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This is a note for my talks given at the Boston University Number Theory Expository

Seminar (BUNTES) in Fall 2022. The main reference is Fulton’s Intersection Theory.

1. Higher Chern Classes

People with background in algebraic topology would know the splitting principle for vec-

tor bundles. Here we introduce its scheme-theoretic version as an important technique.

Splitting Principle Let {Ej}j be a fintie collection of locally free sheaves over k-scheme

X . Then there exists a flat morphism f : X ′ → X such that

(1) f ∗ : A∗X → A∗X
′
is injective and

(2) for every E in the collection, f ∗E has a filtration by subbundles:

f ∗E = Er ⊃ Er−1 ⊃ · · · ⊃ E0 = 0

with line bundle quotients Ei/Ei−1 = Li.

Indeed, we can construct X ′
in the following way: First take p : P(E) → X . Thus p∗ is

injective on the Chow group by Corollary 4.11. p∗E has a subbundle OE(−1) of rank 1. Let

E ′ = p∗E/OE(−1), which has rank r − 1. Repeat the construction for p′ : P(E ′) → P(E).
The process terminates after finitely many iterations. Then apply the same construction for

the other locally free sheaves in the collection.

1



2 XINYU ZHOU

Lemma 1.1. Assume E has a filtration as above. Let s be a section of E, and Z = Z(s) ⊂ X
be the zero scheme of s. Then for any α ∈ AkX , there exists β ∈ Ak−rZ such that

r∏
i=1

c1(Li) ∩ α = β

In particular, if s is nowhere vanishing, then β = 0.

Proof. The section s induces a section s of the quotient line bundle Lr. If Y = Z(s) is the
zero scheme of s, then Dr = (Lr, Y, s|X−Y ) is a pseudo-divisor on X . Intersection with Dr

gives a class Dr · α ∈ Ak−1Y such that

c1(Lr) ∩ α = j∗(Dr · α)

where j : Y → X is the inclusion. By projection formula, one has

(1)

r∏
i=1

c1(Li) ∩ α = j∗

(
j−1∏
i=1

c1(j
∗Li) ∩ (Dr · α)

)
s also induces a section s′ of j∗Er−1, whose zero scheme is Z . By induction on r, one finds
the cycle on the right hand side of (1) is represented by a cycle on Z . □

Nowwe define higher Chern classes. Recall Segre class maps si(E)∩• : Ak(X) → Ai(X)
(associated to a vector bundle E) are defined to be

si(E) ∩ α = p∗(c1(O1)
e+i ∩ p∗α),

where p : P(E) → X is the projection. We define the Segre series st(E) to be the formal

power series

st(E) =
∑
i≥0

si(E)tt

The Chern polynomial1 ct(E) is then defined to be the formal inverse of st(E), i.e.

ct(E) =
∑
i≥0

ci(E)ti := st(E)−1

The total Chern class is defined to be c(E) := ct(E)|t=1 =
∑

i≥0 ct(E). Here is a list of basic
properties of Chern classes.

Theorem 1.2.

(1) Vanishing: ∀i > rank E, ci(E) = 0.
(2) Commutativity: ci(E) ∩ (cj(F ) ∩ α) = cj(F ) ∩ (ci(E) ∩ α)
(3) Projection formula: f : X ′ → X proper.

f∗(ci(f
∗E) ∩ α) = ci(E) ∩ f∗α

1
We will see in a second that ct(E), which is a priori a power series, is a polynomial and thus justify its

name.
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(4) Pullback: f : X ′ → X flat.

ci(f
∗E) ∩ f ∗α = f ∗(ci(E) ∩ α)

(5) Whitney sum: 0 → E ′ → E → E ′′ → 0 exact.

ct(E) = ct(E
′)ct(E

′′)

(6) Normalization: c1(E) agrees with the first Chern class defined before.

Proof. (2),(3),(4),(6) follow from Theorem 4.6. Let f : X ′ → X be a flat morphism as in the

Splitting Principle. Then f ∗
is injective and

f ∗(ci(E) ∩ α) = ci(f
∗E) ∩ f ∗α = 0

for i > rankE provided that (a) has been proved for f ∗E. Thus, it suffices to assume E has

a filtration as in the Splitting Principle.

Let p : P(E) → X be the associated projective bundle. From the canonical embedding

O(−1) → p∗E, we get a surjective map p∗E∨ → O(1) or s : O → p∗E ⊗ O(1), which is

a nowhere vanishing section of p∗E ⊗O(1). The vector bundle p∗E ⊗O(1) has a filtration
with line bundle quotients p∗Li⊗O(1) provided by the filtration on E. Then by Lemma 1.1,

r∏
i=1

c1(p
∗Li ⊗O(1)) = 0

Let σi, τi be the i-th elementary symmetric polynomials in c1(L1), . . . , c1(Lr) and c1(p
∗L1),

. . . , c1(p
∗Lr), respectively. Denote ζ = c1(O(1)). Recall by Theorem 4.9, we have

c1(p
∗Li ⊗O(1)) = c1(p

∗Li) + c1(O(1)) = c1(p
∗Li) + ζ

With e = r − 1, we have

ζe+i + τ1ζ
e+i−1 + . . .+ τrζ

i−1 = 0

for all i ≥ 1. Thus, for all α ∈ A∗X , one has

p∗((ζ
e+i + τ1ζ

e+i−1 + . . .+ τrζ
i−1) ∩ p∗α) = 0

This means

(1 + σ1t+ . . .+ σrt
r)st(E) = 1

which is equivalent to

ct(E) =
r∏

i=1

(1 + c1(Li)t)

which apparently implies (1).

□
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We can factor formally ct(E) as

ct(E) =
r∏

i=1

(1 + αit).

Here αi are the Chern roots of E. If E admits a filtration as in the splitting principle, then

αi = c1(Li). Chern roots enable us to prove some additional properties of Chern classes.

Theorem 1.3.

(1) (Dual bundles) ci(E∨) = (−1)ici(E)
(2) (Tensor products) LetE and F be two vector bundles of ranks r and s, respectively. Then

Chern roots allow us to determine Chern classes of the tensor product E ⊗F in terms of
Chern classes of E and F . (The general formulae, unfortunately, are complicated.)

(3) (Exterior products) ct(
∧p E) =

∏
i1<···<ip

(1 + (αi1 + · · ·+ αip)t)

(4) (Symmetric products) ct(Symp E) =
∏

i1≤···≤ip
(1 + (αi1 + · · ·+ αip)t)

Proof. (1) IfE has a filtration with line bundle quotients Li, thenE∨
has a filtration with

line bundle quotients L∨
i . Thus, if E has Chern roots α1, . . . , αr, then E∨

has Chern

roots −α1, . . . ,−αr.

(2) If α1, . . . , αr are Chern roots of E and β1, . . . , βs are Chern roots of F , then αi + βj

are Chern roots ofE⊗F . This is again shown by first considering the case thatE and

F have filtrations as in the Splitting Principle. Indeed, suppose they have filtrations

0 = E0 ⊂ . . . ⊂ Er = E

with line bundle quotients Li and

0 = F0 ⊂ . . . ⊂ Fs = F

with line bundle quotients Nj . Then the tensor product E ⊗ F has a filtration

0 = E0 ⊗ F0 + 0⊗ F ⊂ . . . ⊂ Ei ⊗ Fj + Ei−1 ⊗ F ⊂ . . . ⊂ E ⊗ F

where (i, j) is ordered lexicographically, which has successive quotient Li ⊗Nj .

(3) and (4) are shown similarly. □

Let’s introduce two more notions before moving to examples. The Chern character ch(E) is
defined to be

ch(E) =
r∑

i=1

exp(αi).

The Todd class td(E) is defined to be

td(E) =
r∏

i=1

αi

1− exp(−αi)

These two notions will appear in the several fundamental theorems in intersection theory,

e.g., the Hirzebruch-Riemann-Roch theorem:
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Theorem 1.4 (Hirzebruch-Riemann-Roch). Let E be a vector bundle on a smooth complete
variety X . Then

χ(X,E) =

∫
X

ch(E) · td(TX)

Now we turn to examples.

Example 1.5 (Affine space).

Ak(A
n) =

{
0 k < n

Z k = n

By Proposition 4.7, the pullback map Ak A
n → Ak+m Am+n

is surjective for any k,m and

n. Then the statement follows.

Example 1.6 (Projective space). 1

If 0 ≤ k ≤ n, then Ak P
n = Z. This is clear for k = n and

k = n− 1. For 0 ≤ k ≤ n− 2, consider the exact sequence

Ak(P
n−1) Ak(P

n) Ak(A
n) 0

By induction on n, we may assume Ak(P
n−1) = Z. Let [Lk] be the class of k-dimensional

linear space, i.e., a generator ofAk(P
n). Notice c1(O(1))∩[Lk] = [Lk−1]. If d[Lk] is rationally

equivalent to zero, then (c1(O(1)))k ∩ d[Lk] = d[L0] = 0. This means

dL0 =
∑
i

nidiv(ri)

with ri ∈ R(Ci) and Ci being curves inPn
. However,

∑
i nidiv(ri) had total degree 0. Thus,

d must be 0.
Thus, A∗P

n = Zn+1 = Z[H]/(Hn+1)2. Recall we also have the exact sequence

0 → OPn → OPn(1) → TPn → 0

Thus,

c(TPn) = (1 + c1(H))n+1

where H is a hyperplane in Pn
.

Example 1.7 (Abelian variety). Suppose i : X → Pm
is a closed embedding of ann-dimensional

abelian variety. One has the adjunction sequence

0 → TX → i∗TPm → N → 0,

whereN is the normal bundle ofX inPm
. Thus, c1(i

∗O(1))m−n+1 = 0. From the sequence,

we have

c(N) = (1 + c1(i
∗O(1)))m+1.

1
It would be a useful strategy to lift intersection problems on a projective variety to problems on a projective

space into which the variety is embedded as a closed subvariety.

2
It is not clear at this point that the Chow group has this ring structure.
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By higher dimensional Bézout’s theorem,∫
X

c1(i
∗O(1))n = deg(X),

which is nonzero. Thus, m − n + 1 > n, i.e., m > 2n − 1. In other words, this shows X
cannot be embedded into Pm

if m < 2 dim(X).

Example 1.8 (Ramification). LetX, Y be two smooth n-dimensional varieties and f : X → Y
be a morphism. Define R(f) to be the subset ofX where the induced map of tangent spaces

is not an isomorphism. (This is the same as ramification in the algebraic sense.) R(f) is
endowed with a scheme structure by identifying R(f) with the zero scheme of

∧ndf : ∧nTX → ∧nf ∗TY

or, equivalently, the zero scheme of a section of the line bundle

∧n f ∗TY ⊗
∧n T∨

X . IfR(f) ̸=
X , then by Exanple 4.5, we have

[R(f)] = (c1(f
∗TY )− c1(TX)) ∩ [X]

If n = 1, by taking degrees of both sides, the formula above is reduced to the Riemann-

Hurwitz formula:

2gX − 2 = deg(f)(2gY − 2) + degR(f)

Example 1.9 (Blowing-up). Let X be a smooth n-dimensional variety and Y be a smooth

m-dimensional subvariety of X . Suppose I = IY is the ideal sheaf of Y . Let π : X̃ =
Proj (

⊕
d≥0 I

d) → X be the blowing-up ofX along Y . Then X̃ := Proj (
⊕

d≥0 I
d / Id+1) =

P(N) is the exceptional divisor, whereN = Spec (
⊕

d≥0 I
d / Id+1) → Y is the normal cone

of Y . Denote by η : Ỹ → Y the projection. Define the k-th self-intersection of Ỹ to be

Ỹ k = Ỹ · · · · · Ỹ · [X̃] ∈ An−k(Ỹ )

The restriction of the line bundle OX̃(Ỹ ) to X̃ is

OX̃(Ỹ )|Ỹ = OỸ (−1)

Therefore, one has

Ỹ k = (−1)k−1c1(OỸ (1))
k−1 ∩ [Ỹ ]

The intersection of total Segre class of N with [Y ] is then

s(N) ∩ [Y ] =
∑
i≥0

η∗(c1(O(1))e+i) ∩ η∗[Y ]

=
∑
i≥0

η∗(c1(O(1))e+i ∩ [Y ])

=
∑
k

(−1)k−1η∗(Ỹ
k)
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2. Rational Eqivalence on Cones

Now we consider pulling back cycles on scheme X to a vector bundle. Let E be a vector

bundle of rank r = e + 1 over a scheme X with projection π : E → X and p : P(E) → X
the associated projective bundle. Denote by O(1) the canonical line bundle on P(E).

Theorem 2.1. (1) The flat pullback

π∗ : Ak−rX → AkE

is an isomorphism for all k.
(2) Any β ∈ Ak P(E) can be uniquely written as

β =
e∑

i=0

c1(O(1))i ∩ p∗αi

for αi ∈ Ak−e+iX . Thus, there are canonical isomorphisms
e⊕

i=0

Ak−e+iX ∼= Ak P(E)

Proof. Surjectivity of π∗
has been shown in Theorem 4.7. Let

θE :
e∑

i=0

Ak−e+iX → Ak P(E),⊕αi 7→
e∑

i=0

c1(O(1))i ∩ p∗αi

We want to show θE is surjective. By Noetherian induction, it suffices to consider the case

whereE is trivial. By induction on the rank, it suffices to show surjectivity of θE⊕1, assuming

the surjectivity of θE . Let P = P(E), Q = P(F ) = P(E ⊕ 1), and q : Q → X be the

projection. Consider the following commutative diagram

P Q E

X

i j

p
q

π

By Proposition 4.10, the row of the following commutative diagram is exact.

AkP AkQ AkE 0

Ak−rX

i∗ j∗

q∗
π∗

Before proceeding, we show a lemma.

Lemma 2.2. For ∀α ∈ A∗X ,

c1(OF (1)) ∩ q∗α = i∗p
∗α
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Proof of the lemma. It suffices to prove for the case α = [V ], where V is a subvariety of

X . Denote j : V → X the inclusion. We may identify OF (1) as OF (i∗P ). Therefore,

c1(OF (1)) ∩ q∗α = i∗[j
∗i∗P ] = i∗p

∗[V ] by the commutativity of intersection with Cartier

divisor. □

Now if β ∈ A∗Q, write j∗β = π∗α = j∗q∗α for some α ∈ A∗X . Then β − q∗α ∈ ker j∗ =
im i∗. Then

(2) β − q∗α = i∗

(
e∑

i=0

c1(OE(1))
i ∩ p∗αi

)
(using the surjectivity of θE) for some αi ∈ A∗X . Since i∗OF (1) = OE(1), by projection

formula, we have

(2) =
e∑

i=0

c1(OF (1))
i ∩ i∗p

∗αi

Now applying the lemma gives

β = q∗α +
e∑

i=0

c1(OF (1))
i+1 ∩ q∗αi =

e+1∑
i=0

c1(OF (1))
i ∩ q∗αi

which shows the surjectivity of θF .
To show the uniqueness, suppose there is a nontrivial relation

β =
e∑

i=0

c1(O(1))i ∩ p∗αi = 0

Let ℓ be the largest integer with αℓ ̸= 0. Then

p∗(c1(O(1))e−ℓ ∩ β) =
0∑

j=−ℓ

sj(E) ∩ αj+l = αℓ

which is a contradition.

Finally, we show the injectivity of π∗
. Let F = E ⊕ 1, Q = P(F ). If π∗α = 0, α ̸= 0, then

j∗q∗α = 0. So

q∗α = i∗

(
e∑

i=0

c1(OE(1))
i ∩ p∗αi

)
=

e∑
i=0

c1(OF (1))
i+1 ∩ q∗αi

by the lemma. But this contradicts the uniqueness for Q. □

With the theorem, we are able to define Gysin homomorphisms. Consider the zero section
s = sE : X → E of the vector bundle E, i.e., the homomrophism defined by the augmenta-

tion morphism SymE → OX .
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3. Segre Classes of Cones

So far we have only regarded Segre classes si(E) of a vector bundle E over scheme X as

endomorphisms of the Chow group A∗X . In this section, we show the total Segre class s(E)
is really a cycle class on the scheme X .

A morphism C → X of schemes is a cone over X if C is isomorphic to Spec S•
for some

gradedOX-algebra S
•
. For any cone C , we define its projective completion p : P(C ⊕ 1) →

X to be Proj (S• ⊗OX
SymOX) = Proj (S•[z]) → X . We define the Segre class s(C) of a

cone by

s(C) = p∗

(∑
i≥0

c1(OP (1))
i ∩ [P(C ⊕ 1)]

)

Now suppose C is given by a vector bundle, i.e. C = E = Spec (Sym E) with E being a

locally free sheaf on X .

Proposition 3.1. s(E) = s(E) ∩ [X]

Proof.

s(E) ∩ [X] = s(E ⊕ 1) ∩ [X] =
∑
i

si(E ⊕ 1) ∩ [X]

=
∑
i

p∗
(
c1(O(1))i ∩ p∗[X]

)
= p∗

(∑
i≥0

c1(O(1))i ∩ [P(C ⊕ 1)]

)

□

Proposition 3.2. If C has irreducible components C1, . . . , Cr with geometric multiplicities
m1, . . . ,mr, then

s(C) =
r∑

i=1

mis(Ci)
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Proof. Notice that P(C ⊕ 1) has irreducible components P(Ci ⊕ 1) with multiplicities mi.

Denote by qi : P(Ci ⊕ 1) → X the projections. Then

s(C) = q∗

(∑
i≥0

c1(O(1))i ∩ [P(C ⊕ 1)]

)

= q∗

(∑
i≥0

c1(O(1))i ∩
r∑

j=1

mj[P(Ci ⊕ 1)]

)

=
r∑

j=1

qj∗

(∑
i≥0

c1(OP(Cj⊕1)(1))
i ∩ [P(Ci ⊕ 1)]

)

=
r∑

j=1

mjs(Ci)

□

4. Segre Classes of Subschemes

Let X be a closed subscheme of a scheme Y defined by ideal sheaf I , and C = CXY be

the normal cone of X in Y . Then the Segre class of X in Y is defined to be s(X, Y ) :=
s(CXY ) ∈ A∗X .

Remark 4.1. It may be helpful to clarify a use of notations. Let Y be a closed subscheme

of X defined by ideal sheaf I . The normal cone CYX over Y is the cone associated to the

conormal sheaf I /I 2
, that is, CYX := Spec

⊕
d≥0 I d /I d+1 → Y . If X and Y are

smooth varieties, then I /I 2
is a locally free sheaf (of rank codim(Y,X)), In this case, we

denote NYX = CYX and call NYX the normal bundle of Y in X .

Lemma 4.2. Assume Y is of pure-dimension, and Y1, . . . , Yr are irreducible components with
geometric multiplicitiesm1, . . . ,mr. LetX be a closed subscheme of Y and defineXi = X∩Yi.
Then

s(X, Y ) =
r∑

i=1

mis(Xi, Yi)

in A∗X .

Proof. Denote by MXY the blowing-up of Y × A1
along X × {0}. Then MXi

Yi are the

irreducible components ofMXY with multiplicitiesmi. Then

[MXY ] =
∑

mi[MXi
Yi]

Thus,

[P(CXY ⊕ 1)] =
r∑

i=1

mi[P(CXi
Yi ⊕ 1)]

□
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The lemma would not be true if one does not require Y to be of pure dimension. For

example, consider Y = V (xz, yz) ⊂ A3
and X ⊂ Y cut out by x − z = 0. Then Y =

A2 ∪A1 = Y1 ∪ Y2. Denote by P the intersection of the two irreducible components of Y
and Xi = X ∩ Yi, i = 1, 2. Then an easy computation shows s(X1, Y1) + s(X2, Y2) = 2[P ]
whereas s(X, Y ) = 3[P ]. The problem with non-pure dimensional case is components of

P(C ⊕ 1) would not be annihilated at once by a power of c1(O(1)). Thus, there would be

"extra" cycles in s(X, Y ).

Proposition 4.3. Let f : Y ′ → Y be a morphism of pure-dimensional schemes, X ⊂ Y be a
closed subscheme, and X ′ := f−1(X). Let g : X ′ → X be the morphism induced by f .

(1) If f is proper, Y is irreducible, and f maps each irreducible component of Y ′ onto Y ,
then

g∗(s(X
′, Y ′)) = deg(Y ′/Y )s(X, Y )

Here deg(Y ′/Y ) is defined to be deg(Y ′/Y ) =
∑r

i=1 deg(Y
′
i /Y ) where Y ′

1 , . . . , Y
′
r are

irreducible components of Y ′ with multiplicitiesm1, . . . ,mr.
(2) If f is flat, then

g∗(s(X, Y )) = s(X ′, Y ′)

Proof. We may assume Y ′
is irreducible. We have the following commutative diagram

M ′ M

P(C ′ ⊕ 1) P(C ⊕ 1)

Y ′ ×A1 Y ×A1

F

q

G

q′

where M = BlX×{0} Y × A1
and M ′ = BlX′×{0} Y

′ × A1
. P(C ′ ⊕ 1) and P(C ⊕ 1) are

the exceptional divisors inM ′
andM , respectively. LetO(1) be the canonical line bundle on

P(C ⊕ 1). Then G∗O(1) is the canonical line bundle on P(C ′ ⊕ 1). Notice F∗[M
′] = d[M ],

where d := deg(Y ′/Y ). By projection formula, we have

g∗s(X
′, Y ′) = g∗q

′
∗(
∑
i≥0

c1(G
∗O(1))i ∩ [P(C ′ ⊕ 1)])

= q∗G∗(
∑
i≥0

c1(G
∗O(1))i ∩ [P(C ′ ⊕ 1)])

= q∗(
∑
i≥0

c1(O(1))i ∩G∗[P(C ′ ⊕ 1)])

= q∗(
∑
i≥0

c1(O(1))i ∩ d[P(C ′ ⊕ 1)])

= ds(X, Y )
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Similarly for (b),

g∗s(X, Y ) = g∗q∗(
∑
i≥0

c1(O(1))i ∩ [P(C ⊕ 1)])

= q′∗G
∗(
∑
i≥0

c1(O(1))i ∩ [P(C ⊕ 1)])

= q′∗(
∑
i≥0

c1(G
∗O(1))i ∩G∗[P(C ⊕ 1)])

= s(X ′, Y ′)

□

Remark 4.4. I don’t think it has been shown in earlier chapters that g∗q
′
∗ = q∗G∗ if all four

morphism here are proper. But this is easy. One just needs to show (g ◦ f)∗ = f∗g∗ provided
that f and g are proper, which is in fact clear from the definition of proper push-forward.

Although one cannot expect any birational invariance in intersection theory in general,

this proposition does show Segre classes of closed subschemes is birationally invariant (that

is, the case deg(Y ′/Y ) = 1) if the morphism g is proper.

Appendix: Zero Scheme

In this section, we give a brief review on the zero scheme of a section of a vector bundle.

First, we give a sheaf-theoretic description. Let E be a locally free sheaf on a scheme X . A

global section s ∈ H0(X, E) is a sheaf morphism s : OX → E . Taking dual gives s∨ : E∨ →
OX . The zero scheme Z(s) of the section s is then defined to be the closed subscheme of X
determined by the ideal sheaf im(s∨).
Now we consider the geometric case. Let E be a locally free sheaf of rank n on a k-scheme

X and E = Spec (Sym(E)) → X be the vector bundle asscoiated to E . Let s : X → E be

a section. Then locally this is given by s : U → An
U = An×kU , which is determined by

(s1, . . . , sn) ∈ A⊕n
if U = Spec A. Then on U , the zero scheme Z(s) of s is given by the

vanishing locaus V (s1, . . . , sn). Alternatively, thanks to the sheaf-theoretic description, we

can also consider s as a sheaf morphism s : Sym(E) → OX which corresponds to s : E →
OX , whose image is an ideal sheaf I . Then Z(s) is the closed subscheme assocaited to I .

Example 4.5 (Example 3.2.16). Let E be a vector bundle of rank r on X , s a section of E,

Z = Z(s) the zero scheme of s. Then one has

(1) For any α ∈ AkX , there is a class β in Ak−rZ whose image in Ak−r(A) is cr(E) ∩ α.
In particular, if Z = ∅, then cr(E) = 0.

(2) IfX is purely n-dimensional, and s is a regular section ofE, then Z is purely (n−r)-
dimensional, and

cr(E) ∩ [X] = [Z]
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Appendix: Relative Proj

In this section, we give a brief review of relative Proj , projective bundle, and blowing-

up. Let X be a k-scheme and S be a sheaf of graded OX-algebras over X . Then one has

a morphism of scheme π : Proj (S) → X , which is locally given by Proj (S(U)) → U =
Spec (A) ⊂ X . If E is a locally free sheaf on X , then we denote P(E) = Proj (Sym(E)).
Proj (S) comeswith a canonical line bundleO(1), which is locally given byO(1) onProj (S(U)).
Therefore, there is a natural surjection π∗E → O(1) on P(E).
Now suppose Y is a closed subscheme of X defined by ideal sheaf I = IY . The blowing-up

of X along Y is defined to be π : X̃ := Proj (
∑

d≥0 I
d) → X where I0 := OX . Assume

X and Y are smooth varieties. Let I / I2
be the conormal sheaf of Y . Then the exceptional

divisor Y ′
is isomorphic to P(I / I2) and the normal sheaf N of Y ′

in X̃ corresponds to

OP(I / I2)(−1).

Appendix: Theorems from Previous Chapters

Theorem 4.6 (Proposition 3.1).

(1) For ∀α ∈ AkX ,
(a) si(E) ∩ α = 0 for i < 0;
(b) s0(E) ∩ α = α

(2) If E,F are vector bundles on X , α ∈ AkX , then ∀i, j,

si(E) ∩ (sj(F ) ∩ α) = sj(F ) ∩ (si(E) ∩ α)

(3) If f : X ′ → X is proper, E is a vector bundle over X , α ∈ A∗X
′, then ∀i,

f∗(si(f
∗F ) ∩ α) = si(E) ∩ f∗(α)

(4) If f : X ′ → X is flat, E is a vector bundle over X , α ∈ A∗X , then ∀i,

si(f
∗E) ∩ f ∗α = f ∗(si(E) ∩ α)

(5) If E is a line bundle on X , α ∈ A∗X , then

s1(E) ∩ α = −c1(E) ∩ α

Theorem 4.7 (Proposition 1.9). Let p : E → X be a vector bundle of rank n. Then the flat
pull-back

p∗ : AkX → Ak+nE

is surjective for all k.
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Proof. Choose a closed subscheme Y of X so that U = X − Y is affine open on which E is

trivial. We then have a commutative diagram

A∗Y A∗X A∗U 0

A∗(p
−1Y ) A∗E A∗(p

−1U) 0

where the vertical maps are flat pullbacks, and the rows are exact by Proposition 4.10. By a

diagram chase it suffices to prove the assertion for the restrictions of E to U and to Y . By

Noetherian induction, i.e., repeating the process on Y , it suffices to prove it forX = U . Thus

we may assume E is trivialized, i.e. E = X ×An
. The projection factors

X ×An → A×An−1 → X

So we may assume n = 1. We must show that [V ] is in p ∗AkX for any (k+1)-dimensional

subvariety V of E. We may replace X by the closure of p(V ) (cf. Proposition 4.12), so we

may assume X is a variety and p maps V dominantly to X . Let A be the coordinate ring of

X , K = R(X) the quotient field of A, and let q be the prime ideal in A[t] corresponding to

V . If dimX = k, then V = E, so V = P ∗[X]. So we may assume dim X = k + 1. Since V
dominatesX and V ̸= E, the prime ideal q ·K[t] is non-trivial; let r ∈ K[t] generate q ·K[t].
Then

[V ]− [div(r)] =
∑
i

ni[Vi],

for some (k+1)-dimensional subvarieties Vi of E whose projections toX are not dominant.

Therefore Vi = p−1(Wi), with Wi = p(Vi), so

[V ] = [div(r)] +
∑
i

nip ∗ [Wi],

as required. □

Remark 4.8 (Noetherian induction). We recall the concept of Noetherian induction. LetX be

a Noetherian topological space and P be a property of closed subsets of X . Assume that for

any closed subset Y of X , if P holds for every proper closed subset of Y , then P holds for

Y . (In particular, P must hold for the empty set.) Then P holds for X .

Theorem 4.9 (Proposition 2.5).

(1) If α is rationally equivalent to 0 on X , then c1(L) ∩ α = 0. Therefore c1(L) induces a
well-defined homomorphism

c1(L) ∩ • : AkX → Ak−1X

(2) (Commutativity) If L,L′ are line bundles on X , α ∈ AkX , then

c1(L) ∩ (c1(L
′) ∩ α) = c1(L

′) ∩ (c1(L) ∩ α)

in Ak−2X .
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(3) (Projection formula) If f : X ′ → X is a proper morphism, L a line bundle on X ,
α ∈ AkX

′, then
f∗(c1(f

∗L) ∩ α) = c1(L) ∩ f∗α

(4) (Flat pullback) If f : X ′ → X is flat of relative dimension n, L a line bundle on X ,
α ∈ AkX , then

c1(f
∗L) ∩ f ∗α = f ∗(c1(L) ∩ α)

in Ak−1+nX
′

(5) (Additivity) If L,L′ are line bundles on X , α ∈ AkX , then

c1(L⊗ L′) ∩ α = c1(L) ∩ α + c1(L
′) ∩ α

and
c1(L

∨) ∩ α = −c1(L) ∩ α

in Ak−1X .

Proposition 4.10 (Proposition 1.8). Let Y be a closed subscheme of a scheme X and U =
X − Y . Let i : Y → X, j : U → X be the inclusions. Then the sequence

AkY
i∗−→ AkX

j∗−→ AkU → 0

is exact for all k.

Corollary 4.11 (Corollary 3.1). The flat pullback

p∗ : AkX → Ak+eP(E)

is a split monomorphism.

Proof. An inverse is β 7→ p∗(c1(OE(1))
e ∩ β). □

Proposition 4.12 (Proposition 1.7). Let

X ′ X

Y ′ Y

g′

ff ′

g

be a cartesian square with g flat and f proper. Then g′ is flat, f ′ is proper, and for all α ∈ Z∗X

f ′
∗g

′∗α = g∗f∗α

in Z∗Y
′.
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