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1. Historical motivations

Recall the Ainf -cohomology constructed in [BMS18] and extended to the semistable case in
[ČK19]. Let C be a complete algebraically nonarchimedean field over Qp with residue field k,
and let X be a smooth proper scheme over Spf OC . Write X for the adic generic fiber of X. Then
we have a complex AΩX ∈ D(XZar) given by

AΩX := Lηµ(Rν∗Ainf,X),

where ν : Xproét → Xét is the canonical projection, Ainf,X := W (O♭+
X ) is the usual infinitesimal

period sheaf, and Lηµ is the décalage functor with respect to the distinguished element µ ∈ Ainf =
Ainf(OC♭). The Ainf -cohomology RΓAinf

(X) of X is then defined as

RΓAinf
(X) := RΓ(XZar, AΩX).

There are a few comparison results between RΓAinf
(X) and the other well-konw p-adic cohomology

theories.

Theorem 1.1 ([BMS18] Theorem 1.10). As above, assume X is proper smooth.

(1) Crystalline comparison: Let Xk denote the (reduced) special fiber of X. Then

AΩX⊗̂L
Ainf

W (k) ≃WΩ•
Xk /W (k).

(2) de Rham comparison:
AΩX ⊗L

Ainf
OC ≃ Ω•,cont

X /OC
,

where Ωi,cont
X /OC

= lim←−n
Ωi
(X /pn)/(OC /pn).

(3) Etale comparison:

AΩX ⊗Ainf
Ainf [1/µ] ≃ (Rν∗Ainf,X)⊗Ainf

Ainf [1/µ].
1
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However, it seems very hard to extend the results to non-smooth or non-proper cases. The
semistable proper case, which is the mildest non-smooth case, is treated in [ČK19], but the authors
have to do many complicated local computations to get the results. The other drawback of the
Ainf -cohomology is that there is no hope to have analogous results over bases like Zp if one works
within the framework of the Ainf -cohomology. This is because the base need to have all p-power
roots of unity to have the distinguished element µ.

The rescue of all these problems is the prismatic cohomology in [BS22]. For a p-adic formal
scheme X over a prism A (to be defined later), the (relative) prismatic cohomology ∆X/A, roughly
speaking, is the cohomology of the structure sheafO∆ on the relative prismatic site (X/A)∆. Modulo
some technical conditions, we have comparisons between the prismatic cohomology ∆X/A to all well-
known p-adic cohomology theories, and the p-adic formal scheme is not required to be smooth or
proper. The prismatic cohomology also allows a natural coefficient systems, namely, vector bundles
(or perfect complexes) over the structure sheaf O∆. This flexibility in coefficients gives rise to the
classification of crystalline representations and local systems in [BS23] and [GR24].

Let us summarize the main comparison results from [BS22] now.

Theorem 1.2. Let (A, I) be a bounded prism, and let X be a smooth p-adic formal scheme over
Spf A/I, where A/I has the p-adic topology.

(1) Crystalline comparison: If I = (p), then there is a canonical ϕ-equivariant isomorphism

RΓcrys(X/A) ≃ RΓ∆(X/A)⊗̂L
A,ϕA

A = ϕ∗
ARΓ∆(X/A)

of commutative algebras in D(A).
(2) Hodge-Tate comparson: If X = Spf R is affine, there is a canonical R-module isomorphism

Ωi
R/(A/I){−i} ≃ H i(RΓ∆(X/A)⊗L

A A/I).

Here for any A/I-module M , M{i} := M ⊗A/I (I/I
2)⊗i is the i-th Breuil-Kisin twist.

(3) de Rham comparison: There is a canonical isomorphism

RΓdR(X/(A/I)) ≃ RΓ∆(X/A)⊗̂L
A,ϕA

A/I = ϕ∗
ARΓ∆(X/A)⊗L

A A/I

of commutative differential graded algebras in D(A).
(4) Etale comparison: Assume A is perfect. Let Xη be the adic generic fiber of X over Qp treated

as a diamond. For any n ≥ 0, there is a canonical isomorphism

RΓét(Xη,Z /pn Z) ≃ (RΓ∆(X/A)⊗L
A (A/pn)[1/I])ϕ=1

of commutative algebras in D(Z /pn)

(5) Ainf comparison: Let C,OC be as above, and let A := Ainf = Ainf(OC) with I := ker(θ :
Ainf → OC). Then there exists a canonical ϕ-equivariant isomorphism

RΓAinf
(X) ≃ ϕ∗

ARΓ∆(X/Ainf).

The generality of the results for the prismatic cohomology does come with some costs. One of
the issues is one always needs to use homotopical algebra, such as derived completions, descent, and
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∞-categories. But fortunately, as we will see, most of the issues can be addressed very elegantly.
So there is no need to be scared by some unfamiliar words in this theory .

The plan of these notes is as follows: we will introduce the basics of the prismatic cohomology
based on [BS22], [BL22] and many other expository resources. In particular, we will go over the
main comparison theorems in even non-smooth case. After that, we will discuss the proof of a very
general form of Fontaine’s Ccrys-conjecture in [GR24]. We hope this can give people some sense on
what the prismatic cohomology can do.

2. δ-rings

The prismatic cohomology is formulated based on δ-rings, which are roughly rings equipped with
lifts of the Frobenius. In fact, the central objects, prisms, are δ-rings with additional structures and
properties.

Definition 2.1. A δ-ring is a pair (A, δ) consisting of a ring A and a map of sets δ : A → A
satisfying: for any x, y ∈ A

δ(0) = δ(1) = 0

δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y)

δ(x+ y) = δ(x) + δ(y)−
p−1∑
i=1

(p− 1)!

i!(p− i)!
xiyp−i = δ(x) + δ(y)− xp + yp − (x+ y)p

p
.

We will call such a map δ a p-derivation.
We also define map ϕ : A→ A by

ϕ(x) = xp + pδ(x).

The requirements on the map δ are meant to make ϕ a lift of Frobenius.. This is made precise
by the following lemma.

Lemma 2.2.

(1) The map ϕ : A → A is a ring homomorphism that induces the Frobenius map x 7→ xp on
A/pA.

(2) If A is p-torsion-free, then this construction gives a bijection between p-derivations δ and
Frobenius lifts on A.

Proof. Proof of (1) is straightforward. For (2), as A is p-torsion-free, the formula ϕ(f) = fp+pδ(f)
uniquely defines δ(f) given ϕ. So it suffices to show that δ so defined satisfies the condition in the
definition of δ-rings, which is easy. □

Example 2.3.

(1) Maybe the most important examples of δ-rings are the rings of Witt vectors. So suppose R is
a perfect Fp-algebra. Then the ring of Witt vectors W (R) admits a unique lift of Frobenius,
which makes W (R) a δ-ring. This also shows W (R) has a unique δ-structure.

(2) The ring Z with δ(n) = n−np

p is a δ-ring. This makes ϕ the identity map. In fact (Z, δ) is
the initial object in the category of δ-rings.
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(3) If A is a Z[1/p]-algebra, then any endomorphism ϕ of A is a δ-structure since the condition
that ϕ lifts the Frobenius on A/p is vacuously true.

(4) The free δ-ring Z{x} on a variable x is the polynomial ring Z[x0, x1, x2, . . . ] with x = x0
and δ(xi) = xi+1. In general, for any set S, we can form the free δ-ring Z{S} on S.

Definition 2.4. A morphism of δ-rings f : (A, δ) → (A′, δ′) is a ring homomorphism f : A → A′

such that f ◦ δ = δ′ ◦ f .
The category of δ-rings is denoted as Ringδ.

Next we demonstrate a connection between δ-structures and the length-2 Witt vectors W2. For
any ring A, W2(A) can be defined explicitly as follows: W2(A) = A × A as sets, and addition and
multiplication are defined by

(x, y) + (z, w) := (x+ z, y + w +
xp + zp − (x+ z)p

p
)

and
(x, y) · (z, w) = (xz, xpw + zpy + pyw).

We have a natural projection homomorphism ϵ : W2(A)→ A, (x, y) 7→ x. It is immediate from the
definition that a δ-structure on A is the same as a ring map w : A→W2(A) such that ϵ ◦w = idA.
More precisely, the correspondence is given by the relation w(x) = (x, δ(x)).

Lemma 2.5. The category Ringδ admits arbitary limits and colimits. The formations of limits and
colimits commute with the forgetful functor to Ring.

Proof. The limit of a diagram {Ai} of δ-rings is given by the limit limiAi of the underlying rings; one
checkes easily this gives a natural δ-structure on limiAi. For colimits, we use the W2-contruction
of δ-structures discussed above. For a diagram {Ai} of δ-ring, let wi : Ai → W2(Ai) be the
ring maps correponding to the δ-structures. Taking colimits gives colimAi → colimW2(Ai). The
functoriality of W2 gives a natural map colimiW2(Ai)→ W2(colimiAi). Composing the two maps
gives a map w : colimiAi →W2(colimiAi) whose composition with the projection to the first factor
W2(colimiAi) → colimiAi is the identity. This gives a δ-structure on colimiAi, which completes
the construction of the colimit of {Ai} as δ-rings. □

By general category theory, the forgetful functor Ringδ → Ring admits both a left adjoint and a
right adjoint. The right adjoint is the Witt vectors. For any set S, applying the left adjoint functor
to the polynomial ring Z[S] gives the free δ-ring Z{S}.

3. Derived completions

Before we introduce the central concept, prisms, we need to address some concepts in derived
algebra that are necessary to the prismatic cohomology.

Definition 3.1. Let A be a ring, and I a finitely generated ideal of A. An A-module M is classically
I-complete if the natural map M → limnM/InM is an isomorphism.

Note this in particular means M is I-adically separated, i.e.,
⋂

n I
nM = 0.

We mention a few issues with the notion of (classical) completion.
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(1) Classically complete A-modules do not form an abelian category.
(2) completion is neither right nor left exact in general. In fact, completion can be viewed as the

composition of tensor product, which is right exact, and inverse limit, which is left exact.
(3) The completion of a flat module may not be flat.
(4) If I is not required to be finitely generated, then the I-adic completion limnM/InM of a

module M may not be complete.
The point is that classical completion is not robust enough. We need a weaker but more flexible
notion of completion.

Definition 3.2. Let A be a ring, and I a finitely generated ideal of A. An A-module M is derived
I-complete if for f ∈ I,

HomA(Af ,M) = 0 and Ext1A(Af ,M) = 0.

Remark 3.3. Note Af admits a free resolution as an A-module:

0→ A[T ]
×(1−Tf)−−−−−−→ A[T ]

T 7→f−1

−−−−−→ Af → 0.

So for any A-module M , ExtnA(Af ,M) = 0, ∀n ≥ 2. The condition in the definition above can be
then reformulated as

ExtnA(Af ,M) = 0, ∀n ≥ 0.

Lemma 3.4.

(1) If M is classically I-complete, then it is derived I-complete.
(2) If M is derived I-complete, then the natural map M → limnM/InM is surjective.

Proof of (1). Suppose M is classically I-complete. We have

HomA(Af ,M) = HomA(Af , lim
n

M/InM) = 0.

To show that Ext1A(Af ,M) = 0, consider an extension

0→M → E → Af → 0.

For each n ≥ 0, pick en ∈ E mapping to f−n ∈ Af , and set δn = fen+1 − en ∈ M . Since M is
complete, we may define the elements

e′n = en + δn + fδn+1 + f2δn+2 + · · ·
which satisfy fe′n+1 = e′n. We thus obtain a map Af → E splitting the sequence by mapping f−n

to e′n. □

Corollary 3.5. Assumptions as above. M is classically I-complete if and only if M is I-adically
separated and derived I-complete.

Proof. Directly by Lemma 3.4. □

Next, we introduce one of the most important results for derived complete modules, the derived
Nakayama.
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Lemma 3.6 (Derived Nakayama). Let M be a derived I-complete A-module. Then M = 0 if and
only if M/IM = 0.

Proof. [Sta25, Tag 0G1U] □

The inclusion of the category of derived I-complete modules to the category of A-modules admits
a left adjoint M 7→ M̂ , called derived I-completion. The full subcategory of A-modules consisting
of derived I-complete modules form an abelian category.

We conclude this section by showing an explicit construction of derived I-completion in a simple
case.

Example 3.7. Let f ∈ A be a non-zerodivisor. The derived f -adic completion of M is given by

M̂ = Ext1A(A/fA,M)[1].

So if A = Z, I = (p), and M = Q /Z, then M̂ := Zp[1]

4. Prisms

Fix a prime p.

Definition 4.1. A prism is a pair (A, I) of a δ-ring A and an invertible ideal I of A such that

(1) A is derived (p, I)-complete.
(2) p ∈ (I, ϕ(I)) (equivalent to that after some localization of A, we have I = (d) with δ(d)

invertible in A).

We now define morphisms between prisms. But we first recall the following definition.

Definition 4.2. For a ring A with a finitely generated ideal I, an A-module M is I-completely
flat (resp. I-completely faithfully flat) if M/IM is a flat (resp. faithfully flat) A/I-module and
TorAi (A/I,M) = 0 for i > 0. The last condition is equivalent to that for any A/I-module N ,
TorAi (N,M) = 0 for i > 0. If M is (faithfully) flat, then it is I-completely (faithfully) flat.

Definition 4.3. A map f : (A, I) → (B, J) of prisms is a map of δ-rings f : A → B such that
f(I) ⊆ J . A map (A, I) → (B, J) of prisms is called (faithfully) flat if the underlying ring map
A→ B is (p, I)-completely (faithfully) flat.

Morphisms of prisms have the following rigidity property.

Lemma 4.4. If f : (A, I)→ (B, J) is a map of prisms, then f induces an isomorphism I⊗AB ≃ J .
In particular, IB = J .

Conversely, if (A, I) is a prism and A → B is a map of δ-rings with B being derived (p, I)-
complete, then (B, IB) is a prism exactly when B[I] = 0.

Example 4.5.

(1) (Crystalline prism) Let A be a (classically) p-complete p-torsion-free δ-ring with I = (p).
Then (A, (p)) forms a prism, usually called a crystalline prism. Note in this case, δ(p) =
p−pp

p = 1− pp−1 is invertible in A.

https://stacks.math.columbia.edu/tag/0G1U
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(2) (Breuil-Kisin prism) Suppose k is a perfect field of characteristic p. Let A = W (k)[[u]]
with δ(u) = 0 (equivalent to ϕ(u) = up) and I = (E(u)), where E(u) is an Eisenstein
polynomial. Note A/I ≃ OK via map u 7→ π, where OK is the ring of integers of a p-adic
field K totally ramified over W (k)[1/p], and π is a uniformizer in K. A prism of the form
(W (k)[[u]], (E(u))) is called a Breuil-Kisin prism.

(3) (q-crystalline prism) Let A = Zp[[q − 1]], which is the (p, [p]q)-adic completion of Z[q]. Let
I = ([p]q), where

[p]q =
qp − 1

q − 1
= 1 + q + · · ·+ qp−1

is the q-analog of p. Then (A, I) is a prism.
(4) (δ-ring with no prism structure) A δ-ring can have many prism structures, i.e., many

choices of I. But there are also δ-rings with no prism structure. Consider the local ring
W (Fp[x]/(x

2)) complete with respect to the p-adic topology. Its δ-structure comes from
the W2-construction discussed above. The ring W (Fp[x]/(x

2)) does not have any prism
structure: any non-zerodivisor d of W (Fp[x]/(x

2)) is a unit.

The names of the prisms in the example come from their appearance in the classical theory or
comparison theorems with the prismatic cohomology. For example, crystalline prisms are those over
which we can formulate the crystalline comparison, and the Breuil-Kisin prisms already appear in
the classical theory of Breuil-Kisin modules.

Definition 4.6. A prism (A, I) is

(1) bounded if A/I has bounded p∞-torsions. This implies A is classically (p, I)-complete.
(2) orientable if I is principal. A choice of the generator d of I is called an orientation.
(3) perfect if ϕ : A→ A is an isomorphism.
(4) transversal if A/I is p-torsion free.

The notions "bounded", "orientable", and "transversal" are mainly for technical reasons. We
will always try to reduce the problems to these three cases so we have better algebra results to use.
As shown below, perfect prisms are equivalent to perfectoid ring. We will also often try to reduce
to this case so that we can use perfectoid geometry, such as the tilting equivalence. Note also the
definition of perfect prisms is independent of the ideal I. Here we take the defintion of perfectoid
rings as in [BMS18, §3]

Definition 4.7. A ring S is perfectoid if and only if it is π-adically complete for some element
π ∈ S such that πp divides p, the Frobenius map ϕ : S/pS → S/pS is surjective, and the kernel of
θ : Ainf(S)→ S is principal.

Example 4.8. The following rings are examples of perfectoid algebras. First, any perfect Fp-
algebra is perfectoid (where we take π = 0); here, perfect means that the Frobenius map is an
isomorphism. Moreover, the p-adic completion Zcycl

p of Zp[ζp∞ ] is perfectoid; one may also take
the p-adic completion of the ring of integers of any other algebraic extension of Qp containing the
cyclotomic extension. Another example is Zcycl

p ⟨T 1/p∞⟩, and there are many obvious variants.
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Remark 4.9. Note this definition is slightly more general than the one in [SW20], which has a
stronger restriction on the topology on S. For example, the discrete ring Fp is not considered as a
perfectoid algebra in [SW20].

Lemma 4.10. There is an equivalence of categories:
• The category of perfectoid rings R.
• The category of perfect prisms (A, I).

The functors are R 7→ (Ainf(R), ker θ) and (A, I) 7→ A/I, respectively.

Proof. Let R be a perfectoid ring. Since Ainf(R) is just the Witt vector construction on the tilt R♭,
which is perfect and in characteristic p, Ainf(R) is a perfect δ-ring, i.e., with a natural δ-structure and
ϕ being an isomorphism. By the general results in p-adic Hodge theory, Ainf(R) is also classically
(p, ker θ)-complete, and hence also derived (p, ker θ)-complete. Thus, we get a prism.

Conversely, we claim the following properties of perfect prisms (A, I):

(1) I is principal and generated by a distinguished element d, i.e., δ(d) is a unit in A.
(2) Any perfect prism (A, I) is bounded, and thus classically (p, I)-complete.

For a proof, see [BS22, Lemma 3.8] Since A is a perfect δ-ring, the Frobenius on R/p with R :=
A/d = A/I is surjective. Since A is perfect, one can show A ≃ W (S) for some perfect Fp-algebra
S. Via this isomorphism, we can write d = [a0] + pu for some unit u ∈ A. Let π ∈ R be the image
of [a1/p0 ]. Then πp|p in R. This shows R is perfectoid if R is also classically p-adically complete. □
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