CHERN CLASSES AND SEGRE CLASSES

XINYU ZHOU

CONTENTS

This is a note for my talks given at the Boston University Number Theory Expository Seminar (BUNTES) in Fall 2022. The main reference is Fulton's Intersection Theory.

1. Higher Chern Classes

People with background in algebraic topology would know the splitting principle for vector bundles. Here we introduce its scheme-theoretic version as an important technique.

 ${\bf Splitting \ Principle\ Let} \ {E^j \}_j$ be a fintie collection of locally free sheaves over k -scheme X. Then there exists a flat morphism $f : X' \to X$ such that

(1) $f^*: A_*X \to A_*X'$ is injective and

(2) for every E in the collection, f^*E has a filtration by subbundles:

$$
f^*E = E_r \supset E_{r-1} \supset \cdots \supset E_0 = 0
$$

with line bundle quotients $E_i/E_{i-1} = L_i$.

Indeed, we can construct X' in the following way: First take $p: \mathbf{P}(E) \to X$. Thus p^* is injective on the Chow group by Corollary [4.11.](#page-14-0) p^*E has a subbundle $\mathcal{O}_E(-1)$ of rank 1. Let $E' = p^* E/\mathcal{O}_E(-1)$, which has rank $r - 1$. Repeat the construction for $p' : \mathbf{P}(E') \to \mathbf{P}(E)$. The process terminates after finitely many iterations. Then apply the same construction for the other locally free sheaves in the collection.

Lemma 1.1. Assume E has a filtration as above. Let s be a section of E, and $Z = Z(s) \subset X$ be the zero scheme of s. Then for any $\alpha \in A_k X$, there exists $\beta \in A_{k-r} Z$ such that

$$
\prod_{i=1}^r c_1(L_i) \cap \alpha = \beta
$$

In particular, if s is nowhere vanishing, then $\beta = 0$.

Proof. The section s induces a section \overline{s} of the quotient line bundle L_r . If $Y = Z(\overline{s})$ is the zero scheme of \overline{s} , then $D_r = (L_r, Y, \overline{s}|_{X-Y})$ is a pseudo-divisor on X. Intersection with D_r gives a class $D_r \cdot \alpha \in A_{k-1}Y$ such that

$$
c_1(L_r) \cap \alpha = j_*(D_r \cdot \alpha)
$$

where $j: Y \to X$ is the inclusion. By projection formula, one has

(1)
$$
\prod_{i=1}^{r} c_1(L_i) \cap \alpha = j_* \left(\prod_{i=1}^{j-1} c_1(j^*L_i) \cap (D_r \cdot \alpha) \right)
$$

s also induces a section s' of j^*E_{r-1} , whose zero scheme is Z. By induction on r, one finds the cycle on the right hand side of [\(1\)](#page-1-0) is represented by a cycle on Z .

Now we define higher Chern classes. Recall Segre class maps $s_i(E) \cap \bullet : A_k(X) \to A_i(X)$ (associated to a vector bundle E) are defined to be

$$
s_i(E) \cap \alpha = p_*(c_1(\mathcal{O}_1)^{e+i} \cap p^*\alpha),
$$

where $p : \mathbf{P}(E) \to X$ is the projection. We define the *Segre series* $s_t(E)$ to be the formal power series

$$
s_t(E) = \sum_{i \ge 0} s_i(E)t^t
$$

The Chern polynomial^{[1](#page-1-1)} $c_t(E)$ is then defined to be the formal inverse of $s_t(E)$, i.e.

$$
c_t(E) = \sum_{i \ge 0} c_i(E) t^i := s_t(E)^{-1}
$$

The *total Chern class* is defined to be $c(E) := c_t(E)|_{t=1} = \sum_{i \geq 0} c_t(E).$ Here is a list of basic properties of Chern classes.

Theorem 1.2.

- (1) Vanishing: $\forall i >$ rank $E, c_i(E) = 0$.
- (2) Commutativity: $c_i(E) \cap (c_i(F) \cap \alpha) = c_i(F) \cap (c_i(E) \cap \alpha)$
- (3) Projection formula: $f : X' \to X$ proper.

$$
f_*(c_i(f^*E) \cap \alpha) = c_i(E) \cap f_*\alpha
$$

¹We will see in a second that $c_t(E)$, which is a priori a power series, is a polynomial and thus justify its name.

(4) Pullback: $f : X' \rightarrow X$ flat.

$$
c_i(f^*E) \cap f^*\alpha = f^*(c_i(E) \cap \alpha)
$$

(5) Whitney sum: $0 \to E' \to E \to E'' \to 0$ exact.

$$
c_t(E) = c_t(E')c_t(E'')
$$

(6) Normalization: $c_1(E)$ agrees with the first Chern class defined before.

Proof. (2),(3),(4),(6) follow from Theorem [4.6.](#page-12-2) Let $f : X' \to X$ be a flat morphism as in the Splitting Principle. Then f^* is injective and

$$
f^*(c_i(E) \cap \alpha) = c_i(f^*E) \cap f^*\alpha = 0
$$

for $i > \mathrm{rank}\, E$ provided that (a) has been proved for f^*E . Thus, it suffices to assume \bar{E} has a filtration as in the Splitting Principle.

Let $p : \mathbf{P}(E) \to X$ be the associated projective bundle. From the canonical embedding $\mathcal{O}(-1) \to p^*E$, we get a surjective map $p^*E^{\vee} \to \mathcal{O}(1)$ or $s: \mathcal{O} \to p^*E \otimes \mathcal{O}(1)$, which is a nowhere vanishing section of $p^*E\otimes \mathcal{O}(1).$ The vector bundle $p^*E\otimes \mathcal{O}(1)$ has a filtration with line bundle quotients $p^*L_i\otimes \mathcal{O}(1)$ provided by the filtration on $E.$ Then by Lemma [1.1,](#page-1-2)

$$
\prod_{i=1}^r c_1(p^*L_i \otimes \mathcal{O}(1)) = 0
$$

Let σ_i, τ_i be the i -th elementary symmetric polynomials in $c_1(L_1), \ldots, c_1(L_r)$ and $c_1(p^*L_1),$ $\ldots, c_1(p^*L_r)$, respectively. Denote $\zeta = c_1(O(1))$. Recall by Theorem [4.9,](#page-13-0) we have

$$
c_1(p^*L_i \otimes \mathcal{O}(1)) = c_1(p^*L_i) + c_1(\mathcal{O}(1)) = c_1(p^*L_i) + \zeta
$$

With $e = r - 1$, we have

$$
\zeta^{e+i} + \tau_1 \zeta^{e+i-1} + \ldots + \tau_r \zeta^{i-1} = 0
$$

for all $i \geq 1$. Thus, for all $\alpha \in A_*X$, one has

$$
p_*((\zeta^{e+i} + \tau_1 \zeta^{e+i-1} + \ldots + \tau_r \zeta^{i-1}) \cap p^* \alpha) = 0
$$

This means

$$
(1 + \sigma_1 t + \ldots + \sigma_r t^r) s_t(E) = 1
$$

which is equivalent to

$$
c_t(E) = \prod_{i=1}^r (1 + c_1(L_i)t)
$$

which apparently implies (1).

□

We can factor formally $c_t(E)$ as

$$
c_t(E) = \prod_{i=1}^r (1 + \alpha_i t).
$$

Here α_i are the Chern roots of E. If E admits a filtration as in the splitting principle, then $\alpha_i = c_1(L_i)$. Chern roots enable us to prove some additional properties of Chern classes.

Theorem 1.3.

- (1) (Dual bundles) $c_i(E^{\vee}) = (-1)^i c_i(E)$
- (2) (Tensor products) Let E and F be two vector bundles of ranks r and s, respectively. Then Chern roots allow us to determine Chern classes of the tensor product $E \otimes F$ in terms of Chern classes of E and F . (The general formulae, unfortunately, are complicated.)
- (3) (Exterior products) $c_t(\bigwedge^p E) = \prod_{i_1 < \dots < i_p} (1 + (\alpha_{i_1} + \dots + \alpha_{i_p})t)$
- (4) (Symmetric products) $c_t(\text{Sym}^p E) = \prod_{i_1 \leq \dots \leq i_p} (1 + (\alpha_{i_1} + \dots + \alpha_{i_p})t)$
- *Proof.* (1) If E has a filtration with line bundle quotients L_i , then E^\vee has a filtration with line bundle quotients L_i^{\vee} . Thus, if E has Chern roots α_1,\ldots,α_r , then E^{\vee} has Chern roots $-\alpha_1, \ldots, -\alpha_r$.
	- (2) If $\alpha_1, \ldots, \alpha_r$ are Chern roots of E and β_1, \ldots, β_s are Chern roots of F, then $\alpha_i + \beta_j$ are Chern roots of $E \otimes F$. This is again shown by first considering the case that E and F have filtrations as in the Splitting Principle. Indeed, suppose they have filtrations

$$
0=E_0\subset\ldots\subset E_r=E
$$

with line bundle quotients L_i and

$$
0 = F_0 \subset \ldots \subset F_s = F
$$

with line bundle quotients $\hat{N_j}$. Then the tensor product $\hat{E}\otimes F$ has a filtration

$$
0 = E_0 \otimes F_0 + 0 \otimes F \subset \ldots \subset E_i \otimes F_j + E_{i-1} \otimes F \subset \ldots \subset E \otimes F
$$

where (i,j) is ordered lexicographically, which has successive quotient $L_i\otimes N_j.$ (3) and (4) are shown similarly. \Box

Let's introduce two more notions before moving to examples. The *Chern character* $ch(E)$ is defined to be

$$
ch(E) = \sum_{i=1}^{r} exp(\alpha_i).
$$

The Todd class $\text{td}(E)$ is defined to be

$$
\operatorname{td}(E) = \prod_{i=1}^r \frac{\alpha_i}{1 - \exp(-\alpha_i)}
$$

These two notions will appear in the several fundamental theorems in intersection theory, e.g., the Hirzebruch-Riemann-Roch theorem:

Theorem 1.4 (Hirzebruch-Riemann-Roch). Let E be a vector bundle on a smooth complete variety X . Then

$$
\chi(X, E) = \int_X \operatorname{ch}(E) \cdot \operatorname{td}(T_X)
$$

Now we turn to examples.

Example 1.5 (Affine space).

$$
A_k(\mathbf{A}^n) = \begin{cases} 0 & k < n \\ \mathbb{Z} & k = n \end{cases}
$$

By Proposition [4.7,](#page-12-3) the pullback map A_k ${\bf A}^n \to A_{k+m}\,{\bf A}^{m+n}$ is surjective for any k,m and n. Then the statement follows.

Example [1](#page-4-0).6 (Projective space). ¹ If $0 \le k \le n$, then $A_k \mathbf{P}^n = \mathbb{Z}$. This is clear for $k = n$ and $k = n - 1$. For $0 \le k \le n - 2$, consider the exact sequence

$$
A_k(\mathbf{P}^{n-1}) \longrightarrow A_k(\mathbf{P}^n) \longrightarrow A_k(\mathbf{A}^n) \longrightarrow 0
$$

By induction on n , we may assume $A_k(\mathbf{P}^{n-1}) = \mathbb{Z}$. Let $[L^k]$ be the class of k -dimensional linear space, i.e., a generator of $A_k(\mathbf{P}^n)$. Notice $c_1(\mathcal{O}(1))\cap [L^k]=[L^{k-1}].$ If $d[L^k]$ is rationally equivalent to zero, then $(c_1(\mathcal{O}(1)))^k \cap d[L^k] = d[L^0] = 0.$ This means

$$
dL^0 = \sum_i n_i div(r_i)
$$

with $r_i \in R(C_i)$ and C_i being curves in \mathbf{P}^n . However, $\sum_i n_i div(r_i)$ had total degree 0. Thus, d must be 0 .

Thus, $A_*\,{\bf P}^n=\mathbb{Z}^{n+1}=\mathbb{Z}[H]/(H^{n+1})^2.$ $A_*\,{\bf P}^n=\mathbb{Z}^{n+1}=\mathbb{Z}[H]/(H^{n+1})^2.$ $A_*\,{\bf P}^n=\mathbb{Z}^{n+1}=\mathbb{Z}[H]/(H^{n+1})^2.$ Recall we also have the exact sequence

$$
0 \to \mathcal{O}_{\mathbf{P}^n} \to \mathcal{O}_{\mathbf{P}^n}(1) \to T_{\mathbf{P}^n} \to 0
$$

Thus,

$$
c(T_{\mathbf{P}^n}) = (1 + c_1(H))^{n+1}
$$

where H is a hyperplane in \mathbf{P}^n .

Example 1.7 (Abelian variety). Suppose $i: X \to \mathbf{P}^m$ is a closed embedding of an n -dimensional abelian variety. One has the adjunction sequence

$$
0 \to T_X \to i^* T_{\mathbf{P}^m} \to N \to 0,
$$

where N is the normal bundle of X in \mathbf{P}^m . Thus, $c_1(i^*\mathcal{O}(1))^{m-n+1}=0$. From the sequence, we have

$$
c(N) = (1 + c_1(i^* \mathcal{O}(1)))^{m+1}.
$$

 $\overline{1_{\rm It}}$ would be a useful strategy to lift intersection problems on a projective variety to problems on a projective space into which the variety is embedded as a closed subvariety.

 2 It is not clear at this point that the Chow group has this ring structure.

By higher dimensional Bézout's theorem,

$$
\int_X c_1(i^*\mathcal{O}(1))^n = \deg(X),
$$

which is nonzero. Thus, $m - n + 1 > n$, i.e., $m > 2n - 1$. In other words, this shows X cannot be embedded into \mathbf{P}^m if $m < 2 \dim(X)$.

Example 1.8 (Ramification). Let X, Y be two smooth *n*-dimensional varieties and $f: X \rightarrow Y$ be a morphism. Define $R(f)$ to be the subset of X where the induced map of tangent spaces is not an isomorphism. (This is the same as ramification in the algebraic sense.) $R(f)$ is endowed with a scheme structure by identifying $R(f)$ with the zero scheme of

$$
\wedge^n df : \wedge^n T_X \to \wedge^n f^* T_Y
$$

or, equivalently, the zero scheme of a section of the line bundle $\bigwedge^n f^*T_Y\otimes \bigwedge^n T_X^\vee.$ If $R(f)\neq$ X , then by Exanple [4.5,](#page-11-1) we have

$$
[R(f)] = (c_1(f^*T_Y) - c_1(T_X)) \cap [X]
$$

If $n = 1$, by taking degrees of both sides, the formula above is reduced to the Riemann-Hurwitz formula:

$$
2g_X - 2 = \deg(f)(2g_Y - 2) + \deg R(f)
$$

Example 1.9 (Blowing-up). Let X be a smooth *n*-dimensional variety and Y be a smooth *m*-dimensional subvariety of X. Suppose $\mathcal{I} = \mathcal{I}_Y$ is the ideal sheaf of Y. Let $\pi : \tilde{X} =$ $\operatorname{Proj}\, (\bigoplus_{d\geq 0} \mathcal{I}^d) \to X$ be the blowing-up of X along $Y.$ Then $\tilde{X}:=\operatorname{Proj}\, (\bigoplus_{d\geq 0} \mathcal{I}^d\,/\, \mathcal{I}^{d+1})=0$ $\mathbf{P}(N)$ is the exceptional divisor, where $N=\mathrm{Spec}\,(\bigoplus_{d\geq 0}\mathcal{I}^d\,/\,\mathcal{I}^{d+1})\to Y$ is the normal cone of Y. Denote by $\eta : \tilde{Y} \to Y$ the projection. Define the k-th self-intersection of \tilde{Y} to be

$$
\tilde{Y}^k = \tilde{Y} \cdot \dots \cdot \tilde{Y} \cdot [\tilde{X}] \in A_{n-k}(\tilde{Y})
$$

The restriction of the line bundle $\mathcal{O}_{\tilde{X}}(\tilde{Y})$ to \tilde{X} is

$$
\mathcal{O}_{\tilde{X}}(\tilde{Y})|_{\tilde{Y}} = \mathcal{O}_{\tilde{Y}}(-1)
$$

Therefore, one has

$$
\tilde{Y}^k = (-1)^{k-1} c_1(\mathcal{O}_{\tilde{Y}}(1))^{k-1} \cap [\tilde{Y}]
$$

The intersection of total Segre class of N with $[Y]$ is then

$$
s(N) \cap [Y] = \sum_{i \ge 0} \eta_*(c_1(\mathcal{O}(1))^{e+i}) \cap \eta^*[Y]
$$

=
$$
\sum_{i \ge 0} \eta_*(c_1(\mathcal{O}(1))^{e+i} \cap [Y])
$$

=
$$
\sum_k (-1)^{k-1} \eta_*(\tilde{Y}^k)
$$

2. RATIONAL EQUIVALENCE ON CONES

Now we consider pulling back cycles on scheme X to a vector bundle. Let E be a vector bundle of rank $r = e + 1$ over a scheme X with projection $\pi : E \to X$ and $p : \mathbf{P}(E) \to X$ the associated projective bundle. Denote by $\mathcal{O}(1)$ the canonical line bundle on $\mathbf{P}(E)$.

Theorem 2.1. (1) The flat pullback

$$
\pi^*: A_{k-r}X \to A_kE
$$

is an isomorphism for all k .

(2) Any $\beta \in A_k \mathbf{P}(E)$ can be uniquely written as

$$
\beta = \sum_{i=0}^{e} c_1 (\mathcal{O}(1))^i \cap p^* \alpha_i
$$

for $\alpha_i \in A_{k-e+i}X$. Thus, there are canonical isomorphisms

$$
\bigoplus_{i=0}^{e} A_{k-e+i} X \cong A_k \mathbf{P}(E)
$$

Proof. Surjectivity of π^* has been shown in Theorem [4.7.](#page-12-3) Let

$$
\theta_E : \sum_{i=0}^e A_{k-e+i} X \to A_k \mathbf{P}(E), \oplus \alpha_i \mapsto \sum_{i=0}^e c_1 (\mathcal{O}(1))^i \cap p^* \alpha_i
$$

We want to show θ_E is surjective. By Noetherian induction, it suffices to consider the case where E is trivial. By induction on the rank, it suffices to show surjectivity of $\theta_{E \oplus 1}$, assuming the surjectivity of θ_E . Let $P = P(E), Q = P(F) = P(E \oplus 1)$, and $q: Q \to X$ be the projection. Consider the following commutative diagram

By Proposition [4.10,](#page-14-1) the row of the following commutative diagram is exact.

$$
A_k P \xrightarrow{i_*} A_k Q \xrightarrow{j^*} A_k E \longrightarrow 0
$$

$$
A_{k-r} \overbrace{X}^{q^*}
$$

Before proceeding, we show a lemma.

Lemma 2.2. For $\forall \alpha \in A_*X$,

$$
c_1(\mathcal{O}_F(1)) \cap q^* \alpha = i_* p^* \alpha
$$

8 XINYU ZHOU

Proof of the lemma. It suffices to prove for the case $\alpha = [V]$, where V is a subvariety of X. Denote $j: V \to X$ the inclusion. We may identify $\mathcal{O}_F(1)$ as $\mathcal{O}_F(i_*P)$. Therefore, $c_1(\mathcal{O}_F(1)) \cap q^* \alpha = i_*[j^*i_* P] = i_*p^*[V]$ by the commutativity of intersection with Cartier divisor. □

Now if $\beta \in A_*Q$, write $j^*\beta = \pi^*\alpha = j^*q^*\alpha$ for some $\alpha \in A_*X$. Then $\beta - q^*\alpha \in \ker j^* = \pi^*Q$ im i_* . Then

(2)
$$
\beta - q^* \alpha = i_* \left(\sum_{i=0}^e c_1 (\mathcal{O}_E(1))^i \cap p^* \alpha_i \right)
$$

(using the surjectivity of θ_E) for some $\alpha_i \in A_*X$. Since $i^*\mathcal{O}_F(1) = \mathcal{O}_E(1)$, by projection formula, we have

$$
(2) = \sum_{i=0}^{e} c_1 (\mathcal{O}_F(1))^i \cap i_* p^* \alpha_i
$$

Now applying the lemma gives

$$
\beta = q^* \alpha + \sum_{i=0}^e c_1 (\mathcal{O}_F(1))^{i+1} \cap q^* \alpha_i = \sum_{i=0}^{e+1} c_1 (\mathcal{O}_F(1))^{i} \cap q^* \alpha_i
$$

which shows the surjectivity of θ_F .

To show the uniqueness, suppose there is a nontrivial relation

$$
\beta = \sum_{i=0}^{e} c_1(\mathcal{O}(1))^i \cap p^* \alpha_i = 0
$$

Let ℓ be the largest integer with $\alpha_{\ell} \neq 0$. Then

$$
p_*(c_1(\mathcal{O}(1))^{e-\ell} \cap \beta) = \sum_{j=-\ell}^0 s_j(E) \cap \alpha_{j+l} = \alpha_\ell
$$

which is a contradition.

Finally, we show the injectivity of π^* . Let $F = E \oplus 1, Q = \mathbf{P}(F)$. If $\pi^* \alpha = 0, \alpha \neq 0$, then $j^*q^*\alpha=0$. So

$$
q^*\alpha = i_* \left(\sum_{i=0}^e c_1 (\mathcal{O}_E(1))^i \cap p^*\alpha_i \right) = \sum_{i=0}^e c_1 (\mathcal{O}_F(1))^{i+1} \cap q^*\alpha_i
$$

by the lemma. But this contradicts the uniqueness for Q . \Box

With the theorem, we are able to define Gysin homomorphisms. Consider the zero section $s = s_E : X \to E$ of the vector bundle E, i.e., the homomrophism defined by the augmentation morphism $\text{Sym } E \to \mathcal{O}_X$.

3. Segre Classes of Cones

So far we have only regarded Segre classes $s_i(E)$ of a vector bundle E over scheme X as endomorphisms of the Chow group A_*X . In this section, we show the total Segre class $s(E)$ is really a cycle class on the scheme X .

A morphism $C \to X$ of schemes is a cone over X if C is isomorphic to $\text{Spec } S^{\bullet}$ for some graded \mathcal{O}_X -algebra $S^\bullet.$ For any cone $C,$ we define its projective completion $p:\mathbf{P}(C\oplus\mathbb{1})\to$ X to be $\operatorname{Proj}\nolimits(S^{\bullet} \otimes_{\mathcal{O}_{X}} \operatorname{Sym}\nolimits \mathcal{O}_{X}) = \operatorname{Proj}\nolimits(S^{\bullet}[z]) \to X.$ We define the Segre class $s(C)$ of a cone by

$$
s(C) = p_* \left(\sum_{i \geq 0} c_1 (\mathcal{O}_P(1))^i \cap [\mathbf{P}(C \oplus 1)] \right)
$$

Now suppose C is given by a vector bundle, i.e. $C = E = \text{Spec}(\text{Sym}\mathcal{E})$ with $\mathcal E$ being a locally free sheaf on X.

Proposition 3.1. $s(E) = s(E) \cap [X]$

Proof.

$$
s(E) \cap [X] = s(E \oplus 1) \cap [X] = \sum_{i} s_i(E \oplus 1) \cap [X]
$$

$$
= \sum_{i} p_* (c_1(\mathcal{O}(1))^i \cap p^*[X])
$$

$$
= p_* \left(\sum_{i \ge 0} c_1(\mathcal{O}(1))^i \cap [\mathbf{P}(C \oplus 1)] \right)
$$

Proposition 3.2. If C has irreducible components C_1, \ldots, C_r with geometric multiplicities m_1, \ldots, m_r , then

$$
s(C) = \sum_{i=1}^{r} m_i s(C_i)
$$

Proof. Notice that $\mathbf{P}(C \oplus 1)$ has irreducible components $\mathbf{P}(C_i \oplus 1)$ with multiplicities m_i . Denote by $q_i: \mathbf{P}(C_i \oplus 1) \to X$ the projections. Then

$$
s(C) = q_* \left(\sum_{i \geq 0} c_1(\mathcal{O}(1))^i \cap [\mathbf{P}(C \oplus 1)] \right)
$$

= $q_* \left(\sum_{i \geq 0} c_1(\mathcal{O}(1))^i \cap \sum_{j=1}^r m_j [\mathbf{P}(C_i \oplus 1)] \right)$
= $\sum_{j=1}^r q_{j*} \left(\sum_{i \geq 0} c_1(\mathcal{O}_{\mathbf{P}(C_j \oplus 1)}(1))^i \cap [\mathbf{P}(C_i \oplus 1)] \right)$
= $\sum_{j=1}^r m_j s(C_i)$

4. Segre Classes of Subschemes

Let X be a closed subscheme of a scheme Y defined by ideal sheaf \mathcal{I} , and $C = C_X Y$ be the normal cone of X in Y. Then the Segre class of X in Y is defined to be $s(X, Y) :=$ $s(C_XY) \in A_*X$.

Remark 4.1. It may be helpful to clarify a use of notations. Let Y be a closed subscheme of X defined by ideal sheaf \mathscr{I} . The normal cone $C_Y X$ over Y is the cone associated to the conormal sheaf $\mathscr{I} \setminus \mathscr{I}^2$, that is, $C_Y X := \text{Spec } \bigoplus_{d \geq 0} \mathscr{I}^d \setminus \mathscr{I}^{d+1} \to Y$. If X and Y are smooth varieties, then $\mathscr{I}/\mathscr{I}^2$ is a locally free sheaf (of rank $\operatorname{codim}(Y,X)$), In this case, we denote $N_Y X = C_Y X$ and call $N_Y X$ the normal bundle of Y in X.

Lemma 4.2. Assume Y is of pure-dimension, and Y_1, \ldots, Y_r are irreducible components with geometric multiplicities $m_1,\ldots,m_r.$ Let X be a closed subscheme of Y and define $X_i=X\cap Y_i.$ Then

$$
s(X,Y) = \sum_{i=1}^{r} m_i s(X_i, Y_i)
$$

in A_*X .

Proof. Denote by $M_X Y$ the blowing-up of $Y \times \mathbf{A}^1$ along $X \times \{0\}$. Then $M_{X_i} Y_i$ are the irreducible components of $M_X Y$ with multiplicities m_i . Then

$$
[M_X Y] = \sum m_i [M_{X_i} Y_i]
$$

Thus,

$$
[\mathbf{P}(C_X Y \oplus 1)] = \sum_{i=1}^r m_i [\mathbf{P}(C_{X_i} Y_i \oplus 1)]
$$

The lemma would not be true if one does not require Y to be of pure dimension. For example, consider $Y = V(xz, yz) \subset \mathbf{A}^3$ and $X \subset Y$ cut out by $x - z = 0$. Then $Y =$ $A^2 \cup A^1 = Y_1 \cup Y_2$. Denote by P the intersection of the two irreducible components of Y and $X_i=X\cap Y_i, i=1,2.$ Then an easy computation shows $s(X_1,Y_1)+s(X_2,Y_2)=2[P]$ whereas $s(X, Y) = 3[P]$. The problem with non-pure dimensional case is components of $P(C \oplus 1)$ would not be annihilated at once by a power of $c_1(\mathcal{O}(1))$. Thus, there would be "extra" cycles in $s(X, Y)$.

Proposition 4.3. Let $f: Y' \to Y$ be a morphism of pure-dimensional schemes, $X \subset Y$ be a closed subscheme, and $X' := f^{-1}(X)$. Let $g : X' \to X$ be the morphism induced by f.

(1) If f is proper, Y is irreducible, and f maps each irreducible component of Y' onto Y , then

$$
g_*(s(X',Y')) = \deg(Y'/Y)s(X,Y)
$$

Here $\deg(Y'/Y)$ is defined to be $\deg(Y'/Y) = \sum_{i=1}^r \deg(Y'_i/Y)$ where Y'_1,\ldots,Y'_r are irreducible components of Y' with multiplicities m_1, \ldots, m_r .

(2) If f is flat, then

$$
g^*(s(X, Y)) = s(X', Y')
$$

Proof. We may assume Y' is irreducible. We have the following commutative diagram

where $M = \text{Bl}_{X \times \{0\}} Y \times \mathbf{A}^1$ and $M' = \text{Bl}_{X' \times \{0\}} Y' \times \mathbf{A}^1$. $\mathbf{P}(C' \oplus 1)$ and $\mathbf{P}(C \oplus 1)$ are the exceptional divisors in M' and M , respectively. Let $\mathcal{O}(1)$ be the canonical line bundle on $\mathbf{P}(C\oplus \overline{1}).$ Then $G^*\,\mathcal{O}(1)$ is the canonical line bundle on $\mathbf{P}(C'\oplus 1).$ Notice $F_*[M']=d[M],$ where $d := \deg(Y'/Y)$. By projection formula, we have

$$
g_*s(X', Y') = g_*q'_*(\sum_{i \geq 0} c_1(G^* \mathcal{O}(1))^i \cap [\mathbf{P}(C' \oplus 1)])
$$

= $q_*G_*(\sum_{i \geq 0} c_1(G^* \mathcal{O}(1))^i \cap [\mathbf{P}(C' \oplus 1)])$
= $q_*(\sum_{i \geq 0} c_1(\mathcal{O}(1))^i \cap G_*[\mathbf{P}(C' \oplus 1)])$
= $q_*(\sum_{i \geq 0} c_1(\mathcal{O}(1))^i \cap d[\mathbf{P}(C' \oplus 1)])$
= $ds(X, Y)$

12 XINYU ZHOU

Similarly for (b),

$$
g^*s(X,Y) = g^*q_*(\sum_{i\geq 0} c_1(\mathcal{O}(1))^i \cap [\mathbf{P}(C \oplus 1)])
$$

= $q'_*G^*(\sum_{i\geq 0} c_1(\mathcal{O}(1))^i \cap [\mathbf{P}(C \oplus 1)])$
= $q'_*(\sum_{i\geq 0} c_1(G^*\mathcal{O}(1))^i \cap G^*[\mathbf{P}(C \oplus 1)])$
= $s(X',Y')$

□

Remark 4.4. I don't think it has been shown in earlier chapters that $g_* q'_* = q_* G_*$ if all four morphism here are proper. But this is easy. One just needs to show $(g \circ f)_* = f_* g_*$ provided that f and g are proper, which is in fact clear from the definition of proper push-forward.

Although one cannot expect any birational invariance in intersection theory in general, this proposition does show Segre classes of closed subschemes is birationally invariant (that is, the case $deg(Y'/Y) = 1$) if the morphism g is proper.

Appendix: Zero Scheme

In this section, we give a brief review on the zero scheme of a section of a vector bundle. First, we give a sheaf-theoretic description. Let $\mathcal E$ be a locally free sheaf on a scheme X. A global section $s\in H^0(X,\mathcal{E})$ is a sheaf morphism $s:\mathcal{O}_X\to\mathcal{E}.$ Taking dual gives $s^\vee:\mathcal{E}^\vee\to$ \mathcal{O}_X . The zero scheme $Z(s)$ of the section s is then defined to be the closed subscheme of X determined by the ideal sheaf $\operatorname{im}(s^{\vee}).$

Now we consider the geometric case. Let $\mathcal E$ be a locally free sheaf of rank n on a k-scheme X and $E = \text{Spec}(\text{Sym}(\mathcal{E})) \to X$ be the vector bundle asscoiated to \mathcal{E} . Let $s: X \to E$ be a section. Then locally this is given by $s: U \to \mathbf{A}^n_U = \mathbf{A}^n \times_k U$, which is determined by $(s_1, \ldots, s_n) \in A^{\oplus n}$ if $U = \text{Spec } A$. Then on U, the zero scheme $Z(s)$ of s is given by the vanishing locaus $V(s_1, \ldots, s_n)$. Alternatively, thanks to the sheaf-theoretic description, we can also consider s as a sheaf morphism $s : Sym(\mathcal{E}) \to \mathcal{O}_X$ which corresponds to $s : \mathcal{E} \to$ \mathcal{O}_X , whose image is an ideal sheaf *Z*. Then $Z(s)$ is the closed subscheme assocaited to *Z*.

Example 4.5 (Example 3.2.16). Let E be a vector bundle of rank r on X, s a section of E, $Z = Z(s)$ the zero scheme of s. Then one has

- (1) For any $\alpha \in A_k X$, there is a class β in $A_{k-r}Z$ whose image in $A_{k-r}(A)$ is $c_r(E) \cap \alpha$. In particular, if $Z = \emptyset$, then $c_r(E) = 0$.
- (2) If X is purely *n*-dimensional, and s is a regular section of E, then Z is purely $(n-r)$ dimensional, and

$$
c_r(E) \cap [X] = [Z]
$$

Appendix: Relative Proj

In this section, we give a brief review of relative Proj , projective bundle, and blowingup. Let X be a k-scheme and S be a sheaf of graded \mathcal{O}_X -algebras over X. Then one has a morphism of scheme π : Proj $(S) \to X$, which is locally given by Proj $(S(U)) \to U$ Spec $(A) \subset X$. If E is a locally free sheaf on X, then we denote $P(E) = \text{Proj}(\text{Sym}(E)).$ Proj (S) comes with a canonical line bundle $\mathcal{O}(1)$, which is locally given by $\mathcal{O}(1)$ on Proj (S(U)). Therefore, there is a natural surjection $\pi^*E \to O(1)$ on $\mathbf{P}(E)$. Now suppose Y is a closed subscheme of X defined by ideal sheaf $\mathcal{I} = \mathcal{I}_Y$. The blowing-up of X along Y is defined to be π : $\tilde{X} := \text{Proj}(\sum_{d \geq 0} \mathcal{I}^d) \to X$ where $\mathcal{I}^0 := \mathcal{O}_X$. Assume X and Y are smooth varieties. Let $\mathcal{I}/\mathcal{I}^2$ be the conormal sheaf of Y. Then the exceptional divisor Y' is isomorphic to $\mathbf{P}(\mathcal{I}\,/\,\mathcal{I}^2)$ and the normal sheaf N of Y' in \tilde{X} corresponds to $\mathcal{O}_{\mathbf{P}(\mathcal{I}/\mathcal{I}^2)}(-1).$

Appendix: Theorems from Previous Chapters

Theorem 4.6 (Proposition 3.1).

- (1) For $\forall \alpha \in A_k X$, (a) $s_i(E) \cap \alpha = 0$ for $i < 0$; (b) $s_0(E) \cap \alpha = \alpha$
- (2) If E, F are vector bundles on X, $\alpha \in A_k X$, then $\forall i, j$,

$$
s_i(E) \cap (s_j(F) \cap \alpha) = s_j(F) \cap (s_i(E) \cap \alpha)
$$

(3) If $f: X' \to X$ is proper, E is a vector bundle over $X, \alpha \in A_*X'$, then $\forall i$,

$$
f_*(s_i(f^*F) \cap \alpha) = s_i(E) \cap f_*(\alpha)
$$

(4) If $f: X' \to X$ is flat, E is a vector bundle over $X, \alpha \in A_*X$, then $\forall i$,

$$
s_i(f^*E) \cap f^*\alpha = f^*(s_i(E) \cap \alpha)
$$

(5) If E is a line bundle on X, $\alpha \in A$ *X, then

$$
s_1(E) \cap \alpha = -c_1(E) \cap \alpha
$$

Theorem 4.7 (Proposition 1.9). Let $p: E \to X$ be a vector bundle of rank n. Then the flat pull-back

$$
p^*: A_k X \to A_{k+n} E
$$

is surjective for all k .

14 XINYU ZHOU

Proof. Choose a closed subscheme Y of X so that $U = X - Y$ is affine open on which E is trivial. We then have a commutative diagram

where the vertical maps are flat pullbacks, and the rows are exact by Proposition [4.10.](#page-14-1) By a diagram chase it suffices to prove the assertion for the restrictions of E to U and to Y . By Noetherian induction, i.e., repeating the process on Y, it suffices to prove it for $X = U$. Thus we may assume E is trivialized, i.e. $E = X \times \mathbf{A}^n$. The projection factors

$$
X \times \mathbf{A}^n \to A \times \mathbf{A}^{n-1} \to X
$$

So we may assume $n = 1$. We must show that $[V]$ is in $p * A_k X$ for any $(k + 1)$ -dimensional subvariety V of E. We may replace X by the closure of $p(V)$ (cf. Proposition [4.12\)](#page-14-2), so we may assume X is a variety and p maps V dominantly to X. Let A be the coordinate ring of $X, K = R(X)$ the quotient field of A, and let q be the prime ideal in A[t] corresponding to V. If $\dim X = k$, then $V = E$, so $V = P^*[X]$. So we may assume $\dim X = k + 1$. Since V dominates X and $V \neq E$, the prime ideal $q \cdot K[t]$ is non-trivial; let $r \in K[t]$ generate $q \cdot K[t]$. Then

$$
[V] - [div(r)] = \sum_{i} n_i [V_i],
$$

for some $(k+1)$ -dimensional subvarieties V_i of E whose projections to X are not dominant. Therefore $V_i = p^{-1}(W_i)$, with $W_i = p(V_i)$, so

$$
[V] = [div(r)] + \sum_{i} n_i p * [W_i],
$$

as required. $□$

Remark 4.8 (Noetherian induction). We recall the concept of Noetherian induction. Let X be a Noetherian topological space and P be a property of closed subsets of X . Assume that for any closed subset Y of X, if P holds for every proper closed subset of Y, then P holds for Y. (In particular, P must hold for the empty set.) Then P holds for X .

Theorem 4.9 (Proposition 2.5).

(1) If α is rationally equivalent to 0 on X, then $c_1(L) \cap \alpha = 0$. Therefore $c_1(L)$ induces a well-defined homomorphism

$$
c_1(L) \cap \bullet : A_k X \to A_{k-1} X
$$

(2) (Commutativity) If L, L' are line bundles on $X, \alpha \in A_k X$, then

$$
c_1(L) \cap (c_1(L') \cap \alpha) = c_1(L') \cap (c_1(L) \cap \alpha)
$$

in $A_{k-2}X$.

(3) (Projection formula) If $f : X' \to X$ is a proper morphism, L a line bundle on X, $\alpha \in A_k X'$, then

 $f_*(c_1(f^*L) \cap \alpha) = c_1(L) \cap f_*\alpha$

(4) (Flat pullback) If $f : X' \to X$ is flat of relative dimension n, L a line bundle on X, $\alpha \in A_k X$, then

$$
c_1(f^*L) \cap f^*\alpha = f^*(c_1(L) \cap \alpha)
$$

in $A_{k-1+n}X'$

(5) (Additivity) If L, L' are line bundles on $X, \alpha \in A_k X$, then

$$
c_1(L \otimes L') \cap \alpha = c_1(L) \cap \alpha + c_1(L') \cap \alpha
$$

and

$$
c_1(L^{\vee}) \cap \alpha = -c_1(L) \cap \alpha
$$

in $A_{k-1}X$.

Proposition 4.10 (Proposition 1.8). Let Y be a closed subscheme of a scheme X and $U =$ $X - Y$. Let $i: Y \to X, j: U \to X$ be the inclusions. Then the sequence

$$
A_k Y \xrightarrow{i_*} A_k X \xrightarrow{j^*} A_k U \to 0
$$

is exact for all k .

Corollary 4.11 (Corollary 3.1). The flat pullback

$$
p^*: A_k X \to A_{k+e} \mathbf{P}(E)
$$

is a split monomorphism.

Proof. An inverse is $\beta \mapsto p_*(c_1(\mathcal{O}_E(1))^e \cap \beta)$.

Proposition 4.12 (Proposition 1.7). Let

$$
X' \xrightarrow{g'} X
$$

\n
$$
f' \xrightarrow{g'} f
$$

\n
$$
Y' \xrightarrow{g} Y
$$

be a cartesian square with g flat and f proper. Then g' is flat, f' is proper, and for all $\alpha \in Z_*X$ $f'_*g'^*\alpha = g^*f_*\alpha$

in Z_*Y' .