if (S, I, ) is a PD scheme, and X — Y is a closed immersion of smooth S-
schemes with m Oy = 0 for some positive integer m, then Zariski locally, the PD envelope
Dx(Y') is isomorphic to the PD polynomial algebra over Oy in codim(X,Y") variables.
That is, if d = codim(X, Y") then Zariski locally,

DX,’Y(Y) = OX<':B17 SR 7$d>‘

4. PD STRUCTURES ON RINGS OF TRUNCATED WITT VECTORS

Let k be a perfect field, and let W = W (k) be the ring of Witt vectors. Write W,,, = W/p™

for the rings of (m-)truncated Witt vectors.

Over the ideal (p) C W, there is a unique PD structure v**" (the ad hoc notation stands
for "canonical PD structure") given by

n
can T

T () 0

The existence is clear. To see this is unique, we again notice that Axioms 1) and 4) imply that

any PD structure 7y on (p) satisfies

nly,(z) = z".

can

But then v = ~©".

By the basic properties of PD structures, the canonical (unique) PD structure y**" induces
a PD structure, again denoted as v°*", on W, for any m. Our next goal is then to show there

are other PD structures on W,,,.

Notice again by Axioms 1) and 4), we have a unique choice for v, for n < p given by
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Assume 2 < m < p. For n = p, we have

py(p) =p" =0,

which implies 7, (p) € (p™1).

Lemma 4.1. With the notations as above, for any uw € W,,, there is a PD structure y on W,
withy,(p) = u-p™ .

The proof of this lemma is long and will be given in Section 6.

5. MAYBE SOMETHING/EVERYTHING IS WRONG?

Finally, I would like to mention that some key proofs adopted from Roby’s works in
Berthelot’s thesis may not be reliable. The reference is the blog post by Kevin Buzzard:
https://xenaproject.wordpress.com/2024/12/11/fermats-last-theorem-how-its-going/

In summary, Antoine Chambert-Loir and Maria Ines de Frutos Fernandez (yes, our BU
friend), with the aid of Lean, found that there is flaw in the construction in Berthelot’s thesis
of the PD algebra (I'(M),I'" (M), va) for an A-module M. The problem seems to be that
Roby’s “Les algebres a puissances divisees”, published in Bull Sci Math, 2ieme serie, 89, 1965,
pages 75-91. Lemme 8 (on p86) is false. I have not found a copy of the paper, so I don’t
know what the statement actually is. But Brian Conrad pointed out that the construction of
(T(M), T (M), ~yr) in Berthelot-Ogus should be correct. So the crisis is resolved.

(But Ogus said there are others errors in the book, which are fixable.)

6. PrRoOF or LEMMA 4.1

We define
2 0<n<p
M) = qu-p"t n=p
0 n>p

For any element x = ap € (p) (a € W,,), we define

Yn(ap) = a"yu(p)

The rest is to check ~ satisfies the Axioms. Axioms 1) and 3) are satisfied by construction.


https://xenaproject.wordpress.com/2024/12/11/fermats-last-theorem-how-its-going/
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Axiom 2). Write x = ap and y = bp for a,b € W,,,. On one hand,

(a+bz  0<k<p
Y(ap +bp) = w((a+b)p) = § (a+ b)Pup™ ' k=p
0 k>p
Write S, 1= Ziﬂ-:k %-(x)vj(y)
If £ < p, then
Py
Sk = ——a't’
: ;k il !
= (ap + bp)
If £ = p, then
p—1 -1
P’ Pl
B G )
— Lilj!
So
—1
pPm . P p! o
— b — _— m DY pr ‘
Sk — Yp(ap + bp) {((p—l)! u)p ];Z’!(p—i)!a
-1
o «— (=1 .
_ m o N T pr 1
P ((p—l)! u);i!p—i)!a
=0

Now assume k > p. In this case v (ap + bp) = 0. There are three subcases.

e Subcase 1. k > 2p:

Sk = Z Yi(2)7;(y) =0
i+j=k
since both 7 > pand j > p.
e Subcase 2. k = 2p:

Sap = Yp(ap)vp(bp) = a’bPu’p*™

where p*™~2 = ( since m > 2.
e Subcase 3. k < 2p:

Sk = Ye—p(T)Wp(Y) + - + (@) Ve—p(Y)

The first and the last terms are:

&k—ppk—p o
%—p(l")%(y):mu'bpp = (k_p)!u'bpp
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sincek —p+m —1>m,and

Vo (2)V—p(y) = 0
by "symmetry".
Each of the rest terms in the sum is of the form
ak—p+ipk—p+i bp—ipp—i
=0
(k—p+i)! (p—1)!

V—pti(T)Vp—i(y) =

Axiom 4).

e Subcase 1.1+ j < p:

MMMMZﬂﬁZ(HJ

il i)%”@)

e Subcase 2.1+ j > 2p:

%@WMﬁ=0=<

(=
l

>%H@)

e Subcase 3.1+ j = 2p:

() %(p) = u*p 7 =0
since 2m — 2 > m.

e Subcase 4.1+ j = p: If i # p and j # p, then

_adp'Vpy  ad'v

= =y
J J

i ()i (p)

On the other hand

If © = p, then

The case j = 0 is similar.
e Subcase 5. p < i+ j < 2p: We may assume ¢ < j. If j > p, then apparently,
Yi(p)v;(p) = 0. So we assume j < p. Then

MMMMZgTZO

since ¢ + j > p.
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Axiom 5).
%P /i) 0<j<p
() = %ilup™ ) j=p
7:(0) j>p
Assume 0 < 5 < p.

e Subcase 1.1 < p:

= z’!](D;!)i = 2.58!))!2-%‘(?) = Cij7i(p)

%’(Pj/j!)

e Subcase 2.1 = p:If j > 1, then

i/ ppj—p m—1
(P /5Y) = W“ P = 0= G, ;7;(p)
sincep) —p+m —1>m.If j =1, then

Wl 1Y) = T " =0 = Gy o)

e Subcase 3.1 > p:
’Yi(]?j/j!) = 0= Ci;7i;(p)
since both ¢ > p and 75 > p.
Assume j = p.
e Subcase 1.1 < p: If i > 1, then
Yi(up™ ) = u"p(mw% =0 = CipYin(p)
since tp > p. If i = 1, then

m—l)

Y1 (up = up™ ' = C1,7,(p)

e Subcase 2.1 = p:

Y(up™ ) = uPp P up™ Tt = 0 = Gy (p)
since (m —2)p+m —1>m.
e Subcase 3.1 > p:
Yilup™ ') =0 = Cipyip(p)
The case j > p is trivial.

This completes the proof of Lemma 1.
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7. DETERMINATION OF ALL POSSIBLE PD STRUCTURES ON TRUNCATED WITT VECTORS

Lemma 7.1. Assume 2 < m < p. Let y be a PD structure on W,,. Then ~y,(p) = 0 for any

n > p. Therefore, the PD structures constructed in Lemma 4.1 are the only ones for W,,,.
Proof. As discussed before, we have v (p) = p"/k! for 1 < k < p. Assume 7,(p) = u - p™*
for some u € W,,,. We will prove the statement by induction.

By Axiom 4),

Y@)n(p) =u-p" Tt p=0= (p; 1)7p+1(p) = (p+ Drps1(p)-

S0 Yp+1(p) = 0. Now assume 7y, (p) = 0 for all p < k < n. If p { n, then the relation

)%(p) =n-7n(p)

n, i.e.,, n = mp for some m > 1, then by Axiom 5),

S

n
n—1

Yn-1(p)11(p) =0 = (

shows 7,(p) = 0. If p

Vm(’yp(p)) =0= Cm,p'ymp(p)
where LHS is 0 because v,,, = 0 by the induction hypothesis as m < mp. Observe p does not
divide Cy, - SO Yinp (D). O
Corollary 7.2. Ifk = F,, then there are exactly p PD structures on W, = 7 [p™ for2 < m <
.

Proof. By Lemma 4.1 and Lemma 7.1, a PD structure on W,,(F,) is determined by the value
Yp(p) = u - p™ !, where u € W,,(F,). There are exactly p possible values. O
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