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Preface

Projective algebraic curves or abelian varieties are defined as the vanishing locus of
finite families of homogeneous polynomials in a projective space fulfilling certain
conditions. Except for elliptic curves or hyperelliptic curves, it is difficult to pin
down equations which give rise to curves or abelian varieties.

Over the complex numbers one has analytic tools to construct and to uniformize
such objects. For example, every smooth curve of genus g ≥ 2 has a representation
Γ \H, where H is the upper half-plane and Γ ⊂ Aut(H) is a group acting on H.
Similarly, every compact complex Lie group is of type C

n/Λ, where Λ is a lattice
in C

n; the abelian varieties among the compact complex Lie groups can be charac-
terized via polarizations. Moreover, one can construct curves and abelian varieties
in this way via algebraization of the analytic quotients. Thus, the geometry and the
construction of such objects are completely clarified.

Over a complete field K with respect to a non-Archimedean valuation, one can
expect similar tools as in the complex case once a good theory of holomorphic
functions has been established.

Historically, the theory started with the simplest case of an elliptic curve over K .
One can define the elliptic curve by a minimal Weierstraß equation with integral co-
efficients. If this equation reduces to an elliptic curve over the residue field, we say
that the given elliptic curve has good reduction. In this case there is no uniformiza-
tion at all; such curves can be regarded as liftings of elliptic curves defined over the
residue field. On the other hand, if the Weierstraß equation reduces to a cubic with
an ordinary double point, then the situation looks better from the viewpoint of uni-
formization. As an abstract group its K-rational points are represented by a quotient
K×/qZ for some non-integral q ∈K× without any further structure. Originally Tate
wanted to construct “analytic” quotients Gm,K/q

Z of the multiplicative group of a
non-Archimedean field K by the lattice qZ; a construction which cannot be carried
out in the category of ordinary schemes directly.

Thus, there was the desire to create a theory of “analytic spaces” over a non-
Archimedean field which allows such constructions. This was exactly the incen-
tive of Tate to understand elliptic curves with multiplicative reduction by “analytic”

vii



viii Preface

means. In 1961 Tate gave a seminar at Harvard where he developed a theory of rigid
analytic spaces; cf. [92].

Later on, using methods from formal algebraic geometry, Mumford generalized
the construction of Tate’s elliptic curve to curves of higher genus [75] – nowa-
days called Mumford curves – as well as to abelian varieties with split torus reduc-
tion [76]. Moreover, Mumford’s constructions even work over complete Noetherian
rings of higher dimension.

The relationship between formal algebraic geometry and rigid geometry was
clarified by Raynaud in [80]. As a sort of reverse, Raynaud worked on the rigid
analytic uniformization of abelian varieties and their duals over non-Archimedean
fields [79].

The ideas of Mumford and Raynaud were picked up by Chai and Faltings and
generalized to abelian varieties with semi-abelian reductions over fields of fractions
of complete Noetherian normal rings of higher dimension. Whereas in the rigid
analytic context, the periods of the uniformization enter the scene quite naturally
even in the absence of a polarization, Chai and Faltings made the observation that the
periods are encoded in the coefficients of the theta function associated to a principal
polarization, in analogy to the complex case. So, for them it was not necessary to
invoke rigid geometry.

Nevertheless, rigid geometry is a means to unfold the geometric ideas behind
the formal constructions used by Mumford, Chai and Faltings. The results on uni-
formization and construction provide a method to parameterize polarized abelian
varieties and their semi-abelian degeneration in a universal way. So, they became
the essential ingredients for the construction of a toroidal compactification of the
moduli space of polarized abelian varieties by Chai and Faltings; cf. [27].

This book thoroughly treats the main results on rigid geometry and their appli-
cations as they grew out of the notes of Tate. The focus of this book lies on the
arithmetic geometry of curves and their Jacobians over non-Archimedean fields.

After an introduction to rigid geometry in Chap. 1, we directly concentrate on
the main topic. Following ideas of Drinfeld and Manin [64], Mumford curves are
treated in Chap. 2 via classical Schottky uniformization. Their Jacobians are rigid
analytic tori which are constructed by automorphic functions. This is explained on
an elementary level. Thus, we achieve the rigid analytic counterpart of the fasci-
nating theory of Riemann surfaces and their Jacobians. The remainder of the book
(Chaps. 3 to 7) deals with smooth rigid analytic curves and their semi-stable re-
ductions or with proper smooth rigid analytic group varieties and their semi-abelian
reductions. The intention here is to comprehensively present the rigid analytic uni-
formization and construction of curves and their Jacobians or of abelian varieties
over non-Archimedean fields. Moreover, the structure of abeloid varieties, which
are the counterparts of compact complex Lie groups, is presented in details.

The reader is assumed to be familiar with basic algebraic geometry in the style of
Grothendieck and with standard facts about abelian varieties. The reader can consult
[15, Chaps. 2 and 9], [60] and [74].

Since there are several books which deal with the foundations of rigid geome-
try, cf. [1, 9, 10], there is no need to develop it again. Therefore, the prerequisites
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on classical rigid geometry are only surveyed in Chap. 1 without giving proofs. In
the same way the basic results on the relation between formal and rigid geome-
try are handled in Chap. 3, as they are presented in [14] and were revisited a few
years ago in [1]. For the basic theory of formal and rigid geometry the reader may
also consult [9] where it is carefully explained. There are other foundations of non-
Archimedean analysis by Berkovich [6] and Huber [47], but these are not involved
in this book. So, we concentrate on the main applications which are not touched
or only partially studied in other books; cf. [30] and [35]. Compared to the existing
literature, many proofs have been substantially improved and some new results have
been added.

It is a pleasure for me to express my gratitude to my students Sophie Schmieg
and Alex Morozov for proofreading and comments. Also I would like to thank col-
leagues, including Siegfried Bosch, Barry Green, Urs Hartl, Dino Lorenzini, Florian
Pop, Stefan Wewers, for discussions and valuable suggestions. I am especially in-
debted to Ernst Kani, who helped me to edit the manuscript.

In particular I am glad to acknowledge here the extraordinary help from Michel
Raynaud, who contributed many ideas to this book.

Werner LütkebohmertMünster, Germany
September 2015
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Introduction

Given a smooth projective curve over the field of fractions K of a discrete valuation
ring R, one can find equations with coefficients in R which define the curve. Hereby
it can happen that even the best possible choice of equations does not behave well
under reduction to the residue field of R in the sense that the reduction of the equa-
tions no longer define a smooth curve over the residue field of R. After a suitable
extension of R two types of an optimal reduction occur; either the reduction is a
smooth curve or it is a configuration of smooth irreducible curves of arbitrary genus
intersecting in ordinary double points.

In the first case, there is neither a uniformization nor a construction principle; but
from the arithmetic point of view one has the best possible situation. In the second
case, rigid geometry can analyze the structure and describe how such situations
show up and how the combinatorial configuration is reflected by the structure of the
associated Jacobian.

Whereas for the case of elliptic curves a simple theory of analytic functions in
one variable would suffice, this is not the case for curves of higher genus. A good
theory of rigid geometry should be general enough to cover analogs of Riemann
surfaces and the analytification of schemes of finite type over K in the sense of
Serre’s Géométrie Algébrique et Géométrie Analytique.

The problem is that the topology associated to a non-Archimedean valuation of a
field K is totally disconnected, and so the functions, which are only locally analytic,
fail to satisfy global properties like the identity principle and the global expansion
on polydiscs. Therefore, one has to require extra structures to define a (good) notion
of holomorphic functions.

In 1961 Tate introduced such an extra structure and overcame the disconnected-
ness of the topology of a non-Archimedean field. Thus, he saved the analytic con-
tinuation and the identity principle over totally disconnected ground fields, hence
making the impossible possible, as Remmert said. Tate himself writes at the begin-
ning of [92, §10], where he introduces rigid analytic spaces, that his intent is to
“follow fully and faithfully a plan furnished by Grothendieck”. Later on, the the-
ory was worked out by the school of Grauert and Remmert and by Kiehl; see the
monograph [10].

xiii



xiv Introduction

Tate’s uniformization of elliptic curves with non-integral j -invariant was pre-
sented in detail by Roquette [85]. A certain generalization of Tate’s construction of
elliptic curves to the case of higher dimensions was given by Morikawa [71].

Then in the early 1970’s Tate’s uniformization of elliptic curves was generalized
by Mumford in two ways, on the one hand to curves of higher genus having split
degenerate reduction [75] and on the other hand to abelian varieties of arbitrary di-
mensions with multiplicative reduction [76]. Furthermore, by adapting the classical
construction of Schottky to rigid geometry, Drinfeld und Manin studied an analytic
construction of projective algebraic curves in [64], which are quotients of domains
in the projective line by a finitely generated free subgroup of PGL(2,K). Nowa-
days these curves are called Mumford curves. It is worth mentioning that Mumford
worked over complete Noetherian rings and constructed families of curves and of
abelian varieties of arbitrary dimensions [76], whereas Raynaud studied the rigid
analytic uniformization of abelian varieties over non-Archimedean fields [79].

Over a non-Archimedean field with a non-discrete valuation, Mumford curves
and totally degenerating abelian varieties were thoroughly investigated from the
rigid analytic point of view by Gerritzen [32] and [33] with the main emphasis on
the work of Drinfeld and Manin. The more general case of smooth projective curves
and of abelian varieties was settled by Bosch and the author in [11–13].

It is worth noting that Tate’s elliptic curve was an important tool for Deligne and
Rapoport for studying the points at infinity of the arithmetic moduli scheme of el-
liptic curves [22]. Raynaud gave a geometric construction of the general Tate curve
over the power series ring Z[[q]] in terms of formal schemes; cf. [22, Sect. VII].
While Mumford worked exclusively in the framework of formal algebraic geom-
etry, Raynaud presented a program [80], which explained the connection between
formal and rigid geometry. Hereby he explains the geometry behind the construc-
tions of Mumford. Details of Raynaud’s program were worked out by Mehlmann
[67] as well as by Bosch and the author in [14]. It should be mentioned that the uni-
formization of semi-abelian varieties is a basis for the construction of the toroidal
compactification for the moduli space of abelian varieties by Chai and Faltings [27];
cf. the discussion in Sect. 6.6.

The main purpose of this book is to rigorously analyze the uniformization of
projective smooth curves and their Jacobians over a non-Archimedean field. Fur-
thermore, we will relate the canonical polarization on the Jacobian to the geometric
data given by the uniformization of the curve. The rigid analytic topology reflects
the combinatorial configuration of the irreducible components of the stable reduc-
tion, and hence the multiplicative part of the reduction of its Jacobian is also related
to it. One is automatically led to the analysis of abelian varieties and finally to abe-
loid varieties; cf. [62]. The rigid uniformization of abelian varieties is much easier
to handle and does not require the technical work of Sects. 3.6 and 7.5. The results
on abeloid varieties were conjectured by Raynaud who also gave some hints on the
strategy for the proof. All these results have their roots in the foundation of rigid
geometry which was proposed by Raynaud in 1974 at the “Table ronde d’analyse
non-archimedienne”; cf. [80]. Of course, most of the applications are concerned
only with the case of abelian varieties, but nevertheless one wants to see the com-
plete picture of rigid uniformization for curves and for proper rigid analytic groups
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over a non-Archimedean field as it exists in complex analysis. An overview of the
rigid analytic theory can also be found in [63].

Before discussing the contents of the book, it is worthwhile to remind the reader
of the theory over the complex numbers. Over the complex numbers C, a compact
Riemann surface X of genus g = 1 has C as a universal covering and Z⊕ Zτ as
Deck transformation group, so X � C/(Z⊕ Zτ). Moreover, X can also be repre-
sented as a quotient X ∼= C

×/M of the affine torus by a multiplicative lattice M of
rank 1, by applying the map z �→ exp(2πız).

If X has genus g ≥ 2, a compact Riemann surface is hyperbolic. Its uni-
versal covering is the hyperbolic half plane H and X admits a representation
X ∼=H/π1(X), where π1(X)⊂Aut(H)= SL(2,R)/{±1} is generated by 2g gener-
ators α1, . . . , αg,β1, . . . , βg with a single relation

∏g

i=1[αi,βi] = 1. Due to Abel’s
theorem the Jacobi variety of a compact Riemann surface has a canonical represen-
tation as a complex torus

JacX = Γ
(

X,Ω1
X/C

)′
/H1(X,Z),

where Γ (X,Ω1
X/C

)′ is the dual of the vector space of the global differential 1-forms,
and where the cycle group H1(X,Z) is embedded into the dual by integrals along
the closed cycles. The cup-product on cycles leads to Riemann’s period relations
which endow JacX with a polarization. Thus, JacX becomes a proper algebraic
group variety; i.e. an abelian variety.

Every complex compact Lie group is isomorphic to C
g/Λ, where Λ ⊂ C

g is a
lattice of rank 2g. The algebraic ones among them are such Lie groups which admit
a polarization. The latter means that there exists a positive definite hermitian form
H on C

g such that its imaginary part Im(H) takes values in Z on the lattice.
For the special class of Mumford curves one has the complete list of analogous

results as in the complex case of Riemann surfaces. These results can be achieved by
the methods of classical rigid geometry. The classical theory of rigid geometry was
worked out in the late 1960’s by researchers inspired from the analogy in complex
analysis. This somehow restrictive view on rigid geometry is completely sufficient
to understand Tate’s elliptic curve from the geometric point of view, whereas Tate
originally studied it in the context of function fields; cf. Sect. 2.1.

Here Tate’s elliptic curves appear in the following way. One considers the field
of fractions of the ring of Laurent series

∑

n∈Z cnζ n ∈ K[[ζ,1/ζ ]], which con-
verge globally on K×, and its subring of functions, which satisfy the equation
f (qζ ) = f (ζ ) for a fixed non-integral q ∈K×. The latter is a function field F(q)

over K of genus 1. Moreover, two such function fields F(q1) and F(q2) are K-
isomorphic if and only if q1 = q2.

More generally, one can also deal with discontinuous group actions Γ on sub-
domains Ω of the projective line in the style of Schottky [86]. The construction
of the quotient Γ \Ω and the construction of their Jacobians can be carried out in
the framework of classical rigid geometry as well, because only simple subdomains
of the projective line and of the affine torus G

g
m,K are involved. The advantage of

rigid geometry is that the construction of the quotient can be carried out by geo-
metric means, whereas Mumford explained a construction of such quotients in the
framework of formal schemes, however in a much more general context.
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Chapter 2 can thus be viewed as a counterpart of Riemann surfaces and their Ja-
cobians. We provide the full picture of Mumford curves and their Jacobians which
are rigid analytic tori. We also present the duality theory of rigid analytic tori. This
enabled us to verify Riemann’s period relations and even Riemann’s vanishing the-
orem. The theory of vector bundles on Mumford curves due to Faltings [26] is not
touched. Also, we do not present the result of Herrlich [46] on the size of the auto-
morphism group of a Mumford curve, whose cardinality is surprisingly bounded by
12(g − 1) if g ≥ 2. We remind the reader that only a “small” part of the family of
smooth projective curves consists of Mumford curves.

The remainder of the book deals with smooth rigid analytic curves and their semi-
stable reduction and with proper smooth rigid analytic group varieties. The main
new feature are rigid analytic spaces, which contain open subvarieties admitting
smooth formal R-models over the valuation ring R with a non-rational reduction.
Since such subvarieties behave like simply connected domains from the geometric
point of view, formal analytic structures become unavoidable to understand their
geometry. Raynaud’s result on the relationship between rigid spaces and formal R-
schemes of topological finite presentation paves the way to go beyond Mumford
curves. Thus, a main point is to clarify how subdomains with good reduction are
glued to build a rigid analytic space. The stable reduction theorem in Chap. 4 shows
that, in the case of curves, the connection between such parts are defined via annuli.
In the case of groups the situation is given by polyannuli of a certain type.

In Chap. 3 we explain the foundation of formal and rigid geometry. The cen-
tral result is Theorem 3.3.3 of Raynaud. It states that any quasi-compact, quasi-
separated rigid analytic space is the generic fiber of an admissible formal scheme.
As a major result we show the Relative Reduced Fiber Theorem 3.4.8 that a flat
morphism of affinoid spaces with geometrically reduced fibers admits a formal R-
model with reduced fibers after a suitable base change. This is a deep result and has
a long history. If the base field K is the field of fraction of discrete valuation ring,
then this was settled by Epp [25]. If K is an algebraically closed non-Archimedean
field, this was proved by Grauert and Remmert [36]. Bosch, Raynaud and the author
treated the relative case [14, Part IV]. In particular, this is a first step to provide a
semi-stable R-model of a curve in Theorem 4.4.3 and of a curve fibration in Theo-
rem 7.5.2 as well.

The last Sect. 3.6 is designed to provide new methods on approximation which
are only used in Chap. 7. This part is deeply related to the essence of properness
of rigid analytic spaces and to Elkik’s method on approximation of solutions of
equations over restricted power series.

One of the main objectives of Chap. 4 is the description of the “boundary” of
the formal fiber of a formal analytic curve in Proposition 4.1.11. It gives a precise
description of how the interior of the formal fiber is connected to the remaining
part of a curve. This is a cornerstone of the stable reduction theorem for projective
curves in Theorem 4.4.3. It is remarkable to point out that we do not make use of
the desingularization result of surfaces [59] as the usual proofs do in [5] or [21].

In Sect. 4.2 the result on the boundary is used to establish a genus formula in
Proposition 4.2.6, which relates the genus of a projective rigid analytic curve to
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geometric data of the reduction. This formula allows us to define the genus of a
formal fiber, which serves as a measure for the quality of the singularity in the re-
duction. From these results one deduces in Sect. 4.3 the stable reduction theorem
for smooth projective curves by studying the behavior of meromorphic functions.
Blowing-up and blowing-down of components in the reduction can easily be han-
dled by changing formal analytic structures. Finally, the stable reduction theorem
leads in Sect. 4.6 to a construction of a universal covering of a curve. In the case of
split reduction the universal covering can be embedded into the projective line and
its deck transformation group is a subgroup of PGL(2,K); this is, in fact, a Schottky
group.

Chapter 5 begins with a survey on Jacobians of smooth projective curves with
an emphasis on the autoduality of Jacobians. Moreover, for our purpose it is nec-
essary to analyze the generalized Jacobian of a semi-stable curve ˜X, especially its
representation as a torus extension of the Jacobian of the normalization ˜X′ of ˜X.
The relationship between the torus part and the cycle group H1(˜X,Z) is clarified in
Proposition 5.2.3.

In the last part of Chap. 5 we consider a smooth projective curve XK with a semi-
stable reduction ˜X. In Sect. 5.3 it is shown that the generalized Jacobian ˜J := Jac˜X
has a lifting JK as an open subgroup of JK := JacXK and JK has a smooth formal
R-model J with semi-abelian reduction. The formal group scheme J is a formal
torus extension of a formal abelian R-scheme B with reduction ˜B = Jac˜X′. The
generic fiber JK of J is the largest open subgroup of JK , which admits a smooth
formal model; this is discussed in Sect. 5.4 in a more general context.

The uniformization of JK is obtained in the following way. The maximal torus
˜T of ˜J lifts to a formal torus T of J . The inclusion T K ↪→ JK of the generic fibers
extends to a morphism TK → JK from the associated affine torus TK to the Jaco-
bian JK . The push-out ̂JK := TK �T JK is a rigid analytic group, which contains
JK as an open rigid analytic subgroup, and the inclusion extends to a surjective
group homomorphism ̂JK → JK . The kernel of the latter map is a lattice M in ̂JK
and makes JK = ̂JK/M into a quotient of the “universal covering” ̂JK . The repre-
sentation JK = ̂JK/M is called Raynaud representation. Since any abelian variety
is isogenous to a subvariety of a product of Jacobians, one can transfer the results to
abelian varieties. For example, this implies Grothendieck’s semi-abelian reduction
theorem for abelian varieties; cf. [42].

The central objective in Chap. 6 is to show the algebraicity of the Raynaud exten-
sion ̂JK . A Raynaud extension is an affine torus extension of the generic fiber of a
formal abelian R-scheme. In Sect. 6.1 we collect basic facts on Raynaud extensions
and representations. For solving the main problem, one studies line bundles on a
Raynaud extension T →E→ B with M-actions, where E is the torus extension of
a formal abelian scheme B and where M is a lattice in E. For this, one introduces
cubical structures on line bundles; necessary details are explained in Sect. A.3. This
leads in Sect. 6.3 to the representability of the Picard functor PicτA of translation
invariant line bundles on the Raynaud representation A := E/M ; the representing
space A′ is called the dual of A.
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In Theorem 6.3.3 it is shown thatA′ has the Raynaud representationA′ =E′/M ′.
Here E′ is the Raynaud extension given by the morphism M→ B = B ′′ from the
lattice M ⊂E to B which is equal to the dual of B ′. The map M ′ →E′ is given via
the canonical pairing between M and the character group M ′ of T . The algebraicity
of the Raynaud extension ̂JK is shown in Theorem 6.4.4, where the relationship of
the polarization on JK and the data on the Raynaud representation are considered.
Of special interest is the canonical polarization of JK . In Sect. 6.5 we discuss the
theta polarization and its relation to the canonical pairing on the homology group
H1(˜X,Z)= Γ/[Γ,Γ ].

In the final Chap. 7 we show that every abeloid variety AK over an algebraically
closed field admits a Raynaud representation in Theorem 7.6.4. There is also a rep-
resentation theorem for bounded rigid analytic group varieties in Corollary 7.6.2.
The latter is certainly the most difficult part of the book, since it achieves a much
deeper result than the one of Grothendieck on the semi-abelian reduction of abelian
varieties [42].

The proof requires advanced techniques, but it does not make use of Jacobian
varieties. It mainly relies on the stable reduction theorem for smooth curve fibrations
which are not necessarily proper. Therefore, one can cover the given group AK by
a finite family of such curve fibrations.

In a second step one deduces from such a covering the largest open subgroup AK ,
which admits a smooth formal R-model by well known techniques on group gen-
eration dating back to A. Weil; cf. Sect. 7.2. The formal group A is a formal torus
extension of a formal abelian scheme B .

The prolongation of the embedding T ↪→A of the formal torus to a group homo-
morphism of the associated affine torus TK →AK follows from the approximation
theorem in Theorem 3.6.7 by a careful analysis of the convergence of the morphism
T →A, as we will see in Sect. 7.3. Thus, one obtains a group homomorphism from
the push-out ̂AK := TK �T A to AK .

The surjectivity of the map ̂AK → AK is shown by studying the map from the
curve fibration to AK . More precisely, the torus part is related to the double points
in the reduction of the stable curve fibration; cf. Sect. 7.4.

Until now, we were concerned only with the case where the base field is alge-
braically closed. But it is not difficult to see that the whole theory can be carried out
after a suitable finite separable field extension if one starts with a non-Archimedean
field which is not algebraically closed.

If the non-Archimedean field in question has a discrete valuation, there is a notion
of a formal Néron model; cf. [16]. Then our result implies a semi-abelian reduction
theorem for such Néron models. As a further application one can deduce that any
abeloid variety has a dual; i.e., the Picard functor of translation invariant line bundles
on AK is representable by an abeloid variety.



Chapter 1
Classical Rigid Geometry

In this chapter we give a survey of rigid geometry over non-Archimedean fields.
The foundation of the theory was laid by Tate in his private Harvard notes dat-
ing back to 1961, which were later published in Inventiones mathematicae [92].
Here we explain the main results from the classical point of view as studied in
the late sixties; for proofs we refer to [9]. At that time rigid geometry was mainly
inspired by complex analysis. Fundamental results were achieved by Kiehl, who
introduced the Grothendieck topology and proved the basic facts concerning coher-
ent sheaves. Moreover, Kiehl makes Serre’s theory [87] of Géométrie Algébrique
et Géométrie Analytique available for rigid analytic geometry, often referred to as
GAGA; cf. [56].

We present the essential results on Tate algebras and affinoid spaces which are
the building blocks of rigid geometry. By means of the Grothendieck topology we
define rigid analytic spaces. Kiehl’s results on coherent sheaves are stated without
proofs. As a general reference we refer to [10] and the more recent account [9]. We
always assume that K is a non-Archimedean field in the sense of Definition 1.1.1
unless otherwise stated.

1.1 Non-Archimedean Fields

In this section we will collect the basic definitions and results which are taken from
various books; especially from [10]. Most of them are well documented, so we will
not present their proofs. The proofs of more special results will be presented or
delegated to the literature by exact references.

Definition 1.1.1. Let K be a field. A map | · | :K→R is called a non-Archimedean
absolute value if for all a, b ∈K the following holds:

(i) |a| ≥ 0,
(ii) |a| = 0 if and only if a = 0,
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2 1 Classical Rigid Geometry

(iii) |ab| = |a| · |b|,
(iv) |a + b| ≤max{|a|, |b|}.
We always assume that the absolute value is not the trivial one.

The subset R := {a ∈K; |a| ≤ 1} is called the valuation ring of K with respect
to the given absolute value | · |. Then R is a ring with Z · 1K ⊂R. Its residue field is
k :=R/mR , where mR ⊂R is the maximal ideal of R.

A non-Archimedean field is a pair (K, | · |) consisting of a field K and a non-
Archimedean absolute value such that K is complete with respect to the absolute
value | · |.

If R is a discrete valuation ring with field of fractions K , its valuation v :R→ Z

induces a non-Archimedean absolute value on K by defining

|x|e := e−v(a) for x ∈K,

where e is a real number with e > 1. Thus, the set R is the set of the elements of K
with absolute value less or equal to 1.

Example 1.1.2. Fix a prime number p. Then

|a|p :=
{

0 if a = 0,

p−r if a = pr m
n

with r,m,n ∈ Z and p 
 | mn,
is a non-Archimedean absolute value on Q. The corresponding completion Qp is
called the field of p-adic numbers. Let K/Qp be a finite extension and NK/Qp

the
norm of K over Qp . Then

|a| := [K:Qp ]
√

∣

∣NK/Qp
(a)
∣

∣

p

is the unique extension of | · |p to K . It is a non-Archimedean absolute value on K
and K is complete with respect to this value.

Since a non-Archimedean field is Henselian, the absolute value of K extends to
an absolute value on every finite field extension L/K in a unique way, and hence
it extends to an absolute value on the algebraic closure and on the completion of
the algebraic closure of K . The completion of the algebraic closure is algebraically
closed due to the continuity of roots.

For K =Qp the completed algebraic closure of Qp is denoted by Cp; it is com-
plete and algebraically closed. Cp is the p-adic analogue of C.

If K is the complete algebraic closure of a non-Archimedean field K , then
|K×| =√|K×| is the divisible hull of the value group |K×| of K .

One easily shows that the strong inequality in Definition 1.1.1(iv) implies the
following.
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Lemma 1.1.3. Let K be a non-Archimedean field. Then the following holds:

(a) A series
∑∞

ν=0 aν with elements aν ∈ K converges in K if and only if
lim
ν→∞aν = 0.

(b) If α,β ∈K and |β| 
= |α|, then |α + β| =max{|α|, |β|}.

Furthermore, the strong inequality induces a very specific topology.

Remark 1.1.4. Let K be a non-Archimedean field. Let K be an algebraic closure
of K . A closed disc of K is a subset of type

D(a, r)+ := {z ∈K; |z− a| ≤ r
}

with a ∈K, r ∈R
×.

An open disc is a subset of type

D(a, r)− := {z ∈K; |z− a|< r
}

with a ∈K, r ∈R
×.

Then the following holds:

(a) If D1,D2 are discs with D1 ∩D2 
= ∅, then D1 ⊂D2 or D2 ⊂D1.
(b) Any open disc D(a, r)− is open and closed.
(c) The topological space K is totally disconnected.

One has to be careful with the notions open and closed discs, because they do
not have the same behavior as in the usual topology. Quite often we will restrict
the radius r to belong to

√|K×|. Then a suitable power rn belongs to the value
group |K×|. In this case the disc is called affinoid. Only in these cases D(a, r)+
is an affinoid space; cf. Example 1.3.2(e). Therefore, we will usually consider only
radii r belonging to

√|K×|. Moreover, a disc D(a, r) is isomorphic to the unit disc
in the category of rigid analytic spaces over K if and only if r belongs to the value
group |K×|.

As a consequence of the total disconnectedness, we remind that the definition
of a holomorphic function via local representability as a convergent power series
does not lead to a well behaved theory of analytic functions. In fact, the identity
principle would fail, and hence such a definition would not ensure meaningful global
properties.

1.2 Restricted Power Series

As was pointed out at the end of the last section, it is necessary to introduce an extra
topological structure in order to obtain a well behaved theory of holomorphic func-
tions. More precisely, such a theory is based on two fundamental principles. Firstly,
two holomorphic functions on a polydisc which coincide on some non-empty open
subset should be equal. Secondly, every holomorphic function on a polydisc should
be representable by a power series which converges globally on the whole polydisc.
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The building blocks of rigid geometry over a non-Archimedean field K are the
Tate algebras

Tn :=K〈ξ1, . . . , ξn〉 :=
{

∑

i∈Nn

aiξ
i ∈K[[ξ1, . . . , ξn]]; lim|i|→∞ai = 0

}

and their residue algebras, the so-called affinoid algebras A := Tn/a, where a is
an ideal of Tn. The K-algebra Tn is the subset of the formal power series which
converge on the unit polydisc.

Proposition 1.2.1. With the above notations we have:

(a) Tn is Noetherian, factorial, regular and Jacobson.
(b) The units of Tn are of the following type

T ×n =
{

∑

i∈Nn

ciξ
i ∈ Tn; |c0|> |ci | for all i 
= 0

}

.

(c) Tn is a K-Banach algebra with respect to the Gauss norm

∣

∣

∣

∣

∣

∞
∑

i=0

aiξ
i

∣

∣

∣

∣

∣

:=max
{|ai |; i ∈N

n
}

.

(d) Each ideal a⊂ Tn is closed with respect to the Gauss norm.
(e) The residue algebra A := Tn/a is Noetherian and Jacobson.
(f) The residue morphism α : Tn → A induces a norm | · |α on A, which takes

values in the value group |K| of K . The Banach structure does not depend on
the representation of A as a residue K-algebra of some Tn.

(g) Any morphism of affinoid K-algebras is continuous.

These properties are mainly a consequence of the Weierstraß division theorem
for restricted power series; cf. [9, §2.1–3].

Definition 1.2.2. An element f ∈ Tn is called ξn-distinguished of order s ∈N if f
has an expansion f =∑∞ν=0 gnξ

ν ∈ Tn−1〈ξn〉 with coefficients gν ∈ Tn−1, where gs
is a unit in Tn−1 and |gs | = |f |> |gν | for ν ≥ s + 1.

A monic polynomial ω ∈ Tn−1[ξn] which is ξn-distinguished of order degξn ω as
an element of Tn is called a Weierstraß polynomial.

Remark 1.2.3. In the situation of Definition 1.2.2 we have:

(a) f is a unit if and only if s = 0.
(b) For every f ∈ Tn with f 
= 0 there exists a K-automorphism σ of Tn of type

σ(ξn)= ξn and σ(ξν)= ξν + ξρνn with suitable ρν ∈N for ν = 1, . . . , n−1 such
that σ(f ) is ξn-distinguished.
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Theorem 1.2.4 (Weierstraß division). Let g ∈ Tn be ξn-distinguished of order s.
Then for every f ∈ Tn there exists an element q ∈ Tn and a polynomial r ∈ Tn−1[ξn]
of degree r < s such that f = qg + r .

The elements q and r are uniquely determined by these conditions. Furthermore,
we have

|f | =max
{|q| · |g|, |r|}.

Theorem 1.2.5 (Weierstraß preparation). If g ∈ Tn is ξn-distinguished of order s,
then there exists a unique Weierstraß polynomial ω in Tn−1[ξn] of degree s and a
unit e ∈ T ×n such that g = e ·ω.

Corollary 1.2.6 (Noether normalization). If a⊂ Tn is a proper ideal, then there
exists a K-algebra homomorphism Td → Tn/a which is a finite monomorphism.
The integer d equals the dimension of Tn/a.

Corollary 1.2.7 (Hilbert’s Nullstellensatz). If n⊂ Tn is a maximal ideal, then Tn/n
is a finite field extension of K .

Moreover, n is generated by the polynomials in m := n ∩K[ξ1, . . . , ξn]. The m-
adic completion of K[ξ1, . . . , ξn] coincides with the n-adic completion of Tn. The
extension K[ξ1, . . . , ξn]→K〈ξ1, . . . , ξn〉 is flat.

More generally, we will also consider relative Tate algebras.

Definition 1.2.8. LetA :=K〈ζ1, . . . , ζm〉/a be an affinoid algebra and let η1, . . . , ηn
be a further set of variables. A relative Tate algebra over A is

A〈η1, . . . , ηn〉 :=
{

∑

i∈Nn

aiη
i ∈A[[η1, . . . , ηn]]; lim

i→∞ai = 0

}

the set of formal power series over A with coefficients ai ∈A tending to zero. This
is an affinoid algebra as well; in fact, A〈η〉 =K〈ζ, η〉/a ·K〈ζ, η〉.

1.3 Affinoid Spaces

The associated geometric object of an affinoid algebra A is defined by

SpA :=MaxSpecA := {m;m⊂A maximal ideal},
the set of maximal ideals of AK . It is called an affinoid space. The field exten-
sion K→ A/m is finite due to Corollary 1.2.7. The absolute value on K extends
uniquely to every finite field extension due to Example 1.1.2. So denote by | · | the
extension of the absolute value of K to the residue field A/m for every maximal
ideal m of A. As in classical algebraic geometry, one views the residue class

f (m) := f mod m
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as the evaluation of f at the maximal ideal m of A. Thus, Corollary 1.2.7 implies

B
n
K := Sp(Tn)=

{

x ∈A
n
K ;
∣

∣ξi(x)
∣

∣≤ 1 for i = 1, . . . , n
}

,

B
n
K is the set of points in the affine n-space A

n
K :=MaxSpecK[ξ1, . . . , ξn] over K ,

where the coordinates ξi take absolute values ≤ 1. One regards Tn as the set of
holomorphic functions on the n-dimensional polydisc B

n
K .

The affinoid space associated to an affinoid algebra A= Tn/a is the locus

SpA= V (a) := {x ∈ B
n
K ;f (x)= 0 for all f ∈ a

}

of the ideal a ⊂ Tn. One views A as the set of holomorphic functions on SpA.
Furthermore, by Corollary 1.2.7 every morphism ϕ : B → A of affinoid algebras
induces a map

Spϕ : SpA−→ SpB, x �−→ ϕ−1(x).

The affinoid spaces are the building blocks of rigid geometry. Next, one carefully
introduces the theory of holomorphic functions on an affinoid space. In order to cre-
ate such a theory over a non-Archimedean field K , one has to require at least two
principles: the analytic continuation and the global expansion of analytic functions
on polydiscs. This poses a serious problem, because the natural topology given by
the absolute value of K is totally disconnected. Therefore, one has to provide ana-
lytic spaces with an extra topology which forces a non-trivial notion of connected-
ness.

In the original paper of Tate [92] the definition of the extra structure was very
clumsy. Substantial simplifications are due to Gerritzen and Grauert who introduced
the notion of rational domains; cf. [34]. As a result, admissible open sets and cover-
ings of rigid spaces became easier to handle.

Definition 1.3.1. Let X = Sp(A) be an affinoid space and f0, . . . , fr ∈ A without
common zeros. Then

Xj :=X(f0/fj , . . . , fr/fj ) :=
{

x ∈X; ∣∣fi(x)
∣

∣≤ ∣∣fj (x)
∣

∣ for i = 0, . . . , r
}

is called a rational affinoid subdomain of X with structure ring

OX(Xj ) := A〈f0/fj . . . , fr/fj 〉
:= A〈ζ0/ζj , . . . , ζr/ζj 〉/(ζifj − ζjfi; i = 0, . . . , r).

The family (X0, . . . ,Xr) is called a rational covering of X. The geometric meaning
of such a covering will become clear in Proposition 3.3.2.

In the case where f0 = 1, the domain X(f1, . . . , fr ) := X(f1/1, . . . , fr/1) is
called a Weierstraß domain in X. The image of A in OX(X0) is dense.

Rational subdomains are open subsets of X with respect to the topology
of X, which is induced by the absolute value. The canonical morphism
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ϕj :A→A〈f0/fj . . . , fr/fj 〉 induces a bijective map

SpA〈f0/fj . . . , fr/fj 〉 ˜−→X(f0/fj , . . . , fr/fj ).

Indeed, fj has no zeros on Xj and |fi(x)/fj (x)| ≤ 1 for all x ∈Xj .
To illustrate the notion of rational domains, let us look at some subdomains of

the disc, which will be important in Chap. 2.

Example 1.3.2. Let A := T1 =K〈ξ 〉 be the 1-dimensional Tate algebra. Then set
X := B

1
K = SpK〈ξ 〉 and let f = (ξ − a1) . . . (ξ − as) ∈K[ξ ] be a polynomial.

(a) f is a Weierstraß polynomial of order s if and only if |ai | ≤ 1 for i = 1, . . . , s.
(b) If f is as in (a), then

X(1/f )= B
1
K −
(

D(a1)
− ∪ · · · ∪D(as)−

)

with D(ai)− := {x ∈ B
1
K ; |ξ(x)− ai |< 1} for i = 1, . . . , s.

(c) If the residue classes ã1, . . . , ãs of a1, . . . , as in the residue field of R are dis-
tinct, then the partial fraction decomposition yields

A〈1/f 〉 = K〈ξ, ζ1, . . . , ζs〉/
(

1− ζ1(ξ − a1), . . . ,1− ζs(ξ − as)
)

=
{ ∞
∑

ν=0

c0,νξ
ν +

s
∑

i=1

∞
∑

ν=1

ci,ν(ξ − ai)
−ν; ci,ν ∈K, lim

ν→∞ ci,ν = 0

}

.

(d) In the special case that f0 = π ∈R− {0} and f1 = ξ we have

X(f0/f1) =
{

x ∈ B
1
K ; |π | ≤

∣

∣ξ(x)
∣

∣≤ 1
}

,

X(f1/f0) =
{

x ∈ B
1
K ;
∣

∣ξ(x)
∣

∣≤ |π |},
and

A〈f0/f1〉 =
{

∑

ν∈Z
cνξ

ν; lim
ν→∞|cν | = 0, lim

ν→−∞
∣

∣cνπ
ν
∣

∣= 0

}

,

A〈f1/f0〉 =
{

∑

ν∈N
cνξ

ν; lim
ν→∞
∣

∣cνπ
ν
∣

∣= 0

}

=K〈ξ/π〉.

(e) Let r ∈ R with 0 < r < 1 and assume that there is an m ∈ N with rm = |c|
for some c ∈K×. Then the disc D(0, r) is the affinoid space associated to the
affinoid algebra K〈ξ, η〉/(ξm − cη).

Definition 1.3.3. Let ξ be a coordinate function of the projective line P
1
K . A do-

main of type

A(r1, r2) :=
{

x ∈ P
1
K ; r1 ≤

∣

∣ξ(x)
∣

∣≤ r2
}

with r1, r2 ∈R
× and 0< r1 ≤ r2 is called a closed annulus and

A(r1, r2)
− := {x ∈ P

1
K ; r1 <

∣

∣ξ(x)
∣

∣< r2
}

is called an open annulus if r1 < r2.
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The ratio r1/r2 is a biholomorphic invariant of A(r1, r2) in the sense that for ev-
ery isomorphism A(r1, r2) ˜−→A(ρ1, ρ2) with ρ1 ≤ ρ2 we have that ρ1/ρ2 = r1/r2.
The ratio r1/r2 is called the height of the annulus. The subset of A(r1, r2) consisting
of the points z with |z| = r1 or |z| = r2 is called the boundary of A(r1, r2)

+.

As was already mentioned at the end of Sect. 1.1, one has to be careful with the
notions open, closed and boundary in the context of annuli. We will mainly use the
notion A(r1, r2) in the case where the radii r1, r2 belong to

√|K×|; in this case
A(r1, r2) is an affinoid domain. Then A(r1, r2) is called an affinoid annulus.

Proposition 1.3.4. Let r1 ≤ r2 be elements of
√|K×| and let

A :=A(r1, r2) :=
{

z ∈ P
1
K ; r1 ≤

∣

∣ζ(z)
∣

∣≤ r2
}

be a closed annulus. If X = SpB is a connected and reduced affinoid space, then
the algebra of holomorphic functions on X×A is given by

OX×P1
K
(X×A)=

⎧

⎨

⎩

f =
∑

i∈Z
biζ

i ∈ B[[ζ,1/ζ ]];
lim
i→∞|bi |r

i
2 = 0

lim
i→−∞|bi |r

i
1 = 0

⎫

⎬

⎭

,

where |.| is the sup-norm of B . Moreover, we have

|f | =max
x∈X max

i∈N
{∣

∣b−i (x)
∣

∣ · r−i1 ,
∣

∣bi(x)
∣

∣ · ri2
}

.

Its group of invertible functions is

OX×P1
K
(X×A)× =

{

b · ζ n · (1+ h);
b ∈ B×, n ∈ Z, |h|< 1

h ∈OX×P1
K
(X×A)

}

.

In particular, OX×P1
K
(X×Gm,K)

× = B× · ζZ.

Proof. The meaning of connectedness is here related to rational coverings; this is
the right notion of connectedness in rigid geometry due to Theorem 1.3.8.

First consider the case where B =K is a non-Archimedean field. Then it is easy
to see that a unit has a dominating term bnζ

n, and hence the assertion is true in this
case. In the relative case, there is fiber by fiber a dominating term bn(x)ζ

n(x) for each
x ∈X. The map n :X→ Z, x �→ n(x), is locally constant with respect to a rational
covering, and hence constant as X being connected. Multiplying f with b−1

n ζ−n
shows that is equal to 1+ h as asserted. �

Definition 1.3.5. Let X = SpA be an affinoid space. A subset U ⊂X is called an
affinoid subdomain if there exists a morphism ι : X′ = SpA′ → X with ι(X′)⊂ U

such that the following universal property is satisfied:
If ψ : Y →X is a morphism of affinoid spaces with ψ(Y )⊂U , then ψ factorizes

through ι uniquely.
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Obviously, if X′ is an affinoid subdomain of X and if X′′ is an affinoid sub-
domain X′, then X′′ is an affinoid subdomain X. One easily shows that rational
subdomains are affinoid subdomains and that affinoid subdomains are open subsets
of X; see [9, §3.3].

Proposition 1.3.6. In the situation of Definition 1.3.5 the following holds:

(i) The map ι is injective and satisfies ι(X′) = U . Thus, it induces a bijection of
sets X′ ˜−→U .

(ii) For x ∈X′ one has mx =mι(x)A
′ where mx ⊂A′ is the maximal ideal of x and

mι(x) ⊂A the one of ι(x).
(iii) For every x ∈ X′ and n ∈ N, the map ι∗ induces an isomorphism of affinoid

K-algebras A/mn
ι(x)→A′/mn

x .

(iv) The induced map of m-adic completions ̂Amι(x)
→ ̂A′mx

is bijective.
(v) The map A→A′ is flat.

(vi) If A is regular, normal or reduced, so is A′.

Proof. For the assertion (i), (ii) and (iii) see [9, §3.3/20]. These implies the remain-
ing assertion by standard facts from commutative algebra. �

There is the following result on the structure of subdomains; cf. [9, §3.3/20].

Theorem 1.3.7 (Gerritzen-Grauert). Let X be an affinoid space and let X′ be an
affinoid subdomain of X. Then there exists a finite covering {X1, . . . ,Xn} of X by
rational subdomains such that X′ ∩Xi is a rational subdomain of X.

On an affinoid space X = SpA one considers the functor OX , which associates
to affinoid subdomains the associated affinoid algebras with the canonical restric-
tion morphisms. Moreover, one allows only finite coverings by affinoid subdomains.
Then OX is a sheaf on the category of finite affinoid coverings; cf. [9, §4.3/10].

Theorem 1.3.8 (Tate’s acyclicity theorem). Let X = SpA be an affinoid space.
The structure sheaf OX is acyclic for finite coverings by affinoid subdomains. More
precisely, if {X0, . . . ,Xn} is a finite covering of X by affinoid subdomains, then the
augmented C̆ech complex

0→OX(X)→
n
∏

i=0

OX(Ui)→
n
∏

i0,i1=0

OX(Xi0 ∩Xi1)→ ·· ·

is exact.

The proof for rational coverings is done by concrete computation and the general
case is reduced to the special case by Theorem 1.3.7. Indeed, a finite covering by
affinoid subdomains admits a refinement by a rational covering.

The result of Tate can be generalized to finitely generated A-modules; cf. [9,
§4.3/11].



10 1 Classical Rigid Geometry

Corollary 1.3.9. Let X = SpA be an affinoid space and let M be a finitely gener-
ated A-module. Then the presheaf FM , which associates to an affinoid subdomain
X′ = SpA′ of X the A′-module

FM
(

X′
) :=M ⊗A A

′,

and the induced restriction FM(U)→ FM(V ) for subdomains V ⊂ U of X, is
a sheaf of OX-modules. Furthermore, FM is acyclic for finite coverings of X by
affinoid subdomains.

1.4 The Maximum Principle

The elements f of an affinoid algebra A are viewed as holomorphic functions on the
associated affinoid space X := SpA, as was explained above. The supremum norm
| · |X of f is defined by

|f |X := sup
{∣

∣f (x)
∣

∣;x ∈X}.
We refer to it as the sup-norm. In general, | · |X is only a semi-norm. How-
ever, the sup-norm is a Banach norm on A if and only if A is reduced; cf. [10,
6.2.1/4(iii)]. For A = Tn the sup-norm coincides with the Gauss norm which was
defined in Proposition 1.2.1(c). For an affinoid algebra there is a monomorphism
ϕ : Td ↪→ A making A into a finitely generated Td -module of rank r which is de-
fined by dimQ(Td) A ⊗Td Q(Td), where Q(Td) is the field of fractions of Td ; cf.
Corollary 1.2.6. Then one has the following lemma [10, 6.2.2/2].

Lemma 1.4.1. In the above situation assume that A is a domain. Then there is a
minimal polynomial

Φ(η)= ηr + a1η
r−1 + · · · + ar ∈ Td [η]

with Φ(f )= 0, and we have

|f |F(y) =max
{

i
√|ai(y)|; i = 1, . . . , r

}

,

where F(y) is the fiber of y ∈ B
d
K with respect to the map Spϕ.

In particular, one obtains the maximum principle.

Theorem 1.4.2 (Maximum principle). In the situation of Lemma 1.4.1 we have

|f |X =max
{

i
√|ai |; i = 1, . . . , r

}

,

and the maximum is attained on a non-empty open subset of X.
More generally, for every affinoid algebra A and every f ∈A there exists a point

x ∈ SpA such that |f (x)| = |f |X .
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Remark 1.4.3. Let A be an affinoid algebra and f1, . . . , fn ∈ A. Then there exists
a morphism ϕ : Tn → A sending the variables ξi �→ fi if and only if |fi |X ≤ 1
for i = 1, . . . , n. If f ∈ A, then we have |f |X ≤ |f |α for every residue norm |_|α
defined by a surjective morphism α : Tn→A.

Definition 1.4.4. Let A be an affinoid algebra, X := SpA, and put

Å := {f ∈A; |f |X ≤ 1
}

.

Then Å is an R-algebra, called the algebra of power bounded functions of A. In
general Å is not of topologically finite type over R; for more details see Sect. 3.1.
Since |f |mX = |f m|X for all f ∈ A, an element f ∈ A is contained in Å if and only
if f is power bounded; i.e., |f |X ≤ c for all n ∈N and some c ∈R. The subset

Ǎ := {f ∈A; |f |X < 1
}

is a reduced ideal of Å, the residue ring

˜A := Å/Ǎ

is a reduced affine k-algebra over the residue field k of R. Denote by ˜f the image
of f ∈ Å under the reduction map Å→ ˜A.

The following examples will illustrate the definition.

Example 1.4.5. (a) If A= Tn, then its ring of power bounded functions is

T̊n =R〈ξ1, . . . , ξn〉 :=
{

f =
∑

i

aiξ
i ∈ Tn;ai ∈R

}

and its reduction is the polynomial ring over the residue field

˜Tn = k[ξ̃1, . . . , ξ̃n].
(b) If Lm,n =K〈ξ1, . . . , ξm,η1,1/η1, . . . , ηn,1/ηn〉 is the ring of the Laurent series,
then

L̊m,n =R〈ξ1, . . . , ξm,η1,1/η1, . . . , ηn,1/ηn〉,
˜Lm,n = k[ξ̃1, . . . , ξ̃m, η̃1,1/η̃1, . . . , η̃n,1/η̃n].

The residue map Å→ ˜A induces a map

˜: SpA−→ ˜X :=MaxSpec ˜A, x �−→ x ∩ Å mod Ǎ,

which is surjective. ˜X is called the canonical reduction of X = SpA. Moreover,
the reduction is a functor which also applies to morphism of affinoid algebras; cf.
Sect. 3.1.
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Remark 1.4.6. Let A be a reduced affinoid algebra. Then ˜A is a domain if and only
if the sup-norm on A is multiplicative; i.e., |f · g|X = |f |X · |g|X for all f,g ∈ A,
cf. [10, 6.2.3/5]. In particular, if ˜A is a domain, then for every invertible f ∈ A the
absolute value function |f | on Sp(A) is constant.

1.5 Rigid Analytic Spaces

In [50] and [51] Kiehl simplified Tate’s theory by introducing Grothendieck topolo-
gies. This is a means to restrict the notion of open coverings in a topology; cf. [9,
§5.1].

Definition 1.5.1. A weak Grothendieck topology T consists of a category CatT and
a set CovT of families (Ui→U)i∈I of morphisms in CatT such that the following
properties are satisfied:

(i) If (ϕ :U→ V ) is an isomorphism, then ϕ ∈ CovT.
(ii) If (Ui→U)i∈I belongs to CovT and each (Vi,j →Ui)j∈Ji belongs to CovT,

then the composition (Vi,j →U)j∈Ji ,i∈I belongs to CovT.
(iii) If (Ui → U)i∈I belongs to CovT and if (V → U) belongs to CatT, then the

fibered products Ui ×U V exist in CatT and the restriction (Ui ×U V → V )i∈I
belongs to CovT.

Definition 1.5.2. A presheaf F on a Grothendieck topology T with values in an
abelian category A is a contravariant functor on F : CatT→ A. A presheaf F is a
sheaf if the following sequence

F(U)→
∏

i∈I
F(Ui)⇒

∏

i,j∈I
F(Ui ×U Uj )

is exact for all (Ui→U ; i ∈ I ) ∈ CovT.

Example 1.5.3. If X = SpA is an affinoid space, then let CatT be the cate-
gory of affinoid subdomains of X and let CovT be the set of all finite coverings
(Ui → U)i∈I by affinoid subdomains of affinoid subdomains U of X. Then T is
a Grothendieck topology. The presheaf OX introduced in Theorem 1.3.8 is a sheaf
on T. For every finitely generated A-module M the presheaf FM introduced in
Corollary 1.3.9 is a sheaf on T as well.

In order to define global rigid spaces and especially to allow gluing techniques
on rigid and/or affinoid spaces, one has to enlarge the Grothendieck topology which
was just defined.

Definition 1.5.4. Let X = SpA be an affinoid space. The strong Grothendieck
topology on X is given as follows:
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(0) ∅,X ∈ CatT.
(i) A subset U of X is called admissible open if there exists a (not necessar-

ily finite) covering (Ui)i∈I of U by affinoid subdomains Ui of X such that
for all morphisms of affinoid spaces ϕ : Y → X with ϕ(Y ) ⊂ U the covering
(ϕ−1(Ui))i∈I admits a refinement by a finite covering with affinoid subdomains
of Y .

(ii) A covering (Vj )j∈J of some admissible open subset V of X by admissible open
subsets Vj is admissible if for every morphism ϕ : Y →X of an affinoid space
Y with ϕ(Y ) ⊂ V the covering (ϕ−1(Vj ))j∈J admits a refinement by a finite
covering of Y by affinoid subdomains.

Obviously, the strong Grothendieck topology is a weak Grothendieck topology.
The strong Grothendieck topology on X restricts to the strong Grothendieck topol-
ogy on every affinoid subdomain of X and every morphism ϕ : Y → X of affinoid
spaces is continuous with respect to their strong Grothendieck topologies in the
sense that pull-backs of admissible open subsets and/or admissible open coverings
are admissible. One easily shows that Zariski open subsets of X are admissible open
and coverings by Zariski open subsets are admissible; see [9, 5.1.9].

Remark 1.5.5. We now define the strong Grothendieck topologies in general. This
can be done locally:

Let X be a set and (Xi→X)i∈I a covering of X. Consider strong Grothendieck
topologies Ti on Xi for i ∈ I . Assume that the restrictions Ti |Xi∩Xj

yield the same
Grothendieck topology on Xi ∩ Xj for all i, j ∈ I . Then there is a unique strong
Grothendieck topology on X which restricts to Ti for all i ∈ I .

Lemma 1.5.6. Let X = SpA be an affinoid space. Then every sheaf F with respect
to the weak Grothendieck topology defined in Example 1.5.3 extends to a sheaf with
respect to the strong topology in a unique way. In particular, the structure sheaf OX

defined in Example 1.5.3 has a unique extension to a structure sheaf with respect to
the strong Grothendieck topology defined in Definition 1.5.4.

In the following text of this book, by an affinoid space X = SpA we mean the
space (X,OX) equipped with a strong Grothendieck topology and the structure
sheaf as defined in Lemma 1.5.6.

Definition 1.5.7. A rigid analytic space is a pair (X,OX) equipped with a strong
Grothendieck topology such that there exists an admissible covering (Xi; i ∈ I )
such that the restriction (Xi,OX|Xi

) is isomorphic to an affinoid space. We will
also use the notion holomorphic topology for the strong Grothendieck topology.

A morphism of rigid analytic spaces (X,OX)−→ (Y,OY ) is a morphism in the
sense of locally ringed spaces with Grothendieck topologies.

Any morphism ϕ :A→ B of affinoid spaces induces a morphism

Spϕ : Y = SpB −→X = SpA
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of the associated rigid analytic spaces and one can show that the canonical morphism

HomK(A,B) ˜−→MorRigSp(Y,X)

is bijective; cf. [9, 5.3/2]. More generally, we have the following result (cf. [9,
5.3/7]):

Proposition 1.5.8. Let X be a rigid analytic space and Y an affinoid space. Then
the canonical map

MorRigSp(X,Y ) ˜−→HomK

(

OY (Y ),OX(X)
)

, ϕ �−→ ϕ∗,

is bijective.

For a Grothendieck topology T on X and a presheaf F on T one defines the stalk
at a point x ∈X by

Fx := lim−→
x∈U∈CatT

Fx.

The stalk OX,x of the structure sheaf OX on a rigid analytic space is a local ring.
Since it is a residue ring of a convergent power series ring K{ξ1, . . . , ξn} which is
Noetherian, the ring OX,x is Noetherian and Henselian.

Remark 1.5.9. Without further explanation we will use the notion of smooth, étale
and unramified morphisms. All these notions are defined in the usual way be using
the differential forms as in the context of algebraic geometry. However, we here
consider the following module of differential forms

Ω1
Tn/K

:= Tndξ1 ⊕ · · · ⊕ Tndξn

in the case where Tn =K〈ξ1, . . . , ξn〉 and the differential

d : Tn −→Ω1
Tn/K

, f �−→ df :=
n
∑

i=1

∂f

∂ξi
dξi .

If A := Tn/a is a residue algebras, then we put

Ω1
A/K :=Ω1

Tn/K
/(Tnda+ aΩTn/K)

and the differential is the induced map d :A→Ω1
A/K .

The pair (Ω1
A/K,d) has the usual universal property with respect to finitely

generated A-modules. Details can be found in [14, Part III, §1–2]. Note that
Ω1
A/K ⊗A B = Ω1

B/K if SpB→ SpA is an affinoid subdomain; i.e., this implies

that Ω1
A/K is a coherent sheaf; cf. Definition 1.6.1.
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1.6 Coherent Sheaves

Kiehl obtained some fundamental results on coherent modules; specifically, the rigid
analytic analogs of Grauert’s Direct Image Theorem and of Theorems A and B of
Cartan and Serre; cf. [50] and [51]. Also Serre’s GAGA-Theorems could be carried
over to rigid geometry verbatim. The acronym GAGA are the initials of Serre’s
celebrated article [87].

Definition 1.6.1. LetX be a rigid analytic space. An OX-module F is called coher-
ent if there is an admissible covering (Xi, i ∈ I ) by affinoid subspaces Xi = SpAi

and if there exist finitely generated Ai -modules Mi such that the restriction F |Xi

is induced by Mi for all i ∈ I ; i.e., F |Xi
is of type FMi as was defined in Corol-

lary 1.3.9.

The following result is a theorem of Kiehl [51] which corresponds to Cartan-
Serre’s Theorem A and B. Proofs can be found in [9, §6.1/4 and 6.2/7].

Theorem 1.6.2 (Kiehl). If X = SpA is an affinoid space, then every coherent OX-
module F is associated to a finitely generated A-module M .

More precisely, M = Γ (X,F) is finitely generated and the canonical morphism

FM −→F

is an isomorphism. Furthermore, the cohomology groups Hq(X,F) vanish for all
coherent OX-modules F and all q ≥ 1.

Definition 1.6.3. A morphism ϕ : X→ Y is separated if the diagonal morphism
Δ :X→X×Y X is a closed immersion.

A morphism of rigid analytic spaces ϕ :X→ Y is called proper if ϕ is separated
and if there exists an admissible affinoid covering (Yi, i ∈ I ) such that for each
i ∈ I there exist two finite affinoid coverings (Xi,1, . . . ,Xi,ni ) and (X′i,1, . . . ,X′i,ni )
of ϕ−1(Yi) with Xi,j �Yi X

′
i,j for j = 1, . . . , ni .

Here the notion X �Y X′ for affinoid spaces means that there exists a closed
immersion X′ ↪→ B

n
Y (1) into the relative unit ball over Y such that X is mapped

into B
n
Y (r) for a strictly smaller radius r < 1. The latter means that the coordinate

functions ξ1, . . . , ξn of BnY (1) take values |ξi(x)| ≤ r < 1 for x ∈X and i = 1, . . . , n.

The notion of properness was introduced by Kiehl in [50]. For a long time it was
unknown whether a composition of proper maps is proper as well until it was proved
in [61] by relating Kiehl’s notion to properness of associated formal schemes in The-
orem 3.3.12. It is easy to see that a factorization ϕ = α ◦ β of a proper morphism ϕ,
where α is separated, implies that β is proper. Kiehl’s notion of properness seems
to have been designed such that one can apply methods from functional analysis for
the proof of the finiteness theorem. Proofs can be found in [9, §6.3/9].



16 1 Classical Rigid Geometry

Theorem 1.6.4 (Kiehl). Let ϕ : X→ Y be a proper morphism of rigid analytic
spaces and let F be a coherent OX-module. Then the direct images Rqϕ∗F are
coherent OY -modules for all q ∈N.

Similarly as in complex analysis one has the usual consequences of the finiteness
theorem like the Proper Mapping Theorem of Remmert and the Stein factorization
of proper morphisms. A closed analytic subset of a rigid analytic space X is, locally
with respect to the Grothendieck topology of X, the vanishing locus of finitely many
holomorphic functions.

Corollary 1.6.5. If ϕ :X→ Y is a proper morphism of rigid analytic spaces, then
the image ϕ(A) is a closed analytic subset of Y for every closed analytic subset A
of X.

Corollary 1.6.6. Let ϕ : X→ Y be a proper morphism of rigid analytic spaces.
Then the coherent OY -module ϕ∗OX gives rise to the rigid analytic space Y ′ :=
Spϕ∗OX such that ϕ :X→ Y factorizes into ϕ =ψ ◦ ϕ′ where ψ : Y ′ → Y is finite
and ϕ′ :X→ Y ′ is proper with connected fibers.

Corollary 1.6.7. If ϕ :X→ Y is a proper and quasi-finite morphism of rigid ana-
lytic spaces, then ϕ is finite.

Corollary 1.6.8. Let p : X→ SpK be a proper rigid analytic space over K . As-
sume that X⊗K K is reduced and connected where K is a complete algebraic clo-
sure of K . Then the canonical morphism K→ Γ (X,OX) is bijective. Furthermore,
if S is a rigid analytic space, then OS→ (pS)∗OX×S is bijective as well.

Proof. Since Γ (X,OX) commutes with field extensions, we may assume that
K = K is algebraically closed. Due to Theorem 1.6.4 the K-algebra Γ (X,OX)

is a K-vector space of finite dimension. Since Γ (X,OX) is reduced, it is a finite
product of copies of K . Since X is connected, it consists of one copy. Therefore,
K → Γ (X,OX) is bijective. The additional assertion follows from the fact that
p∗OX commutes with flat base change. �

The finiteness result is sufficient to carry over Serre’s theorems about Géométrie
Algébrique et Géométrie Analytique [87] to the category of rigid analytic spaces.
The latter was worked out by Köpf [56].

First let us recall the definition of Serre’s GAGA-functor in the setting of rigid
geometry. Let X = SpA be an affinoid space, ξ1, . . . , ξn variables, and let c ∈K×
be a constant with |c|> 1. Now consider

B
n
X(c) :=X×B

n(c) := SpA〈ξ1/c . . . , ξn/c〉.
Then there is an increasing sequence

B
n
X(c)⊂ B

n
X

(

c2)⊂ · · · ⊂ B
n
X

(

ci
)⊂ · · ·
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of affinoid space, where each one is an affinoid subdomain of the bigger ones. So,
one obtains a rigid analytic structure on the affine n-space over X by

A
n
X :=
⋃

i∈N
B
n
X

(

ci
)

.

A similar approach works for affine algebraic A-schemes of finite type. The idea
behind this construction is that one regards a polynomial with coefficients in A as
a holomorphic function. Since Zariski open subsets are admissible, the algebraic
construction of gluing carries over to the category of rigid geometry. Thus, to every
scheme Z of finite type over A there is associated a rigid analytic X-space Zan. The
closed points of Z corresponds one-to-one to the points of Zan in a canonical way.
One can characterize the analytification of an A-scheme of finite type by a universal
property.

Definition 1.6.9. Let A be an affinoid K-algebra, X := SpA, and Z an A-scheme
of locally finite type. An analytification of Z is a rigid analyticX-spaceZan together
with a morphism of locally Grothendieck-ringed spaces ι : Zan → Z satisfying the
universal property:

For every rigid analytic X-space Y , each morphism of locally Grothendieck-
ringed spaces Y → Z factorizes through ι via a unique morphism Y → Zan of rigid
analytic spaces.

If it is clear from the context, then we will drop the sup-index “an”, when we view
a scheme of finite type over an affinoid space as a rigid analytic space. For example
this applies to algebraic curves, the projective space P

n
K or the affine n-space A

n
K

over a non-Archimedean field K .

The ring extension OZ,z→OZan,z is faithfully flat, because for every maximal
ideal m⊂A[ξ1, . . . , ξn] and n ∈N the canonical morphism

A[ξ1, . . . , ξn]/mn ˜−→A〈ξ1/c, . . . , ξn/c〉/mnA〈ξ1/c, . . . , ξn/c〉
is bijective if the associated point to m belongs to B

n
X(c). Therefore, every algebraic

coherent sheaf F gives rise to a rigid analytic coherent sheaf Fan. In the case of a
proper A-scheme Z the converse is also true.

Remark 1.6.10. The analytification of a proper morphism between K-schemes of
finite type is a proper morphism of rigid analytic spaces.

Proof. It suffices to look at a proper algebraic A-scheme Y where A is an affinoid
algebra. If Y is projective over A, then we can assume that Y = P

n
A is already the

projective space. For c ∈ |K×| consider the subsets

Yi(c) :=
{

x ∈ P
n
A,
∣

∣ξj (x)
∣

∣≤ c · ∣∣ξi(x)
∣

∣ for j = 0, . . . , n
}

for i = 1, . . . , n. Then Y(c) := {Y0(c), . . . , Yn(c)} is an admissible affinoid covering
of Pn

A for c ≥ 1 with Yi(1)�A Yi(c) for i = 0, . . . , n and c > 1. So, Y(1) and Y(c)
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with c > 1 satisfy the condition for properness in the sense of Definition 1.6.3. In the
general case, due to the theorem of Chow [39, II, 5.6.2] there exists a surjective A-
morphism f :Z→ Y from a projective A-scheme Z to Y . By what we have shown
above it follows that Zan → SpA is proper. Since Y is of finite type over A, one
can cover the analytification Y an of Y by finitely many affine A-schemes Y1, . . . , Yn
of finite type. Each Yi admits an exhausting affinoid covering {Yi,j ; j ∈ N} with
Yi,j �A Yi,j+1. Then {Yi,j ; j ∈ N, i = 1, . . . , n} is an admissible covering of Y an.
So {f−1(Yi,j ); j ∈ N, i = 1, . . . , n} is an admissible covering of Zan. Since the
morphism Zan → SpA is proper, a finite subfamily will cover Zan also. Therefore,
a finite subfamily of {Yi,j ; j ∈N, i = 1, . . . , n} will cover Y an as well. Thus, we see
that Y an → SpA is proper in the sense of Definition 1.6.3. �

Theorem 1.6.11 (GAGA). Let A be an affinoid algebra and let X be a proper
A-scheme. Consider coherent OX-modules F ,G and denote by Fan, Gan the asso-
ciated rigid analytic OXan -modules. Then we have the following results.

(a) The canonical morphism

Hq(X,F) ˜−→Hq
(

Xan,Fan)

is an isomorphism for every q ∈N.
(b) The canonical homomorphism

HomOX
(F ,G) ˜−→HomOXan

(

Fan,Gan)

is an isomorphism.
(c) If F ′ is a coherent OXan -module, then there exists a coherent OX-module F

and an isomorphism Fan ˜−→F ′. The OX-module F is uniquely determined up
to canonical isomorphism.

Proof. See [56]. �

As a corollary one has the analogue of Chow’s theorem.

Corollary 1.6.12. Let Y ⊂ P
n
A be a closed analytic subset of the relative projective

space Pn
A. Then Y is the locus of finitely many homogeneous polynomials f1, . . . , fN

of the coordinate ring A[ξ0, . . . , ξn].

One can use Theorem 1.6.4 to show that the ring of holomorphic functions on
a product of polydiscs by a polyannulus is factorial. For ρ ∈ |K×| with ρ ≤ 1 we
denote by A〈η±〉ρ,1 the ring of Laurent series

∑

ν∈Z cνην with coefficients in A

which converge for ρ ≤ |η| ≤ 1.

Proposition 1.6.13. Let ρν ∈ |K×| with ρν ≤ 1 for ν = 1, . . . , n. Then the Laurent
ring K〈ξ1, . . . , ξm〉〈η±1 〉ρ1,1 . . . 〈η±n 〉ρn,1 is factorial.
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Proof. For technical reasons we consider the affinoid algebra

K〈ξ1, . . . , ξm〉
〈

ζ±1 , . . . , ζ
±
�

〉〈

η±1
〉

ρ1,1
. . .
〈

η±n
〉

ρn,1
,

where the series in the variables ζ1, . . . , ζ� in the middle should converge for |ζλ| = 1
for λ= 1, . . . , �. These K-algebras are regular as follows from Propositions 1.2.1(a)
and 1.3.6, and hence they are locally factorial. So it remains to see that their diviso-
rial ideals are principal. For the proof we proceed by induction of n.

Let us start with n = 0. Let aK � Lm,� := K〈ξ, ζ±〉 be a divisorial ideal. The
reduction of Lm,� is ˜Lm,� = k[ξ̃ , ζ̃±] which is a factorial ring. Now look at the ideal

a := aK ∩R
〈

ξ, ζ±
〉⊂R
〈

ξ, ζ±
〉

.

Then R〈ξ, ζ±〉/a has no R-torsion, and hence it is flat over R. Thus one obtains an
exact sequence

0→ a⊗R k→ k
[

ξ̃ , ζ̃±
]→ k
[

ξ̃ , ζ̃±
]

/a⊗R k→ 0.

Due to the flatness, a⊗R k has codimension 1. Next we show that a⊗R k has no
embedded components. This follows from the fact that a is a reflexive R〈ξ, ζ±〉-
module. Indeed, consider the canonical inclusion ι : a→ a∗∗ of a into its bi-dual
a∗∗ ⊂ R〈ξ, ζ±〉. Since a⊗R K is locally principal, ι⊗R K is an isomorphism. So,
there exists a power πN such that πNa∗∗ ⊂ a. Since R〈ξ, ζ±〉/a is R-flat, the multi-
plication by π is injective on the R〈ξ, ζ±〉/a. Thus, we get a= a∗∗. Since k[ξ̃ , ζ̃±]
is factorial, a⊗R k is principal. So there exists an element f ∈ a which generates
a⊗R k. Then f generates a. Indeed, a = (g1, . . . , gN) is finitely generated due to
Theorem 3.2.1. Since f generates a ⊗R k, there are relations gi = rif + tai for
i = 1, . . . ,N with ri ∈ R〈ξ, ζ±〉, ai ∈ a for a suitable t ∈ R with |t | < 1. Then an
iteration process shows that a is generated by f .

For the induction step “n− 1→ n” consider a divisorial ideal

a⊂K〈ξ1, . . . , ξm〉
〈

ζ±1 , . . . , ζ
±
�

〉〈

η±1
〉

ρ1,1
. . .
〈

η±n
〉

ρn,1
.

Now restrict the associated sheaf of a to the subset {|η1(x)| = ρ1}. Then the induc-
tion hypothesis implies that the ideal

aK〈ξ1, . . . , ξm〉
〈

ζ±1 , . . . , ζ
±
�

〉〈

η±1
〉

ρ1,ρ1

〈

η±2
〉

ρ2,1
. . .
〈

η±n
〉

ρn,1

is principal. Then it can be pasted with the trivial invertible sheaf to build an in-
vertible sheaf on Sp(K〈ξ1, . . . , ξm,η1〉〈ζ±1 , . . . , ζ±� 〉〈η±2 〉ρ2,1 . . . 〈η±n 〉ρn,1). Due to
Theorem 1.6.2, this sheaf is associated to an invertible ideal. Then the induction
hypothesis shows that a is principal. �

1.7 Line Bundles

In this section we review some basic facts about line bundles and invertible sheaves.
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Definition 1.7.1. Let X be a rigid analytic space.

(a) An invertible sheaf L on X is a locally free OX-module of rank 1.
(b) A line bundle on X is a morphism π : L→ X of rigid analytic space such

that there exists an admissible covering U= {Ui; i ∈ I } of X and isomorphisms
πi : L|Ui ˜−→Ui × A

1
K,� �−→ (π(�),πi(�)), which respect the fibers over Ui

such that the transition functions τi,j

Ui ×A
1
K
∼= L|Ui L|Uj ∼=Uj ×A

1
K

(Ui ∩Uj)×A
1
K

τj,i

(Uj ∩Ui)×A
1
K

�

πi

�

πj

(x,πi(�)) (x,πi(�) · ti,j (x))

are morphisms of fiber bundles and linear isomorphisms on the stalks.
(c) A Gm-torsor is a faithfully flat morphism L→ X which admits local sections

with respect to the Grothendieck topology of X, equipped with a Gm,X-action
such that Gm,X|U −→ L|U , t �−→ t · �, is an isomorphism if � : U → L is a
section.

(d) Assume that X is a rigid analytic group variety. A line bundle L on X is called
translation invariant if for every point a ∈X(K) the line bundle τ ∗a L is isomor-
phic to L, where τa :X⊗K K→X⊗K K is the translation by a. Here K is an
algebraic closure of K .

Remark 1.7.2. There is a canonical correspondence between line bundles, invert-
ible sheaves, and Gm-torsors. We will make no difference between these notions.
For the convenience of the reader we explain the correspondence below; cf. [39, II,
§1.7] or [69, Chap. III, §4].

The sections of a line bundle L constitute an invertible sheaf S(L). The invertible
sheaf L associated to L is the dual of S(L). If L is an invertible sheaf, then the
associated line bundle L is the spectrum of the symmetric algebra

⊕

m∈NL⊗m also
denoted by A(L). Thus, one has

L := V (L) := Spec

(

⊕

m∈N
L⊗m
)

;

more precisely, the analytification of V (L). The association L �→ V (L) is a con-
travariant functor from the category of invertible sheaves on X to the category of
line bundles on X.
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Since MorX(U,V (L))=HomOX
(A(L),OX)(U)=HomOX

(L,OX)(U) for an
admissible open subset U of X, there is a canonical identification

S(L)=HomOX
(L,OX)= L−1.

The functor S from the category of line bundle on X to the category of invertible
sheaves on X is covariant. In particular, there are canonical isomorphisms

L(U) ˜−→HomX

(

L
∣

∣

U
,A1

U

)

,

S(L)(U) ˜−→HomX

(

A
1
U ,L
∣

∣

U

)

for every admissible open subset U of X.
The Gm-torsor L× := L− {0} associated to a line bundle L is obtained by re-

moving the zero section from L; i.e., for L= S(L)−1 it is

L× = Spec

(

⊕

n∈Z
L⊗n
)

.

Every line bundle induces a cocycle (ti,j ) ∈H 1(X,O×X) via the transition func-
tions (ti,j ). A collection (fi ∈ S(L)(Ui)) gives rise to a global section if and only
if

fi · ti,j = fj for all i, j.

So the invertible sheaf S(L) is associated to the cocycle (ti,j ). The invertible sheaf
L associated to L is given by the cocycle (t−1

i,j ).
If D is a Cartier divisor on X (cf. [10, p. 212]), then the line bundle L(D) asso-

ciated to the invertible sheaf OX(D) has the sheaf of sections given by

S
(

L(D)
)

(U) : {f :U ���A1
K ;meromorphic with divf −D ≥ 0

}

for admissible open subvarieties U of X.

Definition 1.7.3. An invertible sheaf L on a proper rigid analytic space X is called
ample if there exists an integer n≥ 1 such that L⊗n is generated by global sections
and yields an embedding into a projective space P

N
K .

The latter means the following. If (f0, . . . , fN) is a basis of the vector space
Γ (X,L⊗n) of the global sections of L⊗n, then the mapping

f := (f0, . . . , fN) :X −→ P
N
K, x �−→ f (x) := (f0(x), . . . , fN(x)

)

,

is a closed embedding.
A line bundle L is called ample if the invertible sheaf L := S(L)−1 is ample.

Definition 1.7.4. Let X be proper smooth rigid analytic curve over K assumed to
be geometrically connected. A divisor D on X is an formal linear combination
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D =∑r
i=1 nixi over points xi ∈X with ni ∈ Z. Its degree is defined by

degD :=
r
∑

i=1

ni ·
[

K(xi) :K
]

.

The support supp(D) of D is the set consisting of all the xi with ni 
= 0. The divisor
D is called effective if ni ≥ 0 for i = 1, . . . , n. One defines D ≤ D′ for a divisor
D′ =∑r

i=1 n
′
ixi if ni ≤ n′i for i = 1, . . . , n.

Let L be an invertible sheaf on X and D a divisor on X. Put

L(D) := {f ∈ (L⊗OX
MX)(X);div(f )+D ≥ 0

}

,

where MX is the sheaf of meromorphic functions on X. Then L(D) is again an
invertible sheaf on X. A meromorphic section of L is a global section of L(D) for
some divisor D.

If f is a meromorphic section of an invertible sheaf L on X with f 
= 0, then its
divisor is defined by

div(f ) :=
∑

x∈X
ordx(f )

where ordx(f ) is the vanishing order of f at the point x.

Lemma 1.7.5. Let X be a proper smooth rigid analytic curve over K . Then every
invertible sheaf L admits a non-trivial meromorphic global section. In particular,
L is isomorphic to OX(D) for a suitable divisor D on X.

Proof. Theorem 1.6.4 yields d := dimK H
1(X,L) <∞, since X is proper. For ev-

ery effective divisor D there is a long exact sequence

0→ H 0(X,L)→H 0
(

X,L(D)
)→H 0

(

X,L(D)/L
)→

→ H 1(X,L)→H 1
(

X,L(D)
)→ 0,

because H 1(X,L(D)/L) = 0 vanishes as L(D)/L is concentrated on the sup-
port of D which consists of finitely many points. For effective divisors D with
degD > d the map H 0(X,L(D)/L)→ H 1(X,L) cannot be injective. Thus, we
see that H 0(X,L(D)) is not zero, and hence that L has a non-trivial meromorphic
section. �

By the usual techniques [29, 16.9] one deduces from Lemma 1.7.5 the formula
of Riemann-Roch.

Theorem 1.7.6 (Riemann-Roch). Let X be a smooth proper rigid analytic variety
of dimension 1 which is geometrically connected.

If D is a divisor on X, then

dimK H
0(X,OX(D)

)= degD+ 1− g + dimK H 1(X,OX(D)
)

,

where g := dimK H
1(X,OX) is the genus of X.
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Proof. For the convenience of the reader we provide a proof here.
(1) The formula is true for the empty divisor because of H 0(X,OX) = K by

Corollary 1.6.8.
(2) Consider two divisors D and D′ and assume D ≤D′. Then we have a long

exact sequence

0→ H 0
(

X,OX(D)
)→H 0

(

X,OX

(

D′
))→H 0

(

X,OX

(

D′
)

/OX(D)
)→

→ H 1
(

X,OX(D)
)→H 1

(

X,OX

(

D′
))→ 0,

because H 1(X,OX(D
′)/OX(D))= 0 vanishes as OX(D

′)/OX(D) is concentrated
on finitely many points. Moreover,

dimK H
0(X,OX

(

D′
)

/OX(D)
)= degD′ − degD.

Therefore, if the formula is true for one of the divisors, then it is true for the other
one. Thus, by (1) the formula holds all effective divisors.

(3) For every divisor D there exists a divisor D′ such that D ≤D′ and D′ ≥ 0.
So, the formula follows from (2). �

Corollary 1.7.7. Let L be an invertible sheaf and D a divisor with L∼=OX(D).

(a) If L∼=OX , then degD = 0.
(b) deg div(f )= 0 for every meromorphic function f 
= 0 on X.

In particular, degL := degD does not depend on the choice of the divisor D with
L ∼= OX(D) and it is called the degree of the invertible sheaf. Moreover, if L is a
line bundle on X, then the degree of L is defined by degL= degS(L).

Definition 1.7.8. Let X and S be a rigid analytic spaces over K and let x0 ∈X(K)
be a K-rational point. Denote by xS := (x0, idS) ∈X the S-valued point of X × S.
A rigidified line bundle along x0 on X × S is a couple (L, �) consisting of a line
bundle on X × S and a section � of x∗SL over S outside the zero section of L. The
section � is called a rigidificator. A morphism of rigidified line bundles is a bundle
morphism which maps the indicated rigidificators to each other.

Remark 1.7.9. If X is geometrically reduced, connected and proper, the only au-
tomorphism of a rigidified line bundle on X × S is the identity. The automor-
phisms of a line bundle are given by the invertible functions on S. In fact, since
O×S → (pS)∗O×X×S is bijective by Corollary 1.6.8, we see that all the automorphism
are given by a scalar multiplication with elements in O×S . If the rigidificator is fixed,
then the automorphism is the identity.

The latter is a necessary condition to expect a fine moduli space for the functor
PicX/K , which will be studied in Theorems 5.1.1 and 5.1.4. This functor associates
to a rigid analytic space S the set of isomorphism classes of line bundles on X× S

which are rigidified along the section of x0.
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In the following we will consider a rigid analytic variety Ω equipped with a
group action Γ × Ω −→ Ω,(γ, z) �−→ γ z, such that the rigid analytic quotient
X := Γ \Ω exists and such that p :Ω→ X is unramified in the topological sense.
By this we mean the following.

Definition 1.7.10. A morphism p : Y → X of rigid analytic spaces is called un-
ramified in the topological sense if there is an admissible covering (Ui; i ∈ I ) of
X such that p−1(Ui) =⋃j∈Ii Vi,j is a disjoint union and p|Vi,j : Vi,j ˜−→Ui is an
isomorphism for all j ∈ Ii and i ∈ I .

We want to give a direct geometric description of the line bundles on a quotient
X = Γ \Ω . This will be possible in the case of Mumford curves in Theorem 2.8.7
and in the case of analytic tori in Proposition 2.7.5. In both cases, line bundles on the
universal covering Ω turn out to be trivial. For studying this, the following notions
will be useful; cf. [74, I, §2].

Definition 1.7.11. A Γ -linearization on a line bundle L on Ω consists of a family
of isomorphisms (cα;α ∈ Γ ) of the line bundle L

L
cα

p

L

p

� cα(z)(�)

Ω
α

Ω z αz

which is associative; i.e., cαβ(z)(�) = cα(βz) ◦ cβ(z)(�), where � ∈ Lz is a point
above the point z ∈Ω , and satisfies cid = id.

There is an evident notion of isomorphism of Γ -linearized line bundles.

If L=Ω ×A
1, then cα :Ω→K× corresponds to a holomorphic function with-

out zeros which acts as multiplication on a section � ∈ L. Therefore, the associativity
is equivalent to

cαβ(z)= cα(βz) · cβ(z) for all z ∈Ω, α,β ∈ Γ.

A linearized line bundle (L, c) is trivial if L is trivial and if there exists an in-
vertible holomorphic function u on Ω such that cα(z) = u(α(z)) · u(z)−1. On the
isomorphism classes of linearized line bundles there is a group law by putting

(L1, c1)⊗ (L2, c2) := (L1 ⊗L2, c1 ⊗ c2).

Two Γ -linearized line bundles (L1, c1) and (L2, c2) are isomorphic if the tensor
product (L1 ⊗ L−1

2 , c1 ⊗ c−1
2 ) is trivial. If L1 and L2 are trivial, then c1 ⊗ c2 is

simply the multiplication by the product c1(z) · c2(z).
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Remark 1.7.12. Let c be a Γ -linearization on Ω × A
1. If cα is constant for all

elements α ∈ Γ , then the linearization is equivalent to a group homomorphism
c : Γ →K×, α �→ cα .

Example 1.7.13. Let Ω be a rigid analytic group variety and Γ ⊂ Ω be a dis-
crete subgroup with respect to the Grothendieck topology. Let Γ act on Ω by left
translations. Consider a group homomorphism

λ : Γ −→Hom(Ω,Gm,K), α �−→
[

z �−→ 〈λ(α), z〉],
where 〈λ(α), z〉 := λ(α)(z). Then the rule cα(z)= rα · 〈λ(α), z〉, where the constants
rα ∈K× satisfy

〈

λ(α),β
〉= rαβ

rα · rβ ,

defines a Γ -linearization on the trivial line bundle Ω ×A
1. If λ is trivial, then the

Γ -linearization is translation invariant and r : Γ →K× is a group homomorphism.

Proposition 1.7.14. In the situation of Definition 1.7.11, assume that the quotient
X = Γ \Ω exists and thatΩ→X is a unramified covering in the topological sense.

(a) Let c := (cα;α ∈ Γ ) be a Γ -linearization on a line bundle L. Then the quotient
L(c) := L/c exists as a rigid analytic space, the residue map pL : L→ L(c) is
an unramified covering in the topological sense and L(c)→X is a line bundle
on X.

(b) For every line bundle L on X there is a canonical Γ -linearization c on p∗L
such that p∗L/c is isomorphic to L.

(c) The constructions in (a) and (b) constitute a one-to-one correspondence

{

Isoclasses of Γ -linearized

line bundles (L, c) on Ω

}

←̃→
{

Isoclasses of line

bundles L on X

}

.

Proof. (a) Since the covering p :Ω→X is unramified in the topological sense, it is
easy to see that the quotient L(c)= L/c exists and that L(c)→X is a line bundle.

(b) There are obvious maps from p∗L −→ α∗p∗L and they give rise to a lin-
earization with respect to Γ , because p is a covering in the topological sense. In fact,
the Γ -linearization sends a point (w, �) ∈ p−1L over w ∈Ω to the point (γ (w), �)
over γ (w). More precisely, choose a trivialization of L with respect to an admissible
covering V= {Vi; i ∈ I } of X, where each Vi is given by a chart p :Ui ˜−→Vi with
Ui ⊂ Ω . Then Wi := p−1(Vi) decomposes

⋃

α∈Γ α(Ui) as a disjoint union. Let
τi,j be the transition functions on Vi ∩ Vj . The mapping (w, �) �→ (γ (w), �) maps
the point (w, �) ∈ α(Ui)×A

1
K to (γ (w), �) ∈ γ α(Ui)×A

1
K . This map is obviously

compatible with the transition functions, because they are Γ -invariant.
(c) Due to (b), it suffices to show that a linearized line bundle (L, c) is isomorphic

to p∗L(c) equipped with the linearization which was defined in (b). It is easy to



26 1 Classical Rigid Geometry

see that the linearization c can be used to define an isomorphism between these
linearized line bundle. �

If every line bundle on Ω is trivial, then the left-hand side of Proposi-
tion 1.7.14(c) can be identified with the cohomology group H 1(Γ,OΩ(Ω)×) and
the right hand side with H 1(X,O×X).

Lemma 1.7.15. Let L be a line bundle on X and let L be the associated invertible
sheaf. Let (cγ ;γ ∈ Γ ) be a Γ -linearization of L. Then the induced Γ -linearization
on L is given by

ϕγ : Lz −→ Lγ z, g �−→ g ◦ c−1
γ ,

and the Γ -linearization on L is given by ϕγ (z)= cγ (z)
−1.

Proof. By Remark 1.7.2 there is a canonical identification of L(U) with group
HomX(L|U , ,A1

X). So, if g belongs to HomX(L|U , ,A1
X), then the composition

g ◦ c−1
γ lies in γ ∗L(U)=HomX(L|γU , ,A1

X). Thus, we see that the Γ -linearization

on L is given by (c−1
γ ;γ ∈ Γ ). �

1.8 Algebraization of Proper Rigid Analytic Curves

Over the complex numbers, every compact Riemann surface is the analytification
of a smooth projective algebraic curve. In this section we show that the analogous
statement is valid in rigid geometry as well.

Theorem 1.8.1. Let X be a smooth proper rigid analytic variety of dimension 1,
and assume that X is geometrically connected.

(a) Then there exists an irreducible smooth projective algebraic curve Xalg and an
isomorphism from X to the analytification of Xalg.

(b) Every meromorphic function on X is induced by a rational function on Xalg.
(c) If g := dimK H

1(X,OX) denotes the genus of X, then 2g − 2 is the degree of
divω for every non-vanishing differential form ω on X. In particular, the genus
of X equals the genus of Xalg.

Proof. (a) First of all, due to the Riemann-Roch Theorem 1.7.6, there exists a mero-
morphic function f on X which is not constant. Moreover, we may assume that the
differential of f does not vanish identically. Indeed, since dimK H 0(X,OX(D))

grows with degD, the differential d :H 0(X,OX(D))→H 0(X,Ω1
X/K(D

′)) cannot
be identically zero, where D′ =∑i (ni+1)xi if D =∑i nixi is an effective divisor.
Then f gives rise to a non-constant rigid analytic morphism

ϕ :X −→ P
1
K,
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which is obviously quasi-finite and proper, and hence finite by Corollary 1.6.7. Let
n be the degree of ϕ. In particular, it is generically étale and surjective.

It is easy to see that the field of meromorphic functions on P
1
K coincides with

the field K(ζ) of rational functions over K in a coordinate function ζ of P1
K . Now

every meromorphic function h on X satisfies an equation

hn + an−1 · hn−1 + · · · + a0 = 0

with coefficients in K(ζ). Indeed, ϕ∗OX is a locally free O
P

1
K

-module, and hence

h satisfies such an equation with coefficients ai ∈ Γ (P1
K − S,O

P
1
K
), where S is the

image by ϕ of the set of poles of h; for example, one can take the characteristic
polynomial of the multiplication by h. Then it is easy to see that the coefficients
are meromorphic on P

1
K . Due to the existence of a primitive element there exists a

meromorphic function h such that M(X) =M(P1
K)(h). Thus, we see that h sat-

isfies an equation as above and M(X) = K(ζ,h). All coefficients ai = ri/si have
a representation with relatively prime polynomials ri , si ∈ K[ζ ]. Then let s be the
least common multiple s := lcm(s0, . . . , sn−1). Now consider the map

ψ := (1, f,h) :X −→ P
2
K.

This map is defined everywhere, since X is smooth of dimension 1, and hence all
local rings of X are valuation rings. Now look at the polynomial

F(ζ, η) := s(ζ ) · (ηn + an−1η
n−1 + · · · + a0

) ∈K[ζ, η].
If we write ζ := T1/T0 and η := T2/T0, we obtain

G(T0, T1, T2) := T
degF
0 · F(T1/T0, T2/T0) ∈K[T0, T1, T2],

which is a homogeneous polynomial. Its vanishing locus

Y := V (G)⊂ P
2
K

is an irreducible closed algebraic subset and ψ maps X onto Y . To prove this, we
may assume that K is algebraically closed. From Theorem 1.7.6 follows that there
exists a meromorphic function g which takes n distinct values on a fiber of ϕ over
an unramified point, and hence its minimal polynomial over K(ζ) has degree n.
Since g belongs to M(X)=K(ζ,h), we see that the degree [M(X) : K(ζ)] = n,
and hence that the polynomial F is irreducible.

Moreover, the map ψ :X→ Y is surjective. Since ψ is proper, it suffices to show
that there is a non-empty open algebraic subset Y ′ ⊂ Y contained in the image of ψ .
Therefore, we can restrict our attention to the affine part A2

K := P
2
K − V (T0). Since

ϕ :X→ P
1
K is surjective, it suffices to show that the fibers over every closed point

z ∈A
1
K − S under the first projection p1 : Y →A

1
K are contained in the image of ψ

where S is a finite set. If we choose S as the set where ϕ is ramified or the projection
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p1 : Y →A
1
K is ramified or not finite, the assertion is true. Indeed, on such a fiber h

takes n different values.
Now let ˜Y → Y be the normalization which is again projective, as Y is projective.

Then the map ψ : X→ Y factorizes through ˜Y → Y , because the local rings of X
are normal. Thus it induces an isomorphism X→ Ỹ .

(b) In the proof of (a) we have shown that the mapK(Xalg)→M(X) is bijective.
(c) By (a) we can identify Ω1

X/K with the analytification of the module of

the regular differential forms on Xalg. By Theorem 1.6.11 the canonical maps
Γ (Xalg,Ω1

Xalg/K
)→ Γ (X,Ω1

X/K) and H 1(Xalg,OXalg)→ H 1(X,OX) are bijec-
tive. Thus, each global analytic differential form is an algebraic one of the same
degree. We know from the algebraic case that the degree of div(ω) equals 2g − 2
where g = dimH 1(Xalg,OXalg)= dimH 1(X,OX). �

Now as we know that X is algebraic, we can rewrite the formula of Riemann-
Roch by using global differential forms. Note that Ω1

X/K equals the analytification

of Ω1
Xalg/K

.

Corollary 1.8.2. Let X be a smooth proper rigid analytic variety of dimension 1
assumed to be geometrically connected. Then for every divisor D of X we have

dimK H
0(X,OX(D)

)= degD+ 1− g + dimK H 0(X,Ω1
X/K(−D)

)

,

where g := dimK H
1(X,OX) is the genus of X.



Chapter 2
Mumford Curves

The incentive to create the theory of holomorphic functions over a non-Archimedean
field was Tate’s elliptic curve. By means of rigid geometry one can explain Tate’s
elliptic curve from the geometric point of view, whereas Tate originally formulated
it in terms of function fields; cf. Sect. 2.1.

In the following sections we study Mumford’s generalization of Tate’s curve to
curves of higher genus in the context of rigid geometry. We introduce discontinuous
actions of certain subgroups Γ of PGL(2,K) on the projective line in the style of
Schottky. The structure of these groups Γ was found by Ihara; cf. Sect. 2.2.

Mumford curves will be introduced as orbit spaces Γ \Ω , where Ω ⊂ P
1
K is the

largest subdomain of P1
K on which Γ acts in an ordinary way. The construction of

the quotient Γ \Ω can be carried out in the framework of classical rigid geometry.
Note that Mumford achieves much more general results in his ground braking article
[75] which deals exclusively with formal schemes. The concept here follows geo-
metric constructions in order to explain the ideas behind Mumford’s construction.

Chapter 2 is somehow a counterpart of Riemann surfaces and their Jacobians.
We provide the full picture of Mumford curves and their Jacobians which are rigid
analytic tori. We show the duality theory of rigid analytic tori, Riemann’s period
relations and, moreover, Riemann’s vanishing theorem.

Our approach is a refined version of the work of Drinfeld and Manin [64]
and [65], where they work over a p-adic field; i.e., a finite extension of Qp . Here
we consider a general non-Archimedean field as defined in Definition 1.1.1; notably
we mention the work of Gerritzen [31–33].

2.1 Tate’s Elliptic Curve

The following statements can be found in [85, §3, VI and VII] or [93], where they
are stated for non-Archimedean fields; cf. Definition 1.1.1.

Theorem 2.1.1 (Tate). Let K be a non-Archimedean field of arbitrary character-
istic and let q ∈ K× with 0 < |q| < 1. Then the field of meromorphic q-periodic
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functions on Gm,K is an elliptic function field F(q); i.e., F(q) is finitely gen-
erated field of transcendence degree 1 over K and of genus 1. More precisely,
F(q)=K(℘, ℘̃), where

℘(ξ) =
∑

n∈Z

qnξ

(1− qnξ)2
− 2 · s1,

℘̃(ξ) =
∑

n∈Z

q2nξ2

(1− qnξ)3
+ s1

with

s� :=
∑

m≥1

m�qm

1− qm
for � ∈N.

The associated projective curve E(q) is given by the inhomogeneous equation

℘̃2 +℘ · ℘̃ = ℘3 +B ·℘ +C

for B := −5 · s3, C := 1
12 (5 · s3 + 7 · s5), which actually lie in qZ[[q]].

Its j -invariant is

j (q)= (1− 48 ·B)3
Δ

= 1

q
+R(q),

where

R(q)= 744+ 196884 · q + · · · ∈ Z[[q]],
Δ(q)= B2 −C − 64 ·B3 + 72 ·BC − 432 ·C2 = q ·

∏

n≥1

(

1− qn
)24 ∈ Z[[q]].

For every element j ∈ K with |j | > 1 there exists a unique q ∈ K with
0< |q|< 1 such that j = j (q).

In the above statement, the ring Z[[q]] is viewed as a subring of K . Actually,
the Tate curve can also be defined over the power series ring Z[[Q]], where Q is a
variable.

Note that the theorem is entirely stated in terms of function fields. The associ-
ated elliptic curve E(q) of the function field F(q) is defined via the equivalence
of categories between the category of function fields and the one of normal projec-
tive curves. In terms of rigid geometry E(q) is a 1-dimensional rigid analytic torus
Gm,K/q

Z.
Up to a finite separable extension of the ground field there are two types of elliptic

curves over a non-Archimedean field; cf. [15, §1.5]:

Theorem 2.1.2. Let E be an elliptic curve over a non-Archimedean field K . After
a suitable finite separable extension of the ground field there are two possibilities:
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(i) If |j (E)| ≤ 1, then E has good reduction.
(ii) If |j (E)|> 1, then E is isomorphic to the rigid analytic torus Gm,K/q

Z for a
unique q ∈K× with 0 < |q|< 1. The j -invariant bijectively depends on q by a
series

j (q)= 1

q
+ f (q)

with f (q) ∈R[[q]] ⊂K . Thus, j (q) converges on the open punctured disc and
j gives rise to a biholomorphic map

j : {q ∈K×;0< |q|< 1
} ˜−→{j ∈K×; |j |> 1

}

.

Over an algebraically closed field, an elliptic curve is uniquely determined up to
isomorphism by its j -invariant. If the characteristic of the ground field is unequal 2,
every elliptic curve E can be defined by a Legendre equation

E ∼=Eλ := V
(

Y 2 ·Z −X · (X−Z) · (X− λZ)
)⊂ P

2
K

in the projective plane with λ ∈K − {0,1}. Its j -invariant is

j (E)= 28 (1− λ+ λ2)3

λ2(1− λ)2

which is invariant under the substitution

λ �−→ λ, 1− λ,
1

λ
,

1

1− λ
,

λ− 1

λ
,

λ

λ− 1
.

This reflects the isomorphism Eλ
∼=Eλ′ for λ′ equal to one of these values. In view

of these isomorphisms, we may assume that |λ| ≤ 1, when K is a non-Archimedean
field. Then

Eλ has good reduction if and only if |λ| = 1 and |1− λ| = 1.

Eλ has multiplicative reduction if and only if 0< |λ|< 1 or |1− λ|< 1.

Good reduction means that the polynomial P(X) :=X(X− 1)(X− λ) has three
distinct roots in the reduction, whereas multiplicative reduction means that two roots
of P(X) collapse in the reduction.

The relationship between the modulus q and the Legendre parameter λ ∈K with
0< |λ|< 1 is the following:

q(λ)= c2λ
2 + c3λ

3 + · · ·
with |c2| = 1 and |ci | ≤ 1 for i ∈N. There are always exactly two values λ1, λ2 such
that |λi |< 1 for i = 1,2 with j (λ1)= j (λ2); cf. [10, §9.7].

Using rigid geometry, one can construct Tate’s curve in a geometric way.
Consider an element q ∈ K of a non-Archimedean field K with absolute value
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0 < |q|< 1. Then M := {qn;n ∈ Z} is a multiplicative lattice in the multiplicative
group Gm,K in the sense of Sect. 2.7 and hence one can construct the quotient

E(q) :=Gm,K/M,

which is a proper smooth rigid analytic curve. We know from Theorem 1.8.1 that
E(q) is the analytification of a smooth projective curve. It is easy to show that E(q)
is an elliptic curve. Moreover, in the situation of Theorem 2.1.1, the field of rational
functions on E(q) is the field F(q).

In the next section we will study more general group actions than Tate’s action
M × P

1
K → P

1
K ; (q, z) �−→ q · z, on the projective line. The group M is only a

special case of a Schottky group; cf. Example 2.2.3, and so Tate’s curves are a
special case of Mumford curves; cf. Theorem 2.3.1. In the following sections we
will present much more general results.

2.2 Schottky Groups

From now on, let K be a non-Archimedean field as defined in Definition 1.1.1. In
this section we will study the structure of those finitely generated subgroups of the
projective linear group PGL(2,K), which are free of torsion and act discontinuously
on a non-empty open subdomain of the projective line.

For this, we cannot make use of the tree presentation of p-adic numbers as Drin-
feld and Manin do. Instead we follow the classical method of isometric circles as
invented by Ford [28]; see also the article of Gerritzen [31], which was slightly
generalized by Kotissek [57].

In the following we consider the projective line P
1
K and equip the set P1

K(K)

of its K-rational points with the topology induced by the absolute value of K . The
points in P

1
K(K)=K ∪ {∞} can be written in the form [x, y] for (x, y) ∈K2− {0}

if we want to mention their homogeneous coordinates. Hereby two symbols [x, y]
and [x′, y′] are identified if there exists a λ ∈ K× with (x′, y′) = λ(x, y). A point
z ∈K corresponds to [z,1] and ∞ to [1,0].

Each matrix A := ( a b
c d

) ∈GL(2,K) gives rise to an automorphism

γA : P1
K −→ P

1
K, z= [x, y] �−→

az+ b

cz+ d
:= [ax + by, cx + dy],

with the usual convention for ∞:

az+ b

cz+ d
:=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

az+ b

cz+ d
if cz+ d 
= 0 and z 
=∞,

∞ if cz+ d = 0 and z 
=∞,

a/c if z=∞ and c 
= 0,

∞ if z=∞ and c= 0.
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Such a map is called a Möbius transformation. The map γA equals id if and only if
A= λ · I2 for some λ ∈K×. For all A,B ∈GL(2,K) we have that γA◦B = γA ◦ γB .
The group

PGL(2,K) :=GL(2,K)/K×

is called the projective linear group. It is easy to see that PGL(2,K) is the group
of K-rational automorphisms Aut(P1

K) of the projective line. It is generated by the
elements (z �→ z+ b, z �→ a · z, z �→ 1/z), because

az+ b

cz+ d
= bc− ad

c2

(

z+ d

c

)−1

+ a

c

for c 
= 0.

Definition 2.2.1. Let z1, z2, z3, z4 ∈ P
1
K(K) with {z1, z2} ∩ {z3, z4} = ∅, then

CR(z1, z2, z3, z4) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

z1 − z3

z1 − z4
· z2 − z4

z2 − z3
for z1, z2, z3, z4 ∈K

z1 − z3

z2 − z3
for z1, z2, z3 
=∞, z4 =∞

z2 − z4

z1 − z4
for z1, z2, z4 
=∞, z3 =∞

z1 − z3

z1 − z4
for z1, z3, z4 
=∞, z2 =∞

z2 − z4

z2 − z3
for z2, z3, z4 
=∞, z1 =∞

1 for z1 = z2 =∞ oder z3 = z4 =∞

is called the cross ratio of z1, z2, z3, z4. The cross ratio is invariant under Möbius
transformations.

Each matrix A ∈ GL(2,K) has two eigenvalues λ1, λ2 ∈ L×, where L/K is a
field extension of degree [L :K] ≤ 2. If λ1 
= λ2, the map γA has two fixed points
z1, z2 ∈ P

1
K(L). One can choose the coordinate in such a way that z1 = 0 and

z2 =∞. Then the map γA is just the multiplication by q := λ1/λ2. If |λ1| < |λ2|,
then z1 is the attractive fixed point and ∞ is the repelling fixed point. This means
that, for every w ∈ P

1
K − {0,∞}, the sequence (γ nA(w);n ∈ N) converges to z1. In

particular, z1 and z2 are K-rational in this case as K is complete. Such transfor-
mations are called hyperbolic transformations. The element qγ := q is called the
multiplier of the hyperbolic transformation γ ; it is uniquely determined by γ due
to the requirement that |qγ | < 1. If |λ1| = |λ2|, then the transformation is called
elliptic. In this case, the transformation is of type z �→ a · z with |a| = 1.
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If λ1 = λ2, then the transformation is called parabolic. In this case, the transfor-
mation looks like z �→ z+ b. Thus, we have the following:

γA elliptic or parabolic ⇐⇒
∣

∣

∣

∣

(a + d)2

ad − bc

∣

∣

∣

∣

≤ 1,

γA hyperbolic ⇐⇒
∣

∣

∣

∣

(a + d)2

ad − bc

∣

∣

∣

∣

> 1.

Consider a subgroup Γ ⊂ PGL(2,K) and a K-rational point w of P1
K(K). Put

LΓ (w) :=
{

z ∈ P
1
K(K); there exists pairwise distinct γn ∈ Γ

for n ∈N with γn(w)→ z

}

.

Even, if one allows limit points z with values in some field extension, then they are
K-rational, because K is complete and w is K-rational. Put

LΓ :=
⋃

w∈P1
K(K)

LΓ (w), the set of limit points of Γ,

ΩΓ := P
1
K −LΓ , the set of ordinary points of Γ.

These group are named discontinuous if LΓ 
= P
1
K(K) and if for every point w of

P
1
K(K) the topological closure Γw of the orbit of w is compact with respect to the

metric topology of P1
K(K). If K is locally compact, the latter hypothesis is always

fulfilled.

Definition 2.2.2. A subgroup Γ ⊂ PGL(2,K) is called a Schottky group if Γ is
finitely generated, free of torsion and discontinuous.

The group is named after Friedrich Schottky (1851–1935) who worked with sim-
ilar group actions in complex analysis [86].

Example 2.2.3. If γ ∈ PGL(2,K) is hyperbolic, then Γ := 〈γ 〉 is a Schottky
group. The set LΓ of the limit points of Γ consists of the two fixed points of γ .

Proof. We may assume that 0 and∞ are the fixed points. Then γ acts via multipli-
cation with an element λ ∈K× with |λ| 
= 1. Then it is clear that Γ is free of torsion
and Γw is compact for all w ∈ P

1
K(K) and LΓ = {0,∞}. �

This example corresponds to Tate’s elliptic curve. The most general example is
presented in Example 2.2.13. In the following let Γ be a Schottky group. For a
γ = γA with c 
= 0 set

rγ :=
√|ad − bc|

|c| .

In the following we collect some properties of Schottky groups.
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Proposition 2.2.4. If Γ ⊂ PGL(2,K) is a Schottky group, then we have:

(a) Γ is discrete.
(b) Every γ ∈ Γ − {id} is hyperbolic.
(c) If ∞ /∈ LΓ , then for γ = γA ∈ Γ with A= ( a b

c d

) ∈GL(2,K) we have:

γ = id ⇐⇒ γ (∞)=∞ ⇐⇒ c= 0.

(d) If ∞ /∈ LΓ , then R(Γ, δ) := {γ ∈ Γ − {id}; rγ ≥ δ} is finite for every δ > 0.
(e) LΓ (w) is closed for every w ∈ P

1
K(K).

(f) LΓ = LΓ (∞) if ∞ /∈ LΓ .

Proof. (a) The unit element of Γ is not an accumulation point of Γ , because other-
wise LΓ = P

1
K(K).

(b) Assume that γ ∈ Γ − {id} is elliptic or parabolic. For a suitable choice of the
coordinate γ is given by a matrix

(

λ 0
0 1

)

or by
( 1 b

0 1

)

, respectively. Since γ is not of
finite order, the elements (γ n;n ∈ N) are pairwise distinct. Since the closure of the
orbit Γ [1,1] or of Γ [1,0], respectively, is compact, we may assume that the limit
lim
n→∞γ n[1,1] or lim

n→∞γ n[0,1], respectively, exists and is a limit point. Then it is

easy to see that the identity is an accumulation point of Γ . This contradicts (a).
(c) Only the assertion that c= 0 implies γ = id requires a proof. In this case γ is

of type z �→ az+ d . By (b) the map γ equals id or is hyperbolic. The latter means
that |a| 
= 1. Then we may assume |a|> 1 and hence∞ is the limit of the sequence
γ n[1,1]. Since [1,0] =∞ /∈ LΓ , we get γ = id.

(d) By (c) the value rγ is defined for every γ ∈ Γ −{id}. If R(Γ, δ) has infinitely

many elements, then there exist matrices An :=
( an bn

1 dn

)

in PGL(2,K) such that
(γn := γAn ∈ R(Γ, δ);n ∈ N) are pairwise distinct. Since Γ is discontinuous, we
may assume that the sequences an = γn(∞), dn = −γ−1

n (∞) and bn = −γn(0) ·
γ−1
n (∞) converge to elements a, b, c of P1

K(K). Since ∞ /∈ LΓ , the points a, b, c
lie in K , and hence

lim
n→∞

(

an bn
1 dn

)

=
(

a b

1 d

)

=:A ∈M(2× 2,K).

The determinant of A is lim
n→∞|andn − bn| = lim

n→∞ r2
γn
≥ δ2. Thus, the limit

lim
n→∞γn = γ belongs to PGL(2,K). This contradicts (a).

(e) We may assume that w ∈ K by choosing a suitable coordinate of P
1
K . Let

zm ∈ LΓ (w) for m ∈ N with z0 := lim
m→∞ zm. There exists an element γm ∈ Γ such

that |γm(w) − zm| < 1/m and γm /∈ {γ1, . . . , γm−1}. Then lim
m→∞γm(w) = z0 and,

hence, z0 ∈ LΓ (w).
(f) Consider an element z ∈ LΓ (w) for some w ∈ P

1
K(K) and let z be the limit

lim
n→∞γn(w). If there exists a c > 0 with |w− γ−1

n (∞)| ≥ c for all n ∈N, then

∣

∣γn(∞)− γn(w)
∣

∣=
∣

∣

∣

∣

an

cn
− anw+ bn

cnw+ dn

∣

∣

∣

∣

= r2
γn

|w− γ−1
n (∞)| ≤

r2
γn

c
,
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which converges to 0 by (d). If for every c > 0 there exists an n ∈ N such that
|w − γ−1

n (∞)| ≤ c, then lim
n→∞γn(w) ∈ LΓ (∞). Since LΓ (∞) is closed by (e), it

follows that z ∈ LΓ (∞). �

Notation 2.2.5. For later use we provide some explicit calculations when∞ /∈ LΓ .
Consider a Möbius transformation γ given by an invertible matrix A := ( a b

c d

)

in
GL(2,K). The inverse of A is

(

a b

c d

)−1

= 1

ad − bc

(

d −b
−c a

)

.

Let Γ be a Schottky group with ∞ /∈ LΓ . For γ := γA ∈ Γ − {id} put

rγ :=
√|ad − bc|

|c| , rγ−1 = rγ ,

mγ := γ−1(∞)=−d/c, mγ−1 = γ (∞)= a/c,

vγ (z) := γ ′(z)= ad − bc

(cz+ d)2
, vγ−1(z)= (γ−1)′(z)= ad − bc

(−cz+ a)2
,

∣

∣vγ (z)
∣

∣= r2
γ

|z−mγ |2 ,

V −γ :=
{

z ∈ P
1
K ;
∣

∣vγ (z)
∣

∣> 1
}= {z ∈ P

1
K ; |mγ − z|< rγ

}

,

V +γ :=
{

z ∈ P
1
K ;
∣

∣vγ (z)
∣

∣≥ 1
}= {z ∈ P

1
K ; |mγ − z| ≤ rγ

}

.

Note that c 
= 0 due to Proposition 2.2.4(c). For γ = id set vid = 1.
The domains of type V −γ and V +γ are called open rational discs and closed ratio-

nal discs, respectively; cf. Definition 2.4.1 below. They are isomorphic to the open
unit disc and to the closed unit disc, respectively.

As an example, consider a matrix A := ( 0 q2

1 1

)

with 0 < |q| < 1. Thus, we have

that γ z = q2/(z+ 1) for γ := γA. Then mγ =−1, mγ−1 = 0 and rγ = |q|. In this
case we have

V +γ = {z ∈ P
1
K ; |z+ 1| ≤ |q|},

V +
γ−1 =
{

z ∈ P
1
K ; |z| ≤ |q|

}

.

In particular, one computes γ (P1
K − V −γ )= V +

γ−1 and V +γ ∩ V +γ−1 = ∅.

Lemma 2.2.6. Let Γ ⊂ PGL(2,K) be a Schottky group with ∞ /∈ LΓ . Then with
the above notations we have:

(a) vαβ(z)= vα(βz) · vβ(z) for α,β ∈ Γ .
(b) γ (P1

K − V −γ )= V +
γ−1 and γ (P1

K − V +γ )= V −
γ−1 for γ ∈ Γ − {id}.

(c) |mα −mβ | = rα · rβ
rαβ−1

for elements α,β ∈ Γ with α 
= β .

(d) V +γ ∩ V +γ−1 = ∅ for γ ∈ Γ − {id}.
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Proof. (a) follows from the chain rule for derivatives.
(b) follows from vγ−1(γ z)= 1/vγ (z) as was shown in (a).
(c) follows by a direct computation.
(d) follows from (c). Indeed, every element γ ∈ Γ − {id} is hyperbolic and

γ 
= γ−1. Therefore, |mγ −mγ−1 | = |a+d|√|ad−bc| · rγ > rγ . �

Definition 2.2.7. Let Γ ⊂ PGL(2,K) be a Schottky group. A fundamental domain
for Γ is a complement

E := P
1
K −
(

B−1 ∪ · · · ∪B−n
)

of a finite union of open discs satisfying the following properties:

(i)
⋃

γ∈Γ γ (E) equals the set ΩΓ of ordinary points of Γ ,
(ii) E ∩ γ (E)= ∅ for almost all γ ∈ Γ ,

(iii) E ∩ γ (E−)= ∅ for all γ ∈ Γ − {id} where

E− := P
1
K −
(

B+1 ∪ · · · ∪B+n
)

is the complement of the union of the associated closed discs.

In this context a disc is a rational disc; i.e., it is given by a center which is a point
in K and a radius belonging to |K×| so that B− and B+ are defined.

Lemma 2.2.8. In the situation of Lemma 2.2.6, let V −γ be defined as in Nota-
tion 2.2.5 and let R(Γ, δ) ⊂ Γ be defined as in Proposition 2.2.4. Let δ > 0 be
small enough such that R(Γ, δ) is a system of generators of Γ . If α = γ1 · . . . · γn is
a minimal representation with elements γi ∈R(Γ, δ), then V −α ⊂ V −γn .

Proof. We proceed by induction on n. For n= 1 there is nothing to prove. Thus, let
n ≥ 2, and set β := γ2 · . . . · γn. Due to the induction hypothesis V −β ⊂ V −γn . Since
α /∈R(Γ, δ), we have rα < δ ≤ rγ1 . From Lemma 2.2.6 it follows that |mα −mβ | =
rαrβ/rγ1 < rβ , and hence V −α ⊂ V −β ⊂ V −γn due to the ultrametric inequality. �

Lemma 2.2.9. In the situation of Lemma 2.2.6, set V(Γ ) := {V −γ ;γ ∈ Γ − {id}}
and

R(Γ ) := {γ ∈ Γ ;V −γ maximal in V(Γ )
}

.

Then R(Γ ) is finite and R(Γ ) is stable under the map γ �−→ γ−1.

Proof. The finiteness follows from Lemma 2.2.8 and Proposition 2.2.4(d). The sec-
ond claim follows from

V −α � V −β ⇐⇒ rβ > |mα −mβ | = rαrβ

rαβ−1
and rα < rβ

⇐⇒ rα < rαβ−1 and rα < rβ

⇐⇒ rα−1 < rβα−1 and rα−1 < rβ−1 ⇐⇒ V −
α−1 � V −

β−1 . �
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Proposition 2.2.10. In the situation of Lemma 2.2.6, we have:

(a) E := P
1
K −
⋃

α∈R(Γ ) V −α is a fundamental domain for Γ .
(b) R(Γ ) generates Γ .

Proof. (a) From Lemma 2.2.8 it follows

E = {z ∈ P
1
K ;
∣

∣vγ (z)
∣

∣≤ 1 for all γ ∈ Γ − {id}},
E− = {z ∈ P

1
K ;
∣

∣vγ (z)
∣

∣< 1 for all γ ∈ Γ − {id}}.

R(Γ ) is finite due to Lemma 2.2.9, so E is an affinoid domain of P
1
K . Due to

Lemma 2.2.8 the set E contains only ordinary points and E ∩ γ (E) 
= ∅ only when
γ ∈ R(Γ ) ∪ {id}, which is a finite set. Thus, γ (E) contains only ordinary points,
and hence

⋃

γ∈Γ γ (E)⊂ΩΓ .
To show the converse inclusion, consider z ∈ΩΓ . Such a point is contained only

in a finite number of discs V ∈V(Γ ). Indeed, assuming the contrary, there would
exist an infinite number of γn ∈ Γ such that z ∈ V −γn . Since rγn → 0 due to Proposi-

tion 2.2.4(d), the point z would be the limit of the points mγn = γ−1
n (∞) and hence

z would belong to LΓ (∞). That would be a contradiction to z ∈ΩΓ .
For z ∈ΩΓ −E put

a := sup
γ∈Γ
∣

∣vγ (z)
∣

∣> 1.

Since |vγ (z)| > 1 for only finitely many γ ∈ Γ , the supremum is attained, say
a = |vα(z)|. Then we see by Lemma 2.2.6(a) that

∣

∣vγ
(

α(z)
)∣

∣= |vγα(z)||vα(z)| ≤ 1 for all γ ∈ Γ,

and hence α(z) ∈E. Thus, we obtain ΩΓ =⋃γ∈Γ γ (E).
It remains to show that E− ∩ γ (E) = ∅. For every point z ∈ E− we have

|vγ (z)|< 1. Since

1= vid(z)= vγ−1γ (z)= vγ−1

(

γ (z)
) · vγ (z),

it follows that |vγ−1(γ (z))|> 1, and hence γ (z) /∈E for all γ ∈ Γ − {id}.
(b) Let Γ ′ := 〈R(Γ )〉 ⊂ Γ be the subgroup generated by R(Γ ). Then Γ and Γ ′

have the same fundamental domain, as follows from (a). Thus, P1
K −
⋃

α∈R(Γ ) V −α
is a fundamental domain for Γ ′ as well. From (a) it follows ΩΓ ′ ⊂ΩΓ . Obviously
we have that LΓ ′ ⊂ LΓ , and hence ΩΓ ′ =ΩΓ . Consider now some γ ∈ Γ . Then
γ (∞) ∈ΩΓ ′ . Thus, there exists γ ′ ∈ Γ ′ such that γ ′γ (∞) ∈E. Since∞∈E− and
γ ′γ (∞) ∈E, we see that γ ′γ = id by (a) and thus γ ∈ Γ ′. �

Later on, we want to construct the quotient XΓ := Γ \ΩΓ explicitly. For this
construction, it is useful to have a suitable fundamental domain. However the fun-
damental domain of Proposition 2.2.10(a) can be quite complicated. For example,
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the system (V −α α ∈ R(Γ )) has the disadvantage that it can happen that V −α = V −β
and V −

α−1 
= V −
β−1 or V −α � V +β − V −β . In the following we want to improve the sys-

tem by varying the radii which are chosen equal to 1 for the above system. We will
do it in a constructive way.

Notation 2.2.11. Let Γ ⊂ PGL(2,K) be a Schottky group with ∞ /∈ LΓ and let
ρ : Γ →K

×
be a group homomorphism into the multiplicative group of the com-

plete algebraic closure K of K . For γ ∈ Γ − {id} set

wγ (z) := ρ(γ ) · vγ (z)= ρ(γ ) · γ ′(z) so that wαβ(z)=wα

(

β(z)
) ·wβ(z),

W−
γ :=
{

z ∈ P
1
K ;
∣

∣wγ (z)
∣

∣> 1
}= {z ∈ P

1
K ; |z−mγ |<

√

∣

∣ρ(γ )
∣

∣ · rγ
}

,

W+
γ :=
{

z ∈ P
1
K ;
∣

∣wγ (z)
∣

∣≥ 1
}= {z ∈ P

1
K ; |z−mγ | ≤

√

∣

∣ρ(γ )
∣

∣ · rγ
}

.

Note that wγ (z) is the derivative of γ (z) := ρ(γ ) · γ (z) and mγ = mγ and
rγ =√|ρ(γ )| · rγ . If |ρ(γ )|< 1 then W+

γ ⊂ V −γ and V +
γ−1 ⊂W−

γ−1 .

The product formula implies γ (P1
K −W±

γ )=W∓
γ−1 as in Lemma 2.2.6(b). Put

F := P
1
K −
⋃

γ∈Γ−{id}
W−
γ =
{

z ∈ P
1
K ;
∣

∣wγ (z)
∣

∣≤ 1 for all γ ∈ Γ − {id}},

F− := P
1
K −
⋃

γ∈Γ−{id}
W+
γ =
{

z ∈ P
1
K ;
∣

∣wγ (z)
∣

∣< 1 for all γ ∈ Γ − {id}}.

ρ is called separating if there exists a finite system of generators α1, . . . , αg of Γ
such that the closed discs W+

α1
, . . . ,W+

αg
,W+

α−1
1
, . . . ,W+

α−1
g

are pairwise disjoint. In

this case, we use the numbering αg+j := α−1
j for j = 1, . . . , g.

Proposition 2.2.12. In the situation of Notation 2.2.11, assume that the homomor-
phism ρ : Γ →K

×
is separating. Then we have the following:

(a) There exists an element q ∈ √|K×|, q < 1 such |wαi (z)| < q for all z ∈W+
αj

and j ∈ {1, . . . ,2g} with j 
= i.
(b) Let γ = αj(1) · . . . ·αj(n) be a reduced representation with αj(ν) in {α1, . . . , α2g}

and n≥ 1. Consider a point z ∈ P
1
K −W−

αj(n)
. Then γ (z) belongs to W+

α−1
j (1)

and

|wγ (z)|< qn−1; in particular, this is true for z ∈ F .
If n≥ 2, then we even have that γ (z) ∈W−

α−1
j (1)

.

(c) We have that W−
γ ⊂W−

αj(n)
for every γ ∈ Γ − {id} as in (b). In particular,

F = P
1
K −

2g
⋃

i=1

W−
αi

and F− = P
1
K −

2g
⋃

i=1

W+
αi
.

(d) The system (W−
α1
, . . . ,W−

α2g
) of discs has the properties:
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(d.1) γ (F )∩ F 
= ∅⇐⇒ γ ∈ {id, α1, . . . , α2g},
(d.2) αi(F )∩ F =W+

α−1
i

−W−
α−1
i

.

(e) Γ is a free group and (α1, . . . , αg) is a free system of generators.

Proof. (a) This follows from the maximum principle, but it can also be seen by
explicit calculations as follows. Since W+

αi
∩W+

αj
= ∅ for i 
= j , it follows that

|mαi −mαj |> max
{

rαi ·
√

∣

∣ρ(αi)
∣

∣, rαj ·
√

∣

∣ρ(αj )
∣

∣

}

.

For z ∈W+
αj

and i 
= j it follows that |z −mαi | = |mαj −mαi | by the ultrametric
inequality, and hence

∣

∣wαi (z)
∣

∣= |ρ(αi)| · r
2
αi

|z−mαi |2
= |ρ(αi)| · r2

αi

|mαj −mαi |2
< 1;

cf. Notation 2.2.5. Choose q ∈√|K×| with

1> q >max

{ |ρ(αi)| · r2
αi

|mαj −mαi |2
;1≤ i, j ≤ 2g, i 
= j

}

.

Then q satisfies the assertion.
(b) We proceed by induction on n. For n = 1 is γ = αj(1). For every z in

P
1
K − W−

αj(1)
we have αj(1)(z) ∈ W+

α−1
j (1)
⊂ P

1
K − W+

αj(1)
, because W+

α1
, . . . ,W+

αg
,

W+
α−1

1
, . . . ,W+

α−1
g

are pairwise disjoint. Thus, we obtain for the absolute value

|wαj(1) (z)|< 1= q0.
Now assume n ≥ 2. Set β := αj(2) · . . . · αj(n). From the induction hy-

pothesis we obtain that |wβ(z)| < qn−2 and β(z) ∈ W+
α−1
j (2)
⊂ P

1
K − W+

αj(1)
and

|wαj(1) (β(z))|< q for z ∈ P
1
K −W−

αj(n)
, because αj(1) 
= α−1

j (2). Then it follows that

γ (z)= αj(1)(β(z)) ∈W−
α−1
j (1)

. The inequality follows from the chain rule

∣

∣wγ (z)
∣

∣= ∣∣wαj(1)

(

β(z)
) ·wβ(z)

∣

∣= ∣∣wαj(1)

(

β(z)
)∣

∣ · ∣∣wβ(z)
∣

∣< q · qn−2 = qn−1.

(c) One has mγ = α−1
j (n) · . . . · α−1

j (1)(∞) ∈ W−
αj(n)

and |wγ (z)| < qn−1 for z in

P
1
K −W−

αj(n)
due to (b). Thus, we see that W−

γ ⊂W−
αj(n)

and, hence, W+
γ ⊂W+

αj(n)
.

The latter implies the assertion on F and F−.
(d.1) The implication “→” follows from (b) and “←” follows from (d.2).
(d.2) For α ∈ {α1, . . . , α2g} we have that α(P1

K −W±
α )=W∓

α−1 by the chain rule.
(e) If Γ were not free, then there would be a relation id= αj(1) · . . . · αj(n) with

n≥ 1. So, one obtains z ∈W−
α−1
j (1)

for all z ∈ F due to (b). This is impossible. �

Using Proposition 2.2.12 one can construct examples of Schottky groups.
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Example 2.2.13. Let g ≥ 1 be an integer. Consider g pairs (B−i ,B
−
g+i ) of

open discs and let (B+i ,B
+
g+i ) be the associated closed affinoid discs in P

1
K for

i = 1, . . . , g. Assume that the 2g closed discs are pairwise disjoint and that∞ does
not belong to any of the closed discs.

Let α1, . . . , αg be Möbius transformations in PGL(2,K) such that
αi(P

1
K −B+i )= B−g+i for i = 1, . . . , g. Then Γ := 〈α1, . . . , αg〉 is a Schottky group

and (α1, . . . , αg) is a free system of generators.

A fundamental domain for Γ is given by F := P
1
K −
⋃2g

i=1B
−
i and the set of its

associated ordinary points is given by ΩΓ =⋃γ∈Γ γ (F ).
Such transformations αi ∈ PGL(2,K) with αi(P

1
K − B+i ) = B−g+i exist for

i = 1, . . . , g if the centers and the radii of B1, . . . ,B2g are K-rational.

Proof. Using the geometric configuration, one verifies that all the statements of
Proposition 2.2.12 hold. First one shows that Γ is free and that (α1, . . . , αg) is a
free system of generators. In fact, put αg+i := α−1

i for i = 1, . . . , g, as before. If
γ = αj(1) . . . αj (n) ∈ Γ is a reduced representation with j (i) ∈ {1, . . . ,2g}, then
γ (∞) ∈ B−

α−1
j (1)

. Therefore γ 
= id. Then one can construct a group homomorphism

ρ : Γ → K
×

by choosing the images of ρ on the generating system (α1, . . . , αg)

arbitrarily. So one can define ρ such that B±i =W±
αi

for i = 1, . . . ,2g. As in Propo-
sition 2.2.12 all assertions on F resp. ΩΓ follow.

It remains to show that Γ acts discontinuously. We only have to explain that the
closure of the orbit Γw is compact for every w ∈ P

1
K(K). Since∞ /∈ LΓ , it suffices

to show that every sequence (γi(w); i ∈ N) with pairwise distinct γi ∈ Γ admits a
convergent subsequence. Put

F(n) :=
⋃

�(γ )≤n
γ (F )= P

1
K − (Bn,1 ∪ · · · ∪Bn,r(n)),

where Bn,j are open discs contained in a large disc B0 := {z ∈A
1
K ; |z| ≤ c} be-

cause of ∞∈ F . The symbol �(γ ) indicates the number of elements used in a re-
duced representation of γ as a product of the αi . Note that there are only finitely
many γ ∈ Γ with �(γ ) ≤ n. Since F is a fundamental domain for Γ , almost all
(γi(w); i ∈N) are contained in P

1
K −Fn. So almost all (γi(w); i ∈N) are contained

in (Bn,1 ∪ · · · ∪Bn,r(n)). Then there exists a sequence (Bn,k(n);n ∈N) such that in-
finitely many of the elements (γi(w); i ∈N) are contained in Bn,k(n). Moreover, we
can arrange the sequence in such a way that

Bn+1,k(n+1) ⊂ Bn,k(n) for all n ∈N.

The radii ρ(n) of Bn,k(n) tend to 0 for n→∞. In fact, the set of the heights
(cf. Definition 1.3.3) of the annuli Bn,k(n) − Bn+1,k(n+1) is finite, because they
are related under certain elements of Γ . Now we can choose elements i(n) ∈ N

such that γi(n)(w) ∈ Bn,k(n) for all n ∈ N. Since the radii ρ(n) tend to 0, the se-
quence (γi(n)(w);n ∈N) is a Cauchy sequence. Since K is complete, the sequence
(γi(n)(w);n ∈N) converges. �
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Now we come to the main theorem of this section. The key result here is that
every Schottky group can be obtained by the method of Example 2.2.13.

Theorem 2.2.14. Let Γ be a Schottky group with∞ /∈ LΓ . Let R(Γ ) be the subset
of Γ indexing the maximal discs V −γ ; cf. Lemma 2.2.9.

Then for every q ∈R with q < 1 there exists a group homomorphism ρ : Γ →K
×

and a separating system of generators α1, . . . , αg of Γ with respect to ρ with the
following properties:

(i) αi ∈R :=R(Γ ) for i = 1, . . . , g.
(ii) q <

√|ρ(αi)|< 1 for i = 1, . . . , g.

In particular, (α1, . . . , αg) is a free system of generators of Γ .

Proof. We proceed by induction on the number of elements of R :=R(Γ ).
If R consists of ≤ 2 elements, then Γ = 〈γ 〉 is the free group generated by one

element; cf. Proposition 2.2.10.
The induction step will be done in several steps depending on the geometry of

the fundamental domain given by the discs (V −α ;α ∈ R) defined in Lemma 2.2.9.
Now we define

t :=min{rα;α ∈R},
R′ := {α ∈R; rα > t},
Γ ′ := 〈R′〉,
q ′ :=max

{

q,
rα

|mα −mβ | ;α,β ∈R, |mα −mβ |> rα

}

.

By the induction hypothesis we may assume that there exist a group homomorphism
ρ′ : Γ ′ →K

×
and a separating system α1, . . . , αg for the subgroup Γ ′ := 〈R′〉 ⊂ Γ

with respect to ρ′, where q ′ <
√|ρ′(αi)| < 1 for i = 1, . . . , g. Here q ′ is cho-

sen in such a way that for the enlarged discs W+
α−1
i

we have V −γ ∩ W+
α−1
i

= ∅ if

|mγ −m
α−1
i
|> r

α−1
i
= rαi and γ ∈ R −R′ Due to Proposition 2.2.12(c), the group

Γ ′ has the fundamental domain

F ′ := P
1
K −

2g
⋃

i=1

W−
αi
= P

1
K −

⋃

γ∈Γ ′−{id}
W−
γ .

Now we have to consider the elements γ ∈R with V −γ ⊂ F ′. This set is given by

T ′ := {α ∈R; rα = t,mα ∈ F ′
}⊂R−R′.

Moreover, we know that R(Γ ′)=R′. In fact, the inclusion R′ ⊂R(Γ ′) is trivial be-
cause of R′ ⊂ R(Γ ). Conversely, by Lemma 2.2.8 for every α ∈R(Γ ′) there exists
an element β ∈ R′ with V −α ⊂ V −β , because R′ generates Γ ′. Since V −α is maximal

and β ∈ Γ ′, we obtain that V −α = V −β and hence α ∈ R′ as R′ is a subset of R(Γ ).
In particular, we see that α1, . . . , αg ∈R′.
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Due to the induction principle, we may assume that 〈Γ ′, T ′〉 = Γ . The problem
now is how to vary the radii of the discs V −α for α ∈R−R′ via a suitable extension

ρ : Γ →K
×

of ρ′ : Γ ′ →K
×

in order to obtain a separating system for Γ . For this
we have to analyze the configuration of the discs (V −α ;α ∈ T ′).

Let us first deduce some properties of T ′:

(1) If α ∈ T ′ and β ∈ Γ with rβ = t and |mα −mβ | = t , then β ∈ T ′.
Since V −α is maximal and V +β = V +α ⊂ F ′, the disc V −β is maximal and mβ ∈ F ′.

(2) For every γ ∈ R − R′ with mγ /∈ F ′ there exists α ∈ {α1, . . . , αg} such that
|mγ −mα−1 | = rα .

Since mγ /∈ F ′, it follows that mγ ∈W−
α for some α ∈ {α1, . . . , α2g}; i.e.

|mγ −mα|<
√

∣

∣ρ′(α)
∣

∣ · rα.

Since V −γ is maximal, we have that |mγ −mα| ≥ rα , and so
√|ρ′(α)|> 1. Thus, it

follows that α−1 ∈ {α1, . . . , αg}. If |mγ −mα|> rα then, due to the choice of q ′, we
have that

rα ≤ q ′ · |mγ −mα|< q ′ ·
√

∣

∣ρ′(α)
∣

∣ · rα < rα,

since q ′
√|ρ′(α)|< 1. This is impossible, and hence we see |mγ −mα| = rα .

(3) For γ ∈ R − R′ there exists a unique β ∈ R with |mγ −mβ | < t , rβ = t and
β−1 ∈ T ′. In particular, βγ−1 ∈ Γ ′. If γ ∈ T ′, then β ∈ T ′.

For every γ ∈ R − R′ we have rγ = t . If γ−1 ∈ T ′, then we choose β := γ . Oth-
erwise, we have that mγ−1 /∈ F ′ because of the very definition of T ′. So due to (2)
there exists α ∈ {α1, . . . , αg} such that |mγ−1 −mα−1 | = rα . Then set γ1 := α−1γ .
In particular, by Lemma 2.2.6(c) we have

rα = |mγ−1 −mα−1 | = rα · rγ
rα−1γ

= rα · rγ
rγ1

,

and hence rγ1 = rγ = t . So we obtain that γ1 ∈R −R′. Moreover, it follows that

|mγ −mγ1 | =
rγ · rγ1

r
γ γ−1

1

= t2

rα
< t.

If m
γ−1

1
/∈ F ′, then repeat the procedure with γ1 instead of γ . Thus, we can construct

a sequence γn = α−1
j (n) · . . . · α−1

j (1) · γ with j (ν) ∈ {1, . . . , g} and rγn = t such that

|mγn−1 −mγn | =
rγn · rγn−1

rαj(n)
< t and also |mγ −mγn |< t,
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because of the ultrametric inequality. In particular, we have γn ∈ R. Since R has
only finitely many elements, the procedure stops after finitely many steps. In-
deed, if not, then we would arrive at a non-trivial relation id= αj(n) · . . . · αj(m+1),
which is impossible as (α1, . . . , αg) is a free system of generators. Thus, we fi-
nally arrive at the situation that β = γn ∈ R with mβ−1 ∈ F ′; i.e., β−1 ∈ T ′ and

βγ−1 = α−1
j (1) . . . α

−1
j (n) ∈ Γ ′.

If γ ∈ T ′, then mγ ∈ F ′. Since |mγ −mβ |< t , we have mβ ∈ F ′, and then β ∈ T ′
because of rβ = t .

Next we turn to the proof of the uniqueness. Assume that there are α,β in R with
the asserted properties. Now put δ := αβ−1 ∈ Γ ′ and assume δ 
= id. Then we have
that

δ(mβ−1)= αβ−1(β(∞)
)= α(∞)=mα−1;

cf. Notation 2.2.5. Because α−1, β−1 ∈ T ′, we have mα−1 ,mβ−1 ∈ F ′ and hence
F ′ ∩ δ(F ′) 
= ∅. Thus, we see that δ ∈ {α1, . . . , α2g} due to Proposition 2.2.12(d.1),
and hence |ρ′(δ)| 
= 1. Moreover, we have that

|mδ−1 −mα−1 | = rδ · rα
rδ−1α

= rδ · rα
rβ

= rδ,

|mδ −mβ−1 | = rδ · rβ
rδβ

= rδ · rβ
rα

= rδ,

because rα = t = rβ , and hence mβ−1 ∈ V +δ and mα−1 ∈ V +
δ−1 . Since |ρ′(δ)| 
= 1,

we have that V +
δ−1 ⊂W−

δ−1 or V +δ ⊂W−
δ and so mα−1 ∈W−

δ−1 or mβ−1 ∈W−
δ . This

contradicts the fact that mβ−1 ∈ F ′ and mα−1 ∈ F ′ because of α−1, β−1 ∈ T ′.
(4) Γ = 〈Γ ′, T 〉 where T := {α ∈ T ′;α−1 ∈ T ′}.

It suffices to show that γ ∈ 〈Γ ′, T 〉 for all γ ∈ R − R′. From (3) it follows that
γ ∈ 〈Γ ′, T ′〉, and also T ′ ⊂ 〈Γ ′, T 〉. In fact, for α ∈ T ′ there exists β ∈ R with
βα−1 = γ ∈ Γ ′ and β−1 ∈ T ′ by (3). Since α ∈ T ′, we also have that β ∈ T ′ by (3).
Thus, β and β−1 belong to T ′, and hence β ∈ T . Thus, we obtain that α = βγ−1

lies in 〈Γ ′, T 〉.
For α ∈ T put

Tα :=
{

β ∈ T ; |mα −mβ | ≤ t
}

.

Because of the uniqueness in (3), we even have

Tα :=
{

β ∈ T ; |mα −mβ | = t
}∪ {α}.

(5) If α ∈ T and β ∈ Tα , then Tα = Tβ .

This follows from the ultrametric inequality.

(6) If α ∈ T , then Tα−1 = {βα−1;β ∈ Tα,β 
= α} ∪ {α−1}.
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Indeed, if β ∈ Tα and α 
= β , then

t = |mα −mβ | = rα · rβ
rβα−1

= t · t
rβα−1

,

and hence rβα−1 = t . Thus, by the same formula |mβα−1 − mα−1 | = t and so
βα−1 ∈ T ′ due to (1) because of α−1 ∈ T ′. Similarly, one shows that αβ−1 ∈ T ′,
because one can use the fact that Tβ = Tα ; cf. (5). Thus, we see βα−1 ∈ T . The
computation showed βα−1 ∈ Tα−1 . Conversely, consider an element β ∈ Tα−1 with
β 
= α−1. From what we have proved above, it follows that β(α−1)−1 ∈ Tα . Ob-
viously we have that β(α−1)−1 
= α because of β 
= id, and hence the element
β = (β(α−1)−1)α−1 belongs to the right-hand side.

(7) If α ∈ T and β ∈ Tα with α 
= β , then Tα−1 ∩ Tβ−1 = ∅.

Indeed, if Tα−1 ∩ Tβ−1 
= ∅, then Tα−1 = Tβ−1 by (5), and hence Tα = Tβ as
follows from Lemma 2.2.6(c). From (6) we obtain that β−1 = δα−1 for some
δ ∈ Tα . Similarly one has that α−1 = δ−1β−1 ∈ Tβ−1 with δ−1 ∈ Tβ by (6). Since
Tα = Tβ , we see δ, δ−1 ∈ Tα . But this is impossible due to Lemma 2.2.6(d), since
|mδ −mδ−1 |> rδ = t .

For α ∈ T put

Sα := Tα ∪
⋃

β∈Tα
Tβ−1 and Γα := 〈Sα〉.

The union over β ∈ Tα is disjoint due to (7), because by (5) we know that
Tα = Tβ = Tγ for β,γ ∈ Tα . Furthermore, Tα ∩ Tβ−1 = Tβ ∩ Tβ−1 = ∅ due to
Lemma 2.2.6(c). Then (6) implies that

(8)
Sα = Tα ∪ Tα−1 ∪⋃β∈Tα {δβ−1; δ ∈ Tα, δ 
= β}
= Tα ∪ Tα−1 ∪ {δε−1; δ, ε ∈ Tα, δ 
= ε}.

In particular, Sα is invariant under the inverse map γ �→ γ−1. In a special case the
arrangement of the discs is shown in Fig. 2.1.

If γ ∈ Tα , then Tγ = Tα by (5) and hence Sγ = Sα .
If γ ∈ Tβ−1 for some β ∈ Tα , then Tα = Tβ and Tγ = Tβ−1 by (5). Thus, we see

Tγ = Tα−1 . Therefore, we may assume γ = α−1. Since Sα is invariant under the
inverse map, we obtain Sα = Sα−1 . Thus, (6) implies:

(9) We have that Sα = Sγ for every γ ∈ Sα . Therefore,

T = Sτ1∪̇ · · · ∪̇Sτr
is a disjoint union of sets Sτi for suitable τ1, . . . , τr ∈ T .

(10) Tα is a free system of generators of Γα and is separating with respect to a
suitable group homomorphism ρα : Γα→K

×
which can be chosen arbitrarily

close to 1.
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Fig. 2.1 Position of the discs Sα for Tα = {α,β, γ }

Indeed, from (8) it follows 〈Tα〉 = Γα and from (7) that V +
β−1

1
∩ V +

β−1
2
= ∅ for

β1, β2 ∈ Tα with β1 
= β2. For qα ∈ |K×| with qα < 1 put

B+β := {z ∈ P
1
K ; |mβ − z| ≤ qαrβ

}

,

B+
β−1 :=
{

z ∈ P
1
K ; |mβ−1 − z| ≤ rβ/qα

}

,

and define B−β and B−
β−1 similarly. In this way we shrink V ±β and enlarge V ±

β−1

for β ∈ Tα . If we choose qα close to 1, then the discs B+β for β ∈ Tα ∪ T −1
α are

pairwise disjoint. Furthermore, β(P1
K −B±β )= B∓

β−1 for β ∈ Tα . Thus, we arrive at
the situation of Example 2.2.13, and hence Tα is a free system of generators of Γα .

Then we can define ρα : Γα → K
×

by choosing values ρα(β) for β ∈ Tα with
q ′ <

√|ρα(β)| < 1 and extending the map by linearity. This means that we shrink
the discs V −β for β ∈ Tα . Due to (7) we can do this in such a way that the intersection

W+
β−1

1
∩W+

β−1
2
= ∅ is empty for β1, β2 ∈ Tα with β1 
= β2.

(11) R(Γα)= Sα .

By definition we have that Sα ⊂R(Γα). Any γ ∈R(Γα) has a unique representation
as a finite product by elements of Tα ∪ T −1

α . Thus, for every γ ∈R(Γα) we have by
Proposition 2.2.12(c) that W−

γ ⊂W−
β for some β ∈ Tα ∪ T −1

α . Since we can choose

ρα such that |ρα| is arbitrarily close to 1, we obtain that V +γ ⊂ V +β for some β in
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Tα ∪ T −1
α . Thus, we see that |mγ −mβ | ≤ t and rγ = t , because t is the maximal

possible radius. If |mγ − mβ | < t , then γ = β due to (3). If |mγ −mβ | = t , then
γ ∈ Tβ ⊂ Sα , and hence the assertion follows.

In (4) we defined the set T and showed that Γ = 〈Γ ′, T 〉. In (9) we saw that T
decomposes into a disjoint union

T = Sτ1∪̇ · · · ∪̇Sτr .

Put Ti := Tτi and Γi := Γτi := 〈Sτi 〉 = 〈Tτi 〉 for i = 1, . . . , r . In (10) we saw that
Γi is a free group and, moreover, we constructed a separating group homomorphism
ρi : Γi →K

×
. From the induction hypothesis we know that the subgroup Γ0 := Γ ′

is free and that there exists a separating group homomorphism ρ0 := ρ′. Then let
T0 := {α1, . . . , αg} be the separating basis of Γ0. Then set

T = T0 ∪ T1 ∪ · · · ∪ Tr .

Due to our construction we have Ti ∩ Tj = ∅ for i 
= j , and hence V +α ∩V +β = ∅
for α±1 ∈ Ti and β±1 ∈ Tj for i 
= j . With respect to ρ0, . . . , ρr we define the sub-
domains W±

α±1 for α ∈ T as in Notation 2.2.11. We can choose the ρi in such a way

that W+
α ∩W+

β = ∅ for all α,β ∈ T ∪ T −1 with α 
= β . Then we claim

(12) Γ = Γ0 � · · · � Γr

is a coproduct in the category of groups. Let ρ : Γ →K
×

be the group homomor-
phism induced by ρ0, . . . , ρr given on the factors.

In fact, due to (4) the group Γ is generated by Γ0 and T . Since T is contained in
〈Γ1, . . . ,Γr 〉, we have that Γ ⊂ 〈Γ ′,Γ1, . . . ,Γr 〉, and hence that Γ coincides with
〈Γ ′,Γ1, . . . ,Γr 〉.

The direct decomposition
∐r

i=0 Γi of Γ follows as in (10). Indeed, if there is a
reduced product γ := δ±1

j (1) · . . . · δ±1
j (n) with δj (ν) ∈ T , then γ (z) ∈W+

δ−1
j (1)

or γ (z) ∈
W+
δj (1)

for every point z in F := P
1
K −
⋃

δ±1∈T W−
δ . Thus, we see γ 
= id. So, the

coproduct is direct and ρ is a separating morphism.
Then (T , ρ) satisfies the assertion of the theorem. Indeed, each factor in (12) is

a free group due to the induction hypothesis and because of (10).
This finishes the proof of Theorem 2.2.14. �

Remark 2.2.15. The radii rαi of the discs Vαi belong to 2
√|K×|.

If the valuation of K is not discrete, the homomorphism ρ can be chosen in such
a way that ρ ∈ Hom(Γ,K

×
) and the radii 2

√|ρ(αi)| · rαi of the discs Wαi belong
to |K×|.

If the valuation is discrete and π is a uniformizer of the valuation, then

max

{

rα

|mα −mβ | ;α,β ∈R(Γ ), rα < |mα −mβ |
}

≤ 2
√|π |.
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If one puts q = 2
√|π |, then there exists a separating homomorphism ρ in

Hom(Γ,K
×
) with |π | < |ρ(αi)| < 1 for i = 1, . . . , g. Without loss of generality

one can choose |ρ(αi)| = 2
√|π | for i = 1, . . . , g. Then the radii of the discs Wαi

belong to 2
√|K×|. This is the best possibility.

Corollary 2.2.16 (Ihara). Schottky groups are free.

This result was shown by Ihara in the case of a discrete valuation; cf. [48]. See
also the book of Serre [90, II, §1.5].

For later use we add a result on the geometry of the fundamental domain.

Corollary 2.2.17. Let Γ ⊂ PGL(2,K) be a non-trivial Schottky group with
∞ /∈ LΓ . Then there exists a separating system of generators (α1, . . . , αg) with

respect to a suitable homomorphism ρ : Γ → K
×

which can be chosen in such a
way that |ρ(αi)| < 1 is arbitrarily close to 1 for i = 1, . . . , g. Put αg+i = α−1

i for
i = 1, . . . , g, and put

E◦ := P
1
K −
[

V −α1
∪ · · · ∪ V −αg ∪ V +αg+1

∪ · · · ∪ V +α2g

]

.

Then E◦ is a complete system of representative of Γ \ΩΓ .
Let z1, z2 ∈ΩΓ . Assume that z1 ∈ E◦ and βz2 ∈ E◦ for some β ∈ Γ . Then, for

γ ∈ Γ , the following is true:
If β = id, then |γ z1 − γ z2| ≤ rγ .

If β 
= id, then |γ z1 − γ z2| ≤max{ rγ ·rγβ−1

rβ
, rγ , rβγ−1}.

If �(β) is bounded, then the distance |γ z1 − γ z2| → 0 converges uniformly to 0
if �(γ )→∞ tends to ∞.

If V ⊂ΩΓ is an affinoid subdomain, there exists an N ∈ N such that the inter-
section V ∩ γ (V )= ∅ is empty for all γ ∈ Γ with �(γ )≥N .

Proof. The first assertion follows from Theorem 2.2.14. If we approach ρ(αi) to 1
from below for i = 1, . . . , g, then we see that the discs V +α1

, . . . , V +α2g
are the maxi-

mal closed discs in the family (V +γ ;γ ∈ Γ ). Due to Lemma 2.2.6(b) we know that

γ z1 ∈ V +γ−1 and γ z2 = γβ−1(βz2) ∈ V +βγ−1 .

If β = id, then γ z1, γ z2 ∈ V +γ−1 , and hence, |γ z1 − γ z2| ≤ rγ−1 = rγ .
If β 
= id, then |γ z1−mγ−1 | ≤ rγ and |γ z2−mβγ−1 | ≤ rβγ−1 ; cf. Notation 2.2.5.

Then it follows from Lemma 2.2.6(c) that

|mγ−1 −mβγ−1 | = rγ−1 · rβγ−1

rβ
.

Then the asserted estimate follows by the ultrametric inequality.
The bound tends to 0 if �(γ ) tends to ∞ due to Proposition 2.2.4(d).
Let E ⊂ ΩΓ be a fundamental domain. If V ⊂ Ω is affinoid, then there exists

finitely many β1, . . . , βr with V ⊂ β1(E) ∪ · · · ∪ βr(E). Therefore, it suffices to
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show that E ∩ γ (E) 
= ∅ for only finitely many γ ∈ Γ . This is true due to the very
definition of a fundamental domain. Since Γ is a free group, there exists an N ∈ N

such that, for a finite subset Γ0 ⊂ Γ , every γ ∈ Γ with �(γ ) ≥ N does not belong
to Γ0. �

2.3 Definition and Properties

For the following we keep the notations and hypotheses of Notations 2.2.5
and 2.2.11. Let Γ ⊂ PGL(2,K) be a non-trivial Schottky group and assume
∞ /∈ LΓ .

Due to Theorem 2.2.14 the group Γ is free with g generators α1, . . . , αg ; we set
αg+i := α−1

i for i = 1, . . . , g. Let

F := P
1
K −

2g
⋃

i=1

W−
αi
= {z ∈ P

1
K ;
∣

∣wαi (z)
∣

∣≤ 1 for i = 1, . . . ,2g
}

be the fundamental domain as constructed in Proposition 2.2.12 by Theorem 2.2.14.
Then

ΩΓ :=
⋃

γ∈Γ
γ (F )⊂ P

1
K

is the maximal open set where Γ acts discontinuously. In the following we will
equip the orbit spaceXΓ := Γ \ΩΓ with a rigid analytic structure in a canonical way
such that the residue map p :ΩΓ →XΓ is a rigid analytic morphism. Moreover, we
will see that XΓ is a smooth proper rigid analytic space of dimension 1 and that p is
an unramified covering in the topological sense; i.e., there is an admissible covering
{Vi; i ∈ I } of XΓ such that each p−1(Vi) =⋃j∈Ii Ui,j is a disjoint union and the
restriction p|Ui,j :Ui,j ˜−→Vi of p to each Ui,j is an isomorphism.

Theorem 2.3.1. In the above situation we have:

(a) There is a unique structure of a rigid-analytic variety on XΓ such that the
residue map p :ΩΓ →XΓ is an unramified covering in the topological sense.

(b) XΓ is a smooth proper rigid analytic curve of genus g.
(c) XΓ is the analytification of a smooth projective algebraic curve Xalg

Γ .

(d) Every meromorphic function on XΓ is a rational function on Xalg
Γ .

The curves XΓ as defined above are called Mumford curves.

Proof. (a) Any γ ∈ Γ has a unique reduced representation

γ = αj(1) · . . . · αj(n) with j (i) ∈ {α1, . . . , α2g}.
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Let �(γ ) := n be the length of γ . Then

ΩΓ (n) :=
⋃

γ∈Γ,�(γ )≤n
γ (F )

is the complement of finitely many open discs in P
1
K and hence carries a

unique structure of a smooth affinoid domain of dimension 1. The inclusion map
ΩΓ (m) ↪→ ΩΓ (n) for m ≤ n is an open immersion of affinoid domains. Thus,
ΩΓ =⋃n∈NΩΓ (n) inherits a unique structure of a smooth rigid analytic domain
such that all ΩΓ (n) are open subdomains. Since all ΩΓ (n) are separated as affinoid
domains, ΩΓ is separated.

As a set of points we define XΓ as the orbit space of the action of Γ on ΩΓ .
The rigid analytic structure of XΓ will be defined as a geometric quotient of ΩΓ ;
i.e., a set V ⊂ XΓ and a covering V of V ⊂ XΓ , respectively, is admissible if
p−1(V )⊂ΩΓ and p∗V, respectively, are admissible. Due to Proposition 2.2.12(a)
there exists q ∈ √|K×| with q < 1 such that |wαi (z)| < q for all z ∈ W+

αj
, for

j = 1, . . . ,2g with j 
= i. Now choose q ′ ∈√|K×| with q < q ′ < 1, and put

Ui :=
{

z ∈ P
1
K ;q ′ ≤

∣

∣wαi (z)
∣

∣≤ 1 for i = 1, . . . ,2g
}

,

U0 :=
{

z ∈ P
1
K ;
∣

∣wαi (z)
∣

∣≤ q ′ for i = 1, . . . ,2g
}

.

Then {U0, . . . ,U2g} is an admissible covering of F with the properties

U0 ∩Ui =
{

z ∈ P
1
K ;
∣

∣wαi (z)
∣

∣= q ′
}

for i = 1, . . . ,2g,

Ui ∩Uj = ∅ for 1≤ i < j ≤ 2g.

The map p : Ui →XΓ is injective. We will endow XΓ with the structure of a rigid
analytic space in the following way. We view p : Ui → XΓ as an open immersion
and we equip the image Vi := p(Ui) with the holomorphic structure given by Ui .
The family

{

Vi := p(Ui); i = 0, . . . ,2g
}

is regarded as an admissible covering of XΓ . Thus, we obtain the structure of a rigid
analytic variety on XΓ which is smooth and 1-dimensional.

The map p :ΩΓ →XΓ is a covering in the topological sense and is a quotient in
the categorical sense; i.e., every Γ -invariant morphism ΩΓ → Z factorizes through
p :ΩΓ →XΓ .

(b) XΓ is separated, because ΩΓ is separated; cf. [10, 9.6.1/5]. To show that XΓ

is proper, we have to construct a further covering {V ′0, . . . , V ′2g} by affinoid domains
of XΓ such that Vi � V ′i for i = 0, . . . ,2g; cf. Definition 1.6.3. Thus, we choose
two absolute values q1, q2 ∈

√|K×| with q < q1 < q ′ < q2 < 1, where q1 is close
to q and q2 is close to 1. Put

U ′i :=
{

z ∈ P
1
K ;q1 ≤

∣

∣wαi (z)
∣

∣≤ 1/q2
}

for i = 1, . . . ,2g,

U ′0 :=
{

z ∈ P
1
K ;
∣

∣wαi (z)
∣

∣≤ q2 for i = 1, . . . ,2g
}

.
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Then p : U ′i → XΓ is an open immersion for i = 0, . . . ,2g. Hence, by setting
V ′i := p(U ′i ) for i = 0, . . . ,2g, the covering {V ′0, . . . , V ′2g} satisfies the requirement
of Definition 1.6.3.

Next we want to determine the genus of XΓ . For this we will construct a non-
trivial differential form ω on XΓ and calculate the degree of its divisor. Let wγ (z)

be as defined in Notation 2.2.11. Then look at the formal series

g1(z) :=
∑

γ∈Γ
wγ (z) and g2(z) :=

∑

γ∈Γ
ρ(γ )wγ (z).

We may assume here without loss of generality that (α1, . . . , αg) is separating for
ρ and ρ2. By Proposition 2.2.12(b) these series converge on F . By the product
formula wγα(z)= wγ (α(z)) ·wα(z), the series also converges on α(F ) for α ∈ Γ ,
and hence on ΩΓ . Moreover, we have

wα(z) · g1(αz)= g1(z) and ρ(α) ·wα(z) · g2(αz)= g2(z).

Now look at the meromorphic differential form on ΩΓ

ω := g2
1(z)

g2(z)
dz.

Since ρ(α) · α′(z)=wα(z), we obtain

α∗ω= g2
1(α(z))

g2(α(z))
· α′(z) · dz= g2

1(z) · ρ(α)wα(z)

wα(z)2 · g2(z)

wα(z)

ρ(α)
· dz= ω.

Thus, ω is invariant under Γ , and so it induces a differential form on XΓ .
It remains to determine the degree of div(ω). Equivalently, we can consider the

divisor associated to g1 and g2 on ΩΓ which consists of Γ -orbits and count the
number of the orbits with multiplicity. It suffices to do it for g1, because the argu-
ments for g2 are analogous.

By Proposition 2.2.12(b) we know that |wγ (z)| < 1, for all z ∈ F− and all
transformations γ ∈ Γ − {id}. Since wid(z) = 1, the ultrametric inequality yields
|g1(z)| = 1 for all z ∈ F− − {∞}.

Next we compute the degree of g1|(W+
αi
−W−

αi
). Here we have two dominating

terms, namely wid(z) and wαi (z). Their absolute values are equal to 1, whereas
those of all the others terms are less than 1. Consider the Laurent series with respect
to the coordinate ζ := (z−mαi )/πi , where πi ∈K× is a constant to normalize the
coordinate to absolute value equal to 1. On (W+

αi
−W−

αi
) it is given by 1+ ζ 2 up to

terms of absolute value less than 1. Now it is an elementary fact about such functions
that their number of zeros is 2. Thus, we see that each i ∈ {1, . . . , g} gives rise to
a Γ -orbit of degree 2. Furthermore, there is exactly one orbit for the poles of dz;
namely {mγ ;γ ∈ Γ } = Γ∞ of order 2. Thus, we see that the degree of ω is 2g− 2,
and hence the genus of XΓ is g.

(c) and (d) Follow from Theorem 1.8.1. �
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2.4 Skeletons

In their article [64] Manin and Drinfeld make fundamental use of the tree repre-
sentation of the p-adic numbers. In order to deal with the case of arbitrary non-
Archimedean valuations, we have to generalize the approach slightly.

Let us start with some definitions. For the following, we fix a non-Archimedean
field K .

Definition 2.4.1. The closed unit disc DK is the affinoid space SpK〈ξ 〉. The open
unit disc is the rigid analytic space D

−
K := {z ∈DK ; |ξ(z)|< 1}. A closed rational

disc or an open rational disc is a rigid analytic space isomorphic to DK or D
−
K ,

respectively.
A closed rational annulus or an open rational annuls is a rigid analytic space

isomorphic to

A(r,1)+ = {z ∈DK ; r ≤
∣

∣ξ(z)
∣

∣≤ 1
}

,

respectively to

A(r,1)− = {z ∈DK ; r <
∣

∣ξ(z)
∣

∣< 1
}

,

for an element r of the value group |K×|. The number r ≤ 1 is called the height of
the annulus A(r,1)±; cf. Definition 1.3.3.

A subdomain Ω of the projective line P
1
K is a closed rational disc if and only

if there exists a coordinate function ξ of P1
K with a zero in P

1
K(K) and a number

r ∈ |K×| such that Ω = {z ∈ P
1
K ; |ξ(z)| ≤ r}.

A subdomain Ω of the projective line P
1
K is a closed rational annulus if and only

if Ω is the complement of a closed rational disc by an open rational disc. In fact,
there exists a coordinate function ξ on P

1
K which has a zero in the open disc and a

pole outside the closed disc. Then ξ yields the description of the complement as an
annulus. This can easily be seen by the description of the invertible functions on a
disc in Proposition 1.2.1(b).

Definition 2.4.2. The standard reduction map ρ : P1
K → P

1
k of the projective line

is associated to the choice of a coordinate function on P
1
K which also serves as a

coordinate function on P
1
R . Then ρ is the specialization map P

1
K → P

1
k on P

1
R .

The canonical reduction map ρ :DK →A
1
k of the unit disc DK is the map which,

as above, associates to a K ′-rational point x of DK its reduction x̃ which is defined
as the closed point xR ⊗R k of the extension xR : Spec(R′)→A

1
R of x.

If D ⊂ DK is the unit disc punctured by finitely many maximal open discs
D(a1)

−, . . . ,D(an)− of DK , then the reduction map ρ : DK → A
1
k restricts to a

reduction map ρ :D→ A
1
k − {ρ(a1), . . . , ρ(an)}. We refer to this as canonical re-

duction as well.

In the following we make use of some notion about graphs; these are explained in
Sect. A.1. Note that we here identify an edge e of a graph with its inverse e; i.e., we
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consider only “geometric edges”. In Definition 2.4.3 we do not need an orientation
on the graph. Such graphs are called geometric.

Definition 2.4.3. Let Z be a rigid analytic space which is geometrically connected
and locally planar. The latter means that, locally with respect to the holomorphic
topology, Z is isomorphic to affinoid subdomains of the projective line.

A semi-stable skeleton of Z is a surjective map ρ : Z→ S from Z to a geometric
graph S with the following properties:

(i) The inverse image ρ−1(v) of a vertex v ∈ V (S) is either the whole P
1
K or a

domain in P
1
K which is isomorphic to the closed unit disc DK punctured by

finitely many maximal open discs D−1 ∪ · · · ∪D−n of DK .
(ii) The inverse image ρ−1(e) of an edge e ∈E(S) is isomorphic to an open ratio-

nal annulus A(ε(e),1)− of a certain height ε(e) ∈ |K×|.
(iii) ρ is continuous; i.e., the inverse image ρ−1({v1, e, v2}) of an edge e with its

two extremities v1, v2 is an affinoid subdomain of Z or the whole Z.

Since the reduction of ρ−1(v) for a vertex v ∈ S is isomorphic to a projective
line minus finitely many closed points, it is irreducible and, hence, the sup-norm is
multiplicative on ρ−1(v); cf. Remark 1.4.6.

A semi-stable skeleton ρ : Z→ S of Z is said to separate the points a1, . . . , an
of Z if these points are mapped to vertices such that for all i, j ∈ {1, . . . , n} with
i 
= j either the points ai, aj are mapped to different vertices of S or, if mapped
to the same vertex v ∈ V (S), the points ai, aj have different reductions under the
canonical reduction map.

A semi-stable skeleton of Z is called stable with respect to given points
a1, . . . , an for n ≥ 3 if it separates the points and if, for each vertex v, the sum
of the number of points of ρ(a1), . . . , ρ(an) equal to v and of the index of v is at
least 3; cf. Definition A.1.7.

Note that, for the definition of the index, in Definition A.1.7 one distinguishes
between e and its inverse e. One can also define the index of a vertex by the number
of geometric edges which have v as an extremity.

Example 2.4.4. Let r ∈ |K×| with r < 1. Consider the rational annulus A(r,1) :=
{x ∈DK ; |r| ≤ |ξ(x)|}, where ξ is a coordinate of the disc DK . We define a skeleton
ρ : A(r,1)→ S in the following way. The image S consists of two vertices vr , v1
which are connected by one edge e. The map ρ :A(r,1)→ S sends the subset where
ξ takes absolute values r to vr , and the subset where ξ takes absolute values 1 to v1,
and the subset where ξ takes absolute values r < |ξ(x)|< 1 to e.

More precisely, the reduction of A(r,1) consists of two lines L̃r ∪ L̃1, where
L̃r = P

1
k − {0} with coordinate˜ξ/c, c ∈ K with |c| = r , and L̃1 = P

1
k − {∞} with

coordinate ξ̃ . The point ∞∈ L̃r is identified with the point 0 ∈ L̃1.
If f is a holomorphic function on A(r,1), then f |A(r,r) has a sup-norm |cr | and

on A(1,1) a sup-norm |c1|. Via the reduction one gets two functions f̃r := ˜f/cr on
Lr and f̃1 := ˜f/c1 on L1. Both functions have a certain order mr of f̃r at ∞∈ L̃r
and m1 at 0 ∈ L̃1. Then one easily shows that m1 +mr equals the number of zeros
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of f on the open annulus A(r,1)−. If there are no zeros, then |cr | = r±m1 · |c1|.
Such a situation will be discussed in Sect. 4.3 in a more general context.

Lemma 2.4.5. Let n≥ 3 and let a1, . . . , an ∈ P
1
K(K) be pairwise distinct K-ratio-

nal points. Then there exists a stable skeleton of P1
K which separates the points

a1, . . . , an. Furthermore, the graph of this skeleton is a tree.
A stable skeleton separating a1, . . . , an is uniquely determined by these points.

Proof. To prove the existence, we proceed by induction on n. For n = 3 we can
choose a coordinate such that the points are 0,1,∞. Then the standard reduction
separates these points. In this case the skeleton consists of a single vertex without
any edges.

Now let n ≥ 3 and assume that we have already constructed a stable skeleton
ρ : P1

K → S which separates the points a1, . . . , an. Consider an additional point
b ∈ P

1
K(K) which is not equal to any of the a1, . . . , an.

If ρ(b)= v is a vertex, then we have to distinguish two cases. If the reduction of
b under the canonical reduction map of the vertex is different from the reduction of
the points a1, . . . , an which are also mapped to v under ρ, then it is not necessary
to change anything. On the other hand, if this is not the case, then there is a point
ai with ρ(ai)= v which has the same canonical reduction as b. Then we introduce
a new vertex v′ and a new geometric edge e′ which connects v with v′. The map
ρ′ : P1

K → S′ is defined as follows. Let ζ be a coordinate function on the maximal
open disc D− inside ρ−1(v) which contains ai and normalize ζ by ζ(ai)= 0 and by
the condition that sup-norm of |ζ |D− = 1. Then set ρ′(z) = v′ for all z ∈D− with
|ζ(z)| ≤ |ζ(b)| and ρ′(z)= e′ for all z ∈D− with |ζ(z)|> |ζ(b)| and ρ′(z)= ρ(z)

for all points z ∈ P
1
K −D−. So ρ′(b) and ρ′(ai) are equal, but b and ai have distinct

reductions. Furthermore, v′ is connected to v by e′. Then it is clear that ρ′ is stable.
If ρ(b)= e is an edge, then A− := ρ−1(e) is an open annulus of height ε ∈ |K×|,

since A− is rational. Let ζ be a coordinate on A− := ρ−1(e) which is normalized
by having sup-norm 1. We introduce a new vertex v′ and two new geometric edges
e′0, e′1 which connect v′ to the extremities of e in S. Then we define ρ′ : P1

K → S′
by the following formula. If z ∈A−, then put

ρ′(z) :=

⎧

⎪

⎨

⎪

⎩

e′1 if |ζ(z)|> |ζ(b)|,
v′ if |ζ(z)| = |ζ(b)|,
e′0 if |ζ(z)|< |ζ(b)|.

If z ∈ P
1
K −A−, then put ρ′(z)= ρ(z). Thus, v′ = ρ′(b) is connected to the remain-

ing part by two edges and hence ρ′ is stable.
To prove the uniqueness, we proceed by induction on n. Consider first the case

n= 3. If S consists of a single vertex, it is the standard one with a1 = 0, a2 = 1 and
a3 =∞. Otherwise, S has at least two terminal vertices in Definition A.1.7, since
it is a finite tree. Then there are at least four points due to the very definition of
stability. This is a contradiction.
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Now let us consider the case n ≥ 4. If S consists of single point, then it is easy
to see that S is unique. Thus, we may assume that there is more than one vertex; in
particular, there exists a terminal vertex v of S. Then v supports at least two points;
say a1 and a2. Choose a coordinate function ζ on P

1
K such that a1 = 0, a2 = 1,

a3 =∞ and |aν | ≥ 1 for ν = 4, . . . , n. Then ρ−1(v) is uniquely determined by the
position of the points and is independent of the stable skeleton. Indeed, we have that

ρ−1(v)=D+ − [D−1 ∪ · · · ∪D−m
]

,

where D+ is the unit disc at 0 and D−μ are maximal open discs in D+. Furthermore,
in each D−μ there exists at least one of the given points.

If v supports more than 2 points, then we can remove one and thereby we do not
destroy the stability, and hence we are done by the induction hypothesis. Consider
now the case, where v supports exactly 2 points.

If v has only one neighbor w supporting also a point, then we contract the vertex
and the edge e leading from v to w and remove a1. In this way we get again a stable
skeleton separating the remaining points as w supports now two points. Note that in
this case ρ−1{v, e} is also uniquely determined. Therefore, we are also done by the
induction hypothesis. If w does not support any of the points, then the index of w
is at least 3. Then, by removing v, the edge e and a1, one obtains a skeleton with
vertex w which supports one point and its index is at least 2. So, we end up with a
stable skeleton and are done by the induction hypothesis. �

Proposition 2.4.6. Let Ω be a connected affinoid subdomain of P1
K . Then the fol-

lowing assertions are equivalent:

(a) Ω admits a semi-stable skeleton.
(b) Ω is the projective line punctured by finitely many open rational discs.

If, in the representation Ω := P
1
K − (D−1 ∪ · · · ∪ D−n ), even the closed discs

D+1 , . . . ,D+n are pairwise disjoint, the graph of the skeleton can be chosen in such
a way that its terminal vertices correspond to D+j −D−j for j = 1, . . . , n.

Proof. (a)→ (b): Since Ω is affinoid, it is quasi-compact and not equal to the whole
projective line. Thus, the skeleton is finite and there are terminal vertices. Here,
a vertex v is called terminal if the reduction of ρ−1(v) is a projective line P

1
k punc-

tured by more points than the index of v. All these points correspond to open rational
discs in the complement of Ω in P

1
K .

(b)→ (a): Let Ω := P
1
K − (D−1 ∪ · · · ∪D−n ) be a complement of P1

K of the union
of open rational discs D−1 , . . . ,D−n which are pairwise disjoint. In particular, there
are K-rational points ai ∈D−i for i = 1, . . . , n.

If n≤ 2, then Ω is an annulus, and the assertion was explained in Example 2.4.4.
If n ≥ 3, then there exists a stable skeleton ρ : P1

K → S, which separates the
points {a1, . . . , an} by Lemma 2.4.5. First we refine the skeleton in the following
way. Each aj is supported by a vertex vj . Then, for each j = 1, . . . , n, we intro-
duce a new vertex v′j , which is associated to a small closed rational disc D′j ⊂D−j
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around aj , and a new edge ej which is associated to the open rational annulus
D−j −D′j . Now, there exists a coordinate function ξ on P

1
K with a zero at a1 and a

pole at a2. Since D−1 is a rational disc, we can adjust ξ such that the sup-norm of ξ
on D−1 is equal to 1. By Proposition 1.3.4 we have that the absolute value function
|ξ | behaves like the one of a power of the coordinate functions on the annuli associ-
ated to the edges of this skeleton. Then we subdivide every edge at the subannulus
of height 1 where |ξ | takes the value 1. Thus, we obtain a skeleton such that ρ re-
stricts to a skeleton ρ1 : P1

K −D−1 → S1, where S1 is obtained from S by removing
all the vertices and edges where |ξ | takes values less than 1. Likewise we proceed
with all the other discs, and hence we obtain a semi-stable skeleton ρn :Ω→ Sn as
required.

The additional assertion follows easily from the proof of “b→ a” as well, be-
cause the subset {z; |ξ(z)| = 1} is exactly D+1 −D−1 and |ξ | takes only values greater
than 1 on all the other closed discs D+j for j ≥ 2. Eventually one has to contract the
part where |ξ | is equal to 1. �

Corollary 2.4.7. Let K be algebraically closed. If Ω ⊂ P
1
K is a connected affinoid

subdomain, then Ω has a semi-stable skeleton, and hence Ω is a closed rational
disc punctured by finitely many open rational discs.

Proof. Since Ω is affinoid, it is strictly contained in P
1
K . So, there exists a coordi-

nate function ξ on P
1
K such that ξ has its pole a0 outside Ω and its zero inside Ω .

Moreover, one can adjust ξ such that the sup-norm of ξ |Ω is equal to 1. Thus,
Ω is contained in the closed unit disc DK . By Theorem 1.3.7 we know that Ω
is a union of finitely many rational domains. It suffices to consider the case Ω =
X(f1/f0, . . . , fN/f0), where f0, . . . , fN are holomorphic functions on X := DK

without common zeros. Due to Theorem 1.2.5 we may assume that f0, . . . , fN are
polynomials, because invertible functions on DK have constant absolute value func-
tions by Proposition 1.2.1. Since f0, . . . , fN have no common zeros, there exists
some r ′ ∈ |K×| such that Ω is contained in Ω ′ := {x ∈DK ; |f0(x)| ≥ r ′}. Note that
Ω ′ is equal to DK minus finitely many open discs around the zeros of f0.

Now it suffices to analyze the structure of Ω ′(fi/f0). It follows from Proposi-
tion 2.4.6 that there exists a semi-stable skeleton of Ω ′. Then it is an easy combina-
torial game to show how to obtain a skeleton of Ω ′(fi/f0) from the skeleton of Ω ′.
In more detail, the absolute value function |f0| of f0 is constant on the pre-image
of vertices and behaves like a power of the absolute value of the coordinate on the
pre-image of an edge by Proposition 1.3.4. The function |f1| behaves similarly af-
ter removing small discs around the zeros of f1. Thus, by subdividing some annuli
associated to the skeleton of Ω ′, we construct a new skeleton such that Ω ′(fi/f0)

can be viewed as the preimage of a subgraph of this new skeleton. �

The number n + 1 of holes used in the representation of Ω as a subset of P1
K

can be characterized in terms of the structure of the group of invertible holomorphic
functions on Ω . There is the following result.
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Proposition 2.4.8. Let Ω ⊂ P
1
K be a closed rational disc which is punctured by

finitely many open rational discs

Ω := P
1
K −
(

D(a0, r0)
− ∪ · · · ∪D(an, rn)−

)

.

Let ξ be a coordinate function on P
1
K with a pole at a0 and a zero outside of

D(a0, r0)
− such that D(a0, r0)

− := {x ∈ P
1; |ξ(x)|> 1}.

Put ξν := cν/(ξ − ξ(aν)), where cν ∈ K× has absolute value |cν | equal to the
sup-norm of ξ − ξ(aν) on the disc D(aν, rν)−. Then we have:

(a) Every holomorphic function on Ω has a unique representation

f =
∞
∑

i=0

c0,iξ
i +

n
∑

ν=1

∞
∑

i=1

cν,iξ
i
ν

with coefficients cν,i ∈K . For the sup-norm we have that

|f |Ω =max
{|cν,i |; i ∈N, ν = 0, . . . , n

}

.

(b) If f has no zeros on Ω , then f has a unique representation

f = c · (ξ − a1)
m1 . . . (ξ − an)

mn · (1+ h),

where c ∈ K× is a unit, h is a holomorphic function on Ω with sup-norm
|h|Ω < 1, and where m1, . . . ,mn are integers.

Proof. (a) Since f can be approximated by rational functions which have poles
only in {a0, . . . , an}, it suffices to verify the assertion for such rational functions. In
that case we have a unique partial fraction decomposition. Such a decomposition is
of the same form as in the assertion, but there are only finitely many coefficients
unequal 0.

To verify the assertion on the sup-norm, we first assume that the closed discs
D(aν, rν)

+ are pairwise disjoint. In that case the assertion follows by the ultrametric
inequality, because the sup-norm of ξμ on D(aν, rν)+ is less than 1 for all μ,ν with
μ 
= ν. By a limit argument (enlarging the discs) and the maximum principle this
implies the assertion in the general case.

The assertion about the uniqueness follows from the formula for |f |Ω .
(b) As in the proof of (a) it suffices to verify the assertion for rational func-

tions which have poles only in {a0, . . . , an}. Moreover, we may assume that the
closed discs D(aν, rν)+ are pairwise disjoint. By Proposition 1.3.4 we know that
the restriction of f to the annulus D(aν, rν)

+ − D(aν, rν)
− can be written as

cνξ
mν
ν · (1 + h), where the sup-norm of h is less than 1. After replacing f by

f ·∏n
ν=1 ξ

−mν
ν we can assume that all the exponents mν are zero for ν = 1, . . . , n.

In that case we will verify that m0 is also zero, and that f equals c · (1+ h) with a
constant c ∈K× and with a holomorphic function h on Ω with sup-norm less that 1.

Indeed, by (a) we may assume that |f |Ω = 1 and that |f | takes a maximum on an
annulus D(aν, rν)+ −D(aν, rν)

− for some ν ∈ {1, . . . , n}; otherwise consider 1/f .
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Then by (a) it follows |c0,0| = 1 and |cν,i | ≤ 1 for all ν, i. Since f has no zeros
on D(a0, r0)

+ − D(a0, r0)
−, by Proposition 1.3.4 we see that m0 = 0. Thus, the

assertion is proved. �

Remark 2.4.9. In the situation of Proposition 2.4.8 the group of invertible holo-
morphic functions on Ω can be represented in the following way:

OΩ(Ω)× ∼=K× ×Z
n × {1+ h,h ∈OΩ(Ω) with |h|Ω < 1

}

.

Here n+ 1 is the number of holes of Ω in P
1
K .

Proof. Put H := {m ∈ Z
n+1;m0 + · · · +mn = 0} ∼= Z

n. The map

ϕ :K −→OΩ(Ω)×, (m0, . . . ,mn) �−→ ξm0 · (ξ − a1)
m1 · . . . · (ξ − an)

mn

is injective, and its image is a direct summand by Proposition 2.4.8. Thus, we see
that the assertion is true. �

Proposition 2.4.10. In the situation of Proposition 2.4.8 consider a meromorphic
function f on Ω which is not identically zero. Assume, in addition, that the annu-
lus Aν := D+ν −D−ν belongs to Ω , and that f |Aν has neither zeros nor poles for
ν = 1, . . . , n. Then the degree of the divisor of f on Ω is given by the formula

deg div(f )=−
n
∑

ν=0

ordAν f.

Here ordAν f is the exponent of the dominating term in the Laurent expansion of
f |Aν with respect to the coordinate function ξν on D+ν ; cf. Proposition 1.3.4.

In Proposition 4.3.1 there is a more general formula than the given one.

Proof. The support of the divisor of f is finite. Thus there exists a rational function
g on P

1
K such that div(g|Ω) = div(f ). It we put u := f/g, then u is an invertible

holomorphic function on Ω . Using an approximation as in the proof of Proposi-
tion 2.4.8 we can also assume that u = 1 + h with a holomorphic function h on
Ω with |h|Ω < 1. Thus, we can replace f by g, because f and g have the same
order on Aν . Since deg divg = 0, it remains to see that ordAν g = deg div(g|D−ν ) for
ν = 0, . . . , n. The latter follows easily from Theorem 1.2.5, because the degree of a
Weierstraß polynomial equals the number of its zeros in the unit disc. �

Now let us return to the Schottky groups.

Proposition 2.4.11. Let Γ be a Schottky group. Consider the situation of Nota-
tion 2.2.11 with respect to a separating homomorphism ρ : Γ →K

×
. Assume that

the radii
√|ρ(γ )| · rγ belong to |K×| for all γ ∈ Γ − {id}. Let F ⊂ ΩΓ be the

fundamental domain of Γ as in Notation 2.2.11. Then we have:
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(a) There exists a semi-stable skeleton ρF : F → SF of F with terminal ver-
tices v1, . . . , v2g such that ρ−1

F (vi) =W+
i −W−

i for all i = 1, . . . ,2g, where
W±
i :=W±

αi
for the system (α1, . . . , α2g). In particular, SF is a tree.

(b) There exists a semi-stable skeleton ρΩ : ΩΓ → SΩ of ΩΓ which extends ρF
such that Γ acts on SΩ canonically. In particular, SΩ is a tree.

(c) There exists a semi-stable skeleton ρX : XΓ → SX of XΓ which is the quo-
tient of ρΩ with respect to the action of Γ . In particular, the quotient map
pS : SΩ → SX is the universal covering in the category of graphs. There is a
commutative diagram

ΩΓ

pX

ρΩ

XΓ

ρX

SΩ

pS

SX.

Proof. (a) Consider the fundamental domain

F = P
1
K −

2g
⋃

i=1

W−
αi

associated to a separating basis α1, . . . , αg of Γ . Set αi+g := α−1
i for i = 1, . . . , g.

By Proposition 2.4.6 there exists a semi-stable skeleton ρF : F → SF . It is clear that
SF satisfies the claim.

(b) The skeleton S0 := SF constructed in (a) has 2g terminal vertices v1, . . . , v2g .
Then each αi maps the domains ρ−1(vi) bijectively to ρ−1(vi+g) for all i =
1, . . . , g. Thus we obtain a skeleton

S1 := S0 ∪
2g
⋃

i=1

αi(S0)

by gluing the skeleton S0 with the skeleton αi(S0) of αi(F ) along vi+g for i =
1, . . . ,2g. Then S1 is a skeleton of

ΩΓ (n) :=
⋃

γ∈Γ ;�(γ )≤n
γ (F )

for n= 1. Continuing in this way, one obtains skeletons Sn of ΩΓ (n) for all n ∈ N

and hence in the limit a skeleton SΩ of ΩΓ . The group Γ acts on SΩ by translation
and is compatible with action on ΩΓ .

(c) The skeleton SX is obtained from SF by identifying the terminal vertices vi
and vi+g for i = 1, . . . , g. This is compatible with the group action of Γ on ΩΓ as
was explained in (a). �



60 2 Mumford Curves

Corollary 2.4.12. In the situation of Proposition 2.4.11, let e be an edge of the
skeleton SΩ . If γ ∈ Γ fixes e, then γ = id.

Proof. The skeleton SΩ is the universal covering of SX . Thus, Γ is canonically
isomorphic to the deck transformation group of SΩ/SX . If a deck transformation
fixes one point, then it is equal to the identity. �

Remark 2.4.13. A ray (ei; i ∈ N) in SΩ is an infinite path without backtracking;
cf. Definition A.1.3. Note that a ray has an origin and no target in SΩ . Two rays are
called equivalent if they are equal after removing finite parts at their origins.

An axis (ei; i ∈ Z) in SΩ is an infinite path without backtracking. Note that an
axis has neither an origin nor a target in SΩ .

However we have:

(a) Each ray in SΩ defines a unique point in the set LΓ of the limit points of Γ .
(b) The equivalence classes of rays correspond bijectively to the limits points of Γ .
(c) If α ∈ Γ − {id}, then let xα ⊂ SΩ be the axis leading from z−α to z+α , where z+α

is the attractive fixed point and z−α is the repelling fixed point of α. Then α acts
on xα by shifting.

Proof. (a) We choose the coordinate function on P
1
K such that ∞∈ ρ−1(v0). Thus,

for i ∈N we have

ρ−1(vi)=D(avi , ri)
+ − [D(avi,1, ri)− ∪ · · · ∪D(avi ,ki , ri)−

]

,

where D(avi ,j , ri)
− are maximal open rational discs in the closed rational disc

D(avi , ri)
+. Let (ei; i ∈N) be a ray. Then the edge ei satisfies

ρ−1(ei)=D(avi,j , ri)
− −D(avi+1, ri+1)

+

for a suitable j ∈ {1, . . . , ki}. Only finitely many heights ri+1/ri can occur, because
they are related under Γ . Thus, the limit limai exists and is a limit point of Γ ; cf.
the proof of Example 2.2.13.

(b) If two rays define the same limit point, then they are equivalent, because
a ray induces a filter of neighborhoods of the limit point. Conversely, every limit
point induces a ray, because LΓ = LΓ (∞) by Proposition 2.2.4(f).

(c) The subtree xα of SΩ contains the vertices associated to the sets W+
αn −W−

αn

for n ∈ Z. Then it is clear that α acts by shifting. �

Definition 2.4.14. Let ρ :Z→ S be a semi-stable skeleton.

(a) A path c := e1 + · · · + en in Z is a path (e1, . . . , en) in S; cf. Definition A.1.3.
The length of a path c := e1 + · · · + en in Z is defined by

�(c) := −
n
∑

ν=1

log ε(eν),

where ε(eν) is the height of the annulus ρ−1(eν).
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(b) For two paths p =∑m
μ=1 eμ and p′ =∑n

ν=1 e
′
ν in Z their pairing is defined by

[

p,p′
] :=
∑

μ,ν

[

eμ, e
′
ν

]

,

where

[e1, e2] =

⎧

⎪

⎨

⎪

⎩

− log ε(e) if e1 = e2 = e,

log ε(e) if e1 =−e2 = e,

0 if e1 
= ±e2,

for edges e1, e2 ∈ E(S), where ε(e) is the height of the annulus ρ−1
Ω (e). Here

−e means the edge e with the opposite orientation.

Lemma 2.4.15. In the situation of Definition 2.4.14, let ρ′ : Z → S′ be a sec-
ond semi-stable skeleton. Assume that there is a map � : S′ → S which contracts
subtrees satisfying � ◦ ρ′ = ρ. Thus, one has two notions of length according to the
chosen skeletons. Let v′1, v′2 ∈ S′ be two vertices which are mapped to vertices v1, v2
in S, respectively. Then for each path c′ leading from v′1 to v′2, the image �(c′) has
the same length as the path c leading from v1 to v2.

Proof. We may assume that v1 and v2 are connected by a single edge e. Let c :=
(e′1, e′2, . . . , e′n) be the path in S′ leading from v′1 to v′2. Then ρ′−1(c) = ρ−1({e}).
Since the height of an annulus A(r1r2,1) is the product of the heights of A(r1,1)
and A(r2,1), the assertion follows. �

Notation 2.4.16. Let Γ be a Schottky group.
For every α ∈ Γ with α 
= 1 in H := Γ/[Γ,Γ ] = Γab there is an axis xα in SΩ

which we orient from the attractive fixed point z+α to the repulsive z−α . Let cα be the
part of xα which belongs to a fundamental domain of αZ. Note that cα is a finite path
in SΩ . Let e1, . . . , er be the consecutive edges with the induced orientation of cα .
Then, with the notation of Proposition 2.4.11,

cα := pS(cα) :=
r
∑

i=1

pS(ei) ∈Z1(SX,Z)

is a 1-chain. Its homology class in H1(SX,Z) can be identified with the image of
α ∈ Γ in the maximal abelian quotient

π1(SX)= Γ −→H := Γ/[Γ,Γ ].
More precisely, here one has to consider the realization real(SX) of the graph SX;
cf. Definition A.1.2.

Remark 2.4.17. The pairing of Definition 2.4.14 induces a scalar product on
H1(SX,Z). This bilinear form is symmetric and positive definite.
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The notion of skeletons is useful for the interpretation of H1(X,Z).

Remark 2.4.18. Affinoid spaces with smooth reduction are simply connected in
the sense that they admit only trivial coverings in the topological sense, as eas-
ily follows from Proposition 3.1.12. Furthermore, every affinoid subdomain Ω of
the projective line P

1
K is also simply connected. Indeed, one can assume that K is

algebraically closed. Thus, Ω admits a semi-stable skeleton which is tree due to
Corollary 2.4.7, and so it is simply connected.

If a rigid analytic space X admits a semi-stable skeleton SX , then every finite
topological covering Y →X inherits a semi-stable skeleton SY such that SY → SX
is a topological covering as well and is compatible with the map Y →X. Therefore,
one can view H1(SX,Z) as a replacement of “H1(X,Z)”.

2.5 Automorphic Functions

In this section we return to Mumford curves. Thus, let us consider a Schottky group
Γ ⊂ PGL(2,K) of rank g ≥ 1; i.e., it is a free group over g generators. Let Ω :=
ΩΓ ⊂ P

1
K be the set of ordinary points of Γ and let XΓ be the associated Mumford

curve. As was explained in Sect. 2.3, the canonical map p : ΩΓ → X := XΓ can
be viewed as the universal covering in the rigid analytic sense. Equivalently, the
universal covering can be identified with the associated skeletons pS : SΩ → SX .
Moreover, the rigid analytic deck transformation group

Γ ∼= π1(X)∼= π1(SX)

can be identified with the deck transformation group of the skeleton SX . Its maximal
abelian quotient

H := Γab := Γ/[Γ,Γ ] ∼=H1(X,Z)∼=H1(SX,Z)

is the group of closed cycles by Notation 2.4.16. In the following we review some
results taken from [64] and adapt them to the case of a non-Archimedean field with
valuation which is not necessarily discrete.

Definition 2.5.1. A K-divisor on Ω is a function Ω(K)→ Z, n �→ nz, with the
following properties:

(i) nz1 = nz2 if z1 and z2 are conjugate over K .
(ii) There is a finite extension L/K such that every z ∈Ω(K) with nz 
= 0 belongs

to Ω(L).
(iii) The set {z;nz 
= 0} has no accumulation points in Ω with respect to the holo-

morphic topology.

We denote by D the set of K-divisors. The group Γ acts on D.
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We write a divisor in the form d =∑nz · z. The set

supp(d) := {z;nz 
= 0}
is called its support. A divisor is finite if supp(d) is finite.

Lemma 2.5.2.

(a) The group of Γ -invariant K-divisors consists exactly of the divisors of the form
∑

γ∈Γ γ (d), where d is a finite K-divisor.
(b)
∑

γ∈Γ γ (d) = 0 if and only if there exist γ1, . . . , γn ∈ Γ and finite K-divisors
d1, . . . , dn such that d =∑n

i=1(id−γi)di .

Proof. (a) Let E ⊂Ω be a fundamental domain of Γ ; cf. Definition 2.2.7. Let D
be a Γ -invariant divisor on Ω . Then D|E is a finite divisor. Let d :=D|E◦ , where
E◦ ⊂E is a system of representatives of X; cf. Corollary 2.2.17. Thus, we have that
D =∑γ∈Γ γ d .

(b) We proceed by induction on the number of closed points in the support of d .
We begin the induction with the empty divisor; here is nothing to show. For the
induction step, consider a point x in supp(d) and let n be its order in d . Since
∑

γ∈Γ γ d = 0 and since d is finite, there exist finitely many points y1, . . . , yr in the
support of d and elements γ1, . . . , γr ∈ Γ − {id} such that x = γiyi , for i = 1, . . . , r
and n = n1 + · · · + nr , where ni is the order of d at yi . Put di := −ni · yi . Then
(id−γi)(di)=−niyi + nix has support contained in supp(d) and d −∑r

i=1 di has
support in supp(d) − {x}. Thus, the assertion follows by induction. The converse
implication is clear due to Γ = Γ γi for every γi , for i = 1, . . . , r . �

Corollary 2.5.3. Let DΓ be the set of Γ -invariant divisors. Then the map

deg :DΓ −→ Z, D =
∑

γ∈Γ
γ (d) �−→ deg(d)=

r
∑

i=1

ni ·
[

K(xi) :K
]

,

is well-defined if d = n1x1 + · · · + nrxr is a finite divisor as in Lemma 2.5.2.

Proof. The assertion follows from Lemma 2.5.2(b) because of deg(d) = deg(γ d)
for all elements γ ∈ Γ . �

Definition 2.5.4. For a finite K-divisor d =∑m
i=1 ai −

∑n
j=1 bj on ΩΓ put

θ(d; z) := (z− a1) . . . (z− am)

(z− b1) . . . (z− bn)
∈K(z).

Assume, in addition, that deg(d)= 0 and fix a rational base point

z0 ∈Ω −
⋃

γ∈Γ
supp(γ d).
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If D :=∑γ∈Γ γ d is the associated Γ -invariant divisor, then we consider the formal
Weierstraß product

Θ(d; z) :=
∏

γ∈Γ

θ(d;γ z)
θ(d;γ z0)

for z ∈ΩΓ − supp(D).

Note that we do not include the dependence of z0 in our notations.

If d is a finite K-divisor, then the points ai, bj are not necessarily K-rational.
Nevertheless θ(d; z) is a K-meromorphic function, as can be seen by elementary
Galois arguments.

Proposition 2.5.5. Let d be a finite K-divisor of degree 0. On every affinoid subdo-
main V ⊂Ω , the product Θ(d; z) can be written as a product of a finite number of
factors having zeros or poles on V and a convergent infinite factor which converges
uniformly to a holomorphic function on V without zeros. Therefore, Θ(d; z) is a
K-meromorphic function on Ω and has the following properties:

(a) For every α ∈ Γ we have that

Θ(d;αz)= c(d)(α) ·Θ(d; z),
where

c :Df

0 × Γ −→K×, (d,α) �−→ c(d)(α)=
∏

γ∈Γ

θ(d;γ z0)

θ(d;γ α−1z0)
,

is bilinear and independent of the base point z0. Here Df

0 denotes the set of
finite K-divisors of degree 0.

(b) In the case that D :=∑γ∈Γ γ d = 0, the product Θ(d; z) is an invertible holo-
morphic function on Ω .

Proof. There are only finitely many γ ∈ Γ such that V ∩ γ (V ) 
= ∅, as follows
from Corollary 2.2.17. To verify the convergence we first show |γ z− γ z0| → 0 if
�(γ )→∞, where �(γ ) is the number of elements in a reduced representation of γ
in a separating basis of Γ . In fact, for z, z0 ∈ V we can write z= αw and z0 = αβw0
for suitable w,w0 ∈ E◦. There are only finitely many α,β ∈ Γ involved as V is
affinoid. Then Corollary 2.2.17 yields that |γ z− γ z0| → 0, where the distance can
be bounded by �(γ α) and �(γ ). Since degd = 0, we have to study the behavior of
single products

θ(a;γ z)
θ(b;γ z) =

γ z− a

γ z0 − a

γ z0 − b

γ z− b
.

Thus, we have to look at the growth of the absolute value of

γ z− a

γ z0 − a
= 1− γ z− γ z0

a − γ z0
for �(γ )→∞.
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We may assume that∞∈Ω . Then |a− γ z0| is bounded from below, because, in an
affinoid neighborhood U of a, there are only finitely many γ ∈ Γ with γ (z0) ∈ U
due to Corollary 2.2.17. Moreover, it follows from Corollary 2.2.17 that the distance
|γ z− γ z0| tends to 0 uniformly. Thus, the Weierstraß product converges uniformly
on every affinoid subdomain V of Ω .

(a) One has

Θ(d;αz)=
∏

γ∈Γ

θ(d;γ αz)
θ(d;γ z0)

=
∏

γ∈Γ

θ(d;γ z)
θ(d;γ α−1z0)

.

Thus, the automorphy factor is

c(d)(α)=
∏

γ∈Γ

θ(d;γ z0)

θ(d;γ α−1z0)
.

If z1 is a second base point, then we obtain a new Θ1(d; z) (cf. the definition of
Θ(d; z)), but they differ only by a constant

Θ(d; z)=
∏

γ∈Γ

θ(d;γ z1)

θ(d;γ z0)
·Θ1(d; z).

So they have the same automorphy factor. Thus, we see that c(d)(α) is independent
of z0. Moreover, c(d)(α) belongs to K× even if z0 ∈Ω(L) for some finite separa-
ble field extension L/K . Indeed, c(d)(γ ) ∈ L× and is Gal(K/K)-invariant as it is
independent of z0. Obviously, we have that

c(d1 + d2)(α)= c(d1)(α) · c(d2)(α),

c(d)(α1α2)= c(d)(α1) · c(d)(α2).

(b) By Lemma 2.5.2, it suffices to look at the case d = αz1 − z1 for some α ∈ Γ
and z1 ∈Ω . Then, it is clear that Θ(d; z) has no zeros and poles. �

Definition 2.5.6. A meromorphic function f on Ω satisfying

f (γ z)= c(γ ) · f (z) for γ ∈ Γ
with a constant c(γ ) ∈ K× is called an automorphic function with respect to the
Γ -action on Ω . The constants satisfy c(αβ) = c(α) · c(β) for all α,β ∈ Γ . Thus,
they give rise to a group homomorphism c : Γ →K×. The latter is called the auto-
morphy factor of f .

By Proposition 2.5.5(a), the function Θ(d; z) is an automorphic function with
automorphy factor c(d).

Remark 2.5.7. Let z1 ∈Ω(K) and α ∈ Γ . Then put

Θ(αz1 − z1; z) :=
∏

γ∈Γ

θ(αz1 − z1;γ z)
θ(αz1 − z1;γ z0)

.
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Note thatΘ(αz1−z1; z) depends on z0 and z1. It is an automorphic function without
zeros and poles and with the automorphy factor c(αz1 − z1) which is defined for
β ∈ Γ by

c(αz1 − z1)(β)=
∏

γ∈Γ

θ(αz1 − z1;γ z0)

θ(αz1 − z1;γβ−1z0)
=
∏

γ∈Γ

θ(αz1 − z1;γβz0)

θ(αz1 − z1;γ z0)
.

The automorphy factor c(αz1 − z1) is independent of z0 due to Proposition 2.5.5.

Proposition 2.5.8. Let H := Γ/[Γ,Γ ] be the maximal abelian quotient of Γ . For
α,β ∈ Γ let α,β ∈H be their residue classes. Moreover, for a point z1 ∈Ω(K) put

〈α,β〉 := c(βz1 − z1)(α).

Then 〈α,β〉 depends only on α,β ∈H , but not on z0 and z1. The mapping

〈_,_〉 :H ×H −→K×, (α,β) �−→ 〈α,β〉,
is a symmetric bimultiplicative pairing.

Proof. If z0 ∈Ω − (Γ∞∪ Γ z1), then we obtain from Proposition 2.5.5 that

c(βz1 − z1)(α)=
∏

γ∈Γ

γ z0 − βz1

γ z0 − z1

γ α−1z0 − z1

γ α−1z0 − βz1
.

Using the projective invariance of the cross-ratio, we can rewrite this formula in the
form

c(βz1 − z1)(α) =
∏

γ∈Γ

γ−1βz1 − z0

γ−1βz1 − α−1z0

γ−1z1 − α−1z0

γ−1z1 − z0

=
∏

γ∈Γ

θ(α−1z0 − z0;γ−1z1)

θ(α−1z0 − z0;γ−1βz1)
= c
(

α−1z0 − z0
)(

β−1).

The left-hand side is multiplicative in α and does not depend on z0. The right-
hand side is multiplicative in β and does not depend on z1. Both sides are inde-
pendent of the variable z1 and z0. Thus, they depend only on α and β . There-
fore, 〈α,β〉 = 〈β−1, α−1〉 = 〈β,α〉; the last equality follows from the bilinearity;
cf. Proposition 2.5.5(a). The form depends only on the residue class in H , because
the codomain of the bilinear map is a commutative group. �

Definition 2.5.9. Let γ ∈ Γ − {id}. Then

z+γ := lim
n→∞γ n(z0) and z−γ := lim

n→−∞γ n(z0)

denote the attractive and the repelling fixed point of γ , respectively. Here z0 ∈ P
1
K

is any point which is not a fixed point of γ . If the coordinate function z is chosen
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in such a way that z(z+γ )= 0 and z(z−γ )=∞, then γ (z)= qγ · z for some qγ ∈K×
with 0< |qγ |< 1. The element qγ is called the multiplier of γ .

The formula in Proposition 2.5.8 for 〈α,β〉 is not very useful in practice, because
it involves the points z0 and z1. We next show how to remedy this drawback. We
begin with a simple lemma which examines the meaning of the restrictions imposed
in the following proposition.

Lemma 2.5.10. Let Γ be a Schottky group.

(a) Let α,β ∈ Γ be elements such that their images in H := Γ/[Γ,Γ ] are inde-
pendent; i.e., they generate a free abelian group of rank 2. If C(α|β) denotes a
system of representatives for the set of double cosets of αZ\Γ/βZ, then every
element of Γ has a unique representation in the form αmγβn with m,n ∈ Z and
γ ∈ C(α|β).

(b) Let α ∈ Γ be an element whose image in H is not divisible and set
C0(α|α) = C(α|α) − {id} where {id} represents the unitary class. Then every
element of Γ has a unique representation which either has the form αm with
m ∈ Z or the form αmγαn with m,n ∈ Z and γ ∈ C0(α|α).

Proof. (a) If αmγβn = γ ′ for γ, γ ′ ∈ C(α|β), then γ = γ ′, because C(α|β) is a set
of representatives of double cosets. So there is a relation between α and β modulo
the commutator subgroup. This would be a contradiction.

(b) As above, if αmγαn = γ ′, then γ = γ ′. Since Γ is free and hence H is a free
abelian group, the order the image of α in H is infinite. Thus, we see that m+n= 0,
and hence that αmγ = γ αm. Now one shows by a combinatorial computation that
αm and γ belong to a common cyclic subgroup of Γ , because Γ is free. This follows
also from Schreier’s theorem that every subgroup of a free group is free; cf. [90,
§3.4, Theorem 5]. Since α is not divisible in H , we see that γ represents the unitary
class. �

Proposition 2.5.11. Let Γ be a Schottky group.

(a) If α,β ∈ Γ are as in Lemma 2.5.10(a), then

〈α,β〉 =
∏

γ∈C(β|α)

θ(z+β − z−β ;γ z+α )
θ(z+β − z−β ;γ z−α )

.

(b) If α ∈ Γ is as in Lemma 2.5.10(b), then

〈α,α〉 = qα
∏

γ∈C0(α|α)

θ(z+α − z−α ;γ z+α )
θ(z+α − z−α ;γ z−α )

,

where qα is the multiplier of α; cf. Definition 2.5.9.
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Proof. (a) By the assumption on α and β , every element in C(β|α) has a unique
representation βmγ an by Lemma 2.5.10. From Remark 2.5.7 we know that

〈α,β〉 =
∏

γ∈Γ

βz1 − γ z0

βz1 − γ α−1z0

z1 − γ α−1z0

z1 − γ z0
.

We group all members of a coset of βZ\Γ/αZ and re-sort the product

〈α,β〉 =
∏

γ∈C(β|α)

∏

m∈Z

∏

n∈Z

βz1 − β−mγαnz0

βz1 − β−mγαn−1z0

z1 − β−mγαn−1z0

z1 − β−mγαnz0
.

For a fixed m ∈ Z and γ ∈ C(β|α) the interior product
∏

n∈Z is easily computed as
follows:

∏

n∈Z

βz1 − β−mγαnz0

βz1 − β−mγαn−1z0

z1 − β−mγαn−1z0

z1 − β−mγαnz0
= βm+1z1 − γ z+α
βm+1z1 − γ z−α

βmz1 − γ z−α
βmz1 − γ z+α

because consecutive terms simplify and αnz0 → z+α for n→∞whereas αnz0 → z−α
for n→−∞. In addition, we make use of the projective invariance of the cross ratio
under βm. The same trick can be applied to the product

∏

m∈Z over the last results.
Thus,

∏

m∈Z

βm+1z1 − γ z+α
βmz1 − γ z+α

βmz1 − γ z−α
βm+1z1 − γ z−α

= z+β − γ z+α
z−β − γ z+α

z−β − γ z−α
z+β − γ z−α

.

These are exactly the factors of the desired product we asserted.
(b) Since α is not divisible in H , every element in Γ either belongs to αZ or can

be written uniquely in the form αmγαn, where m,n ∈ Z and γ ∈ C0(α|α) due to
Lemma 2.5.10. Now the proof of (b) is completely analogous to the one of (a). The
contribution of the coset αZ to the product is given by

θ(z+α − z−α ;αz1)

θ(z+α − z−α ; z1)
= αz1 − z+α
αz1 − z−α

z1 − z−α
z1 − z+α

= qα.

Indeed, the cross-ratio is invariant under PGL(2,K), so we may assume that
z−α =∞ and z+α = 0. In this case the cross-ratio is αz1/z1 = qα . �

Example 2.5.12. If the coordinate function is chosen in such a way that α is in-
duced by the matrix

(

q 1
0 1

)

with |q| < 1, then z+α = 0 and z−α = ∞ and hence

θ(z+α − z−α ; z)= z. Furthermore, if γ is associated to
(

a b
c d

)

, then γ (z+α )= b/d and
γ (z−α )= a/c. Thus, the formula of Proposition 2.5.11(b) reduces to

〈α,α〉 = q
∏

i∈I

bici

aidi
,

where C0(α|α)= {γi; i ∈ I } and γi is induced by
( ai bi
ci di

)

for i ∈ I .
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Proposition 2.5.13. For α ∈ Γ − {id} we have that

Θ(αz1 − z1; z)=
∏

γ∈C(id |α)

θ(γ z+α − γ z−α ; z)
θ(γ z+α − γ z−α ; z0)

.

This product has neither poles nor zeroes in Ω . Furthermore, it does not depend on
z1 and it is multiplicative in α.

Proof. This follows in the same way as Proposition 2.5.11. Indeed, on the left-hand
side the product runs only over γ ∈ C(id |α) and n ∈ Z; cf. Remark 2.5.7. The result
of the interior product over n ∈ Z yields

∏

n∈Z

z− γ αnαz1

z− γ αnz1

z0 − γ αnz1

z0 − γ αnαz1
= z− γ z+α
z− γ z−α

z0 − γ z−α
z0 − γ z+α

= θ(γ z+α − γ z−α ; z)
θ(γ z+α − γ z−α ; z0)

.

In fact, the finite partial product is

N
∏

n=−N

z− γ αnαz1

z− γ αnz1

z0 − γ αnz1

z0 − γ αnαz1
= z− γ αN+1z1

z− γ α−Nz1

z0 − γ α−Nz1

z0 − γ αN+1z1
.

Thus, taking the limit yields the given formula, because αnz1 → z+α for n→∞ and
αnz1 → z−α for n→−∞. The multiplicativity follows from the formula

(αβ − id)z1 = (α − id)(βz1)+ (β − id)z1

and the fact that Θ(αz1 − z1; z)=Θ(αβ(z1)− β(z1); z).
The independence of z1 follows from the formula, because the right-hand side

does not involve z1. �

Since Θ(αz1 − z1;βz) = 〈β,α〉 · Θ(αz1 − z1; z), we see that the logarithmic
derivative dlog(Θ(αz1 − z1; z)) is Γ -invariant. Thus, we obtain the result:

Corollary 2.5.14. The logarithmic derivative dlog(Θ(αz1 − z1; z)) gives rise to a
Γ -invariant holomorphic differential on Ω , and hence to a holomorphic differential
form on X. It depends additively on α ∈ Γ .

2.6 Drinfeld’s Polarization

As in Sect. 2.5, let Γ be a Schottky group of rang g ≥ 1. In the following we keep the
same notation as there. After the preparations in Sect. 2.4 we are now able to show
the positivity of the bilinear form in Proposition 2.5.8; this form is called Drinfeld’s
polarization. Later in Corollary 2.9.16 we will show that the scalar form 〈_,_〉 is
the Riemann form of the Jacobian of the Mumford curve XΓ .
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Lemma 2.6.1. Let ρ :Ω→ SΩ be a semi-stable skeleton and consider K-rational
points a1, a2, z1, z2 of Ω which are separated by ρ. Denote by a1, a2, respectively,
z1, z2, the oriented paths leading from ρ(a1) to ρ(a2), respectively, from ρ(z1) to
ρ(z2). Then

− log

∣

∣

∣

∣

θ(a1 − a2; z1)

θ(a1 − a2; z2)

∣

∣

∣

∣

= [a1, a2, z1, z2],

where [_,_] is the pairing of Definition 2.4.14.

Proof. The left-hand side is the cross-ratio

θ(a1 − a2; z1)

θ(a1 − a2; z2)
= z1 − a1

z1 − a2

z2 − a2

z2 − a1
.

Using the projective invariance of the cross-ratio, we may assume that z1 = 0,
z2 =∞, a2 = 1 and a1 = a /∈ {0,1,∞}. Then the left-hand side is equal to− log |a|.
For computing the right-hand side, it suffices by Lemma 2.4.15 to consider the sta-
ble skeleton associated to the points 0,1, a,∞. So, let us start with the standard
reduction of P1

K .
If |a| = 1 and |a−1| = 1, the standard skeleton is the stable one. Thus, the stable

skeleton consists of one vertex and the right-hand side is equal to 0 and coincides
with the left-hand side. If |a− 1|< 1, one has to refine the standard skeleton as was
explained in the proof of Lemma 2.4.5. Thus, we see that the path 1, a has no edge
in common with 0,∞. Thus, we see that the formula is correct if |a| = 1.

If |a|< 1, then one has to refine the standard skeleton by introducing a new vertex
associated to the disc {z ∈ P

1
K ; |ζ(z)| ≤ |a|}, where ζ is the standard coordinate

function on P
1
K , and a new edge e′ associated to the annulus A(|a|,1)−. The two

paths have the edge e′ in common with the same orientation. If |a| > 1, then we
introduce the vertex associated to {z ∈ P

1
K ; |ζ(z)| ≥ |a|}. Now the common edge

e′ has opposite orientation on the two paths. However, the height of A(1, |a|)− is
1/|a|. Therefore, we obtain in both cases [1, a,0,∞]=− log |a|. �

Now we are ready to prove the main result of this section.

Theorem 2.6.2 (Drinfeld). Let H := Γ/[Γ,Γ ]. The bilinear form of Proposi-
tion 2.5.8 satisfies

∣

∣〈α,α〉∣∣< 1,

for α ∈ Γ with α ∈H − {1}; i.e., the bilinear form

− log
∣

∣〈_,_〉∣∣ :H ×H −→R, (α,β) �−→− log
∣

∣〈α,β〉∣∣,
is positive definite.

To prove Theorem 2.6.2 we will explicitly calculate the form 〈α,β〉 in terms of
the skeleton SX . First we introduce some notations.
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Consider the semi-stable skeleton ρ :Ω→ SΩ of Proposition 2.4.11. In the fol-
lowing we use the notations of Definition 2.4.14 and Notation 2.4.16.

For a transformation α ∈ Γ −{id} let z+α and z−α be the attractive and the repelling

fixed point of α, respectively; cf. Definition 2.5.9. Let xα := z+α , z−α ⊂ SΩ be the axis
leading from z+α to z−α ; cf. Remark 2.4.13. Then α acts on xα by shifting. Let γ xα be
the image of this axis by γ ∈ Γ . Denote by cα the section of the axis xα contained in
the fundamental domain of αZ. If one has fixed a base point z0 such that ρΩ(z0) is
a vertex, then cα is conjugate to the unique path ρ(z0), ρ(α(z0)), which leads from
ρΩ(z0) to ρΩ(α(z0)) without backtracking. Then

cα = e1 + · · · + es

is a finite sequence of oriented edges e1, . . . , es . The axis can be presented in the
form

xα =
∑

n∈Z
αncα =

∑

n∈Z

s
∑

i=1

αnei . (∗)

The chain cα is cycle whose homology class in H1(SX,Z), more precisely in
H1(real(SX),Z), coincides with the image of α ∈ Γ under the natural map
π1(SX)∼= Γ →H1(SX,Z)∼=H . So cα depends only on α and is additive in α.

Theorem 2.6.2 is now a consequence of the following theorem, which is closely
related to results of Grothendieck; cf. [42, Exp. IX, 12.3.7 and 12.5].

Theorem 2.6.3. In the situation of Theorem 2.6.2, if α,β ∈ Γ , then we have

− log
∣

∣〈α,β〉∣∣= [cα, cβ ].

Proof. Both sides of the formula are bilinear symmetric forms with respect to α

and β . It therefore suffices to show that they coincide if α = β and α is not divisible
in H . By Proposition 2.5.11(b) we have

〈α,α〉 = qα
∏

γ∈C(α|α)−{id}

θ(z+α − z−α ;γ z+α )
θ(z+α − z−α ;γ z−α )

.

Define r := − log |qα| which is positive. Then we obtain

− log
∣

∣〈α,α〉∣∣ = r +
∑

γ∈C0(α|α)
[xα, γ xα]

= r +
∑

γ∈C0(α|α)

∑

m,n∈Z

[

αmcα, γ α
ncα
]

= r +
∑

γ∈C0(α|α)

∑

m,n∈Z

[

cα,α
−mγαncα

]

= r +
∑

γ∈Γ−αZ
[cα, γ cα] =

∑

γ∈Γ
[cα, γ cα],
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where C0(α|α) := C(α|α)− {id} is as in Proposition 2.5.11. The first equation fol-
lows from Lemma 2.6.1. The second equation follows form (∗). The third equa-
tion is valid, because the height is invariant under projective transformations. For
the fourth equation note that every element in Γ − αZ has a unique representation
αmγαn with γ ∈ C0(α|α) and m,n ∈ Z, since α is not divisible. The last equation
is true, because [cα,αncα] equals r if n= 0, and equals 0 if n 
= 0. Note that xα and
γ xα have only a finite path in common for γ ∈ C0(α|α), because cα and αmγαncα
are disjoint for almost all αmγαn, as follows from Corollary 2.2.17. Finally, we
show that

∑

γ∈Γ
[cα, γ cα] =

r
∑

i,j=1

[ei, γ ej ] = [cα, cα] =
N
∑

j=1

−m2
i log ε(ei) > 0,

where cα := pS(cα) is the image of cα as defined in Notation 2.4.16, and e1, . . . , eN
are all the (geometric) edges of SX and ε(ej ) is the height of its associated annulus.
The integer mj denotes the number of times the path cα passes the edge ej . We may
assume that none of the edges of SX is a loop.

Indeed, using the fact that cα = e1 + · · · + es , we have

[

pS(ei),pS(ej )
]=
{ [ei, γ ej ] if there exists a γ ∈ Γ with γ ei =±ej ,

0 else.

In the first case, the transformation γ ∈ Γ is unique by Corollary 2.4.12. Thus,
we obtain the above formula, because we have that [ei, ei] = − log ε(ei) > 0 by
Definition 2.4.14 and ε(ei) = ε(pS(ei)). This also completes the proof of Theo-
rem 2.6.2. �

In Sect. 6.5 we will present an analog of Drinfeld’s pairing in the case of a smooth
projective curve with semi-stable reduction; cf. Corollary 6.5.10. In more detail, one
can rephrase Theorem 2.6.3 in the following form.

Remark 2.6.4. Consider the situation of Proposition 2.4.11(c) where, in addition,
we fix a K-rational base point z0 which is sent to a vertex ρΩ(z0) ∈ SΩ . Let cα be
a path in SΩ which starts at ρΩ(z0) and terminates in ρΩ(αz0). Let cα = pS(cα) be
the image of the path cα for α ∈ Γ , which is cycle in SX . If α,β ∈ Γ , then

log
∣

∣〈α,β〉∣∣= [cα, cβ ] =
N
∑

i=1

mini log ε(ei).

Here e1, . . . , eN are all the edges of SX equipped with an orientation. The integers
mi and ni , respectively, are the number of times the paths pS(cα) and pS(cβ), re-
spectively, pass through the edge ei ; the counting takes the orientation of the edges
into account.
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2.7 Rigid Analytic Tori and Their Duals

In this section we present the basic theory of rigid analytic tori. This will be used
in Sect. 2.8 when studying the Jacobian variety of a Mumford curve. For a system-
atic approach it is appropriate to study line bundles of such tori and to show the
representability of the Picard functor of translation invariant line bundles on a rigid
analytic torus. The latter can be used to classify the abelian varieties among the rigid
analytic tori.

Let M ′ be a free abelian group of rank r , and denote its group law by “+”. Let
T := SpecK[M ′] be the associated affine torus. In the following we regard T as a
rigid analytic variety. Let us start by recalling some well-known facts on tori.

Proposition 2.7.1. In the above situation we have:

(a) For every field extension L/K , the set of L-valued points of T can be identified
with the set of group homomorphisms t :M ′ → L×.

(b) Let M ′
1 = Z

r1 and M ′
2 := Z

r2 be free abelian groups of finite rank and let T1 :=
SpecK[M ′

1] and T2 := SpecK[M ′
2] be the associated affine tori. Then the map

Hom(T1, T2) ˜−→Hom
(

M ′
2,M

′
1

)

, ϕ �−→ ϕ∗
∣

∣

M ′
2
,

is an isomorphism of groups. Its inverse sends λ :M ′
2 →M ′

1 to the map

ϕ : T1 −→ T2, t1 �−→
[

ϕ(t1) :M ′
2 −→Gm,K,m

′
2 �−→ t1

(

λ
(

m′2
))]

.

In particular, there is a canonical isomorphism

M ′ ˜−→Hom(T ,Gm,K), m′ �−→ [χm′ : T →Gm,K, t �−→ t
(

m′
)]

.

A lattice M ⊂ T is a discrete rigid analytic subgroup of T such that the group
homomorphism

� : T (K)−→R
r , z= (z1, . . . , zr ) �−→ �(z) := −(log |z1|, . . . , log |zr |

)

,

induces an isomorphism of M(K) to a lattice Λ ⊂ R
r , where K is a complete al-

gebraic closure of K . It is said to have full rank if the rank of Λ is r . We write the
group law on M additively, as in the case of M ′.

Proposition 2.7.2. Let M and M ′ be a free abelian group of rank r and set
T := SpecK[M ′] and T ′ := SpecK[M].
(a) There is a one-to-one correspondence between Hom(M,Hom(M ′,K×)) and

the group Bihom(M ×M ′,K×) of bilinear forms.
(b) There is a one-to-one correspondence between Hom(M,Hom(M ′,K×)) and

the group of homomorphisms h :M→ T .
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(c) A group homomorphism h :M→ T maps M bijectively to a lattice of rank r if
and only if, for the associated bilinear form b, the bilinear form

− log |b| :M ×M ′ −→R,
(

m,m′
) �−→− log

∣

∣b
(

m,m′
)∣

∣,

is non-degenerate.
(d) The group of homomorphisms h :M→ T corresponds one-to-one to the group

of homomorphisms h′ :M ′ → T ′. Moreover, h maps M bijectively to a lattice
of T if and only if the corresponding homomorphism h′ :M ′ → T ′ maps M ′
bijectively to a lattice of T ′.

(e) If h is an inclusion, then the inclusion h′ is given by

M ′ −→ T , m′ �−→ [m′∣∣
M
:M→K×

]

.

Proof. (a) is well-known.
(b) If h ∈ Hom(M,Hom(M ′,K×)), then the map h(m) is a group homomor-

phism h(m) :M ′ →K× for each m ∈M , and hence a K-valued point of T due to
Proposition 2.7.1(a). Moreover, h :M→ T is group homomorphism. Conversely, if
h :M→ T is a group homomorphism, then h(m) :M ′ →K× is group homomor-
phism, and hence h can be identified with an element of Hom(M,Hom(M ′,K×)).
Obviously, the correspondence is one-to-one.

(c) By (a) and (b) we have that every group homomorphism h :M→ T corre-
sponds to a bilinear form b :M ×M ′ →K×. Now h maps M bijectively to a lattice
in T if and only if for each m ∈ M − {0} there exists a character m′ ∈ M ′ with
|m′(h(m))| 
= 1. The latter is equivalent to the fact that − log |b| is non-degenerate.

(d) follows from (a) and (b), because the condition (a) is a symmetric in M

and M ′. The assertion about lattices follows from (c).
(e) follows from the proof of (b). �

The next proposition characterizes lattices of full rank.

Proposition 2.7.3. Let M ⊂ T be a lattice. Then the following holds:

(a) The rigid analytic quotient A := T/M exists and is a smooth rigid analytic
group variety. The quotient map p : T → A is a unramified covering in the
topological sense; cf. Definition 1.7.10.

(b) M has full rank if and only if T/M is a proper rigid analytic variety.

Proof. (a) The rigid analytic structure of A is defined as the geometric quotient of T
with respect to the M-action on T ; i.e., a set V ⊂A, respectively, a covering V of A
is admissible if p−1(V )⊂ T , respectively, p∗V is admissible. An atlas of charts of
A is given in the following way. Let Q⊂ R

r be an r-dimensional polytope whose
vertices take coordinates in the divisible additive value group log(|K×|) such that Q
is contained in a fundamental domain of Rr modulo Λ. Then V := �−1(Q)⊂ T is
a connected admissible domain which does not contain M-congruent points, where
� := − log is as in Proposition 2.7.2, and V is affinoid if M has full rank. These
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subsets form an atlas of charts of A. The inverse image W := p−1(V ) decomposes
into a disjoint union W =⋃m∈M m · V , where V ⊂ T is as above. The induced
group law on T/M is a morphism with respect to this holomorphic structure.

(b) If M has full rank, then T/M is obviously covered by finitely many charts
as was defined above. Moreover, if we choose a second polytope Q′ �Q, we
obtain a chart V ′ with V ′ � V . Obviously, A is also covered by finitely many
V ′1, . . . , V ′n of such charts. Thus, there are two finite coverings V := {V1, . . . , Vn}
and V′ := {V ′1, . . . , V ′n} by affinoid domains such that V ′i � Vi for i = 1, . . . , n; cf.
Definition 1.6.3. This means that A is proper as a rigid analytic variety; cf. Defini-
tion 1.6.3.

If A is proper, then A can be covered by finitely many affinoid charts. Since these
are bounded subsets in T , we see that there exists a bounded subset B ⊂ R

r which
covers Rr/Λ. Thus, M has full rank. �

In the following we always assume that M has full rank. Let

p : T −→A := T/M

be the canonical quotient map. Then A is called a rigid analytic torus.
Next we wish to give an explicit geometric description of line bundles on A.

Moreover, we want to construct a universal space A′ which parameterizes all trans-
lation invariant line bundles in a canonical way; this space A′ will be called the dual
of A.

Lemma 2.7.4. Every line bundle L on the torus T is trivial. The set of trivializa-
tions of a rigidified (Definition 1.7.8) line bundle is a principal homogeneous space
under the character group M ′ =Hom(T ,Gm).

Proof. Let L be the invertible sheaf associated to L; i.e., the dual of the sheaf of
sections in Remark 1.7.2. Let c ∈ |K×| with c < 1. It suffices to show that L is
trivial. Put

T (c) := {(t1, . . . , tr ) ∈G
r
m,K ; c ≤ |tρ | ≤ c−1 for ρ = 1, . . . , r

}

.

By Proposition 1.6.13 the ring OT (T (c)) is factorial. Thus, for n ∈N, there exists a
generator �n of L|T (cn). Since �n|T (cm) is a generator of L over T (cm) for all m≤ n

as well. There are relations

�n|T (cm) = un,m · �m
with units un,m ∈ T (cm). By Proposition 1.3.4 the units can be written in the form

un,m = cn,m · ξm′(n,m) · (1+ hn,m),

where cn,m ∈ K× is a constant, ξm
′(n,m) is a character and hn,m is a holomorphic

function on T (cm) with sup-norm less than 1. After having fixed �1, one can adjust
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the other �n by requiring that cn,1 = 1, m′(n,1)= 0, and hn,1(1) = 0. Then one
easily shows that the sequence �n converges to a global generator of L. Indeed,
it follows that cn,m = 1 and m′(n,m) = 0 for all m ≤ n. Furthermore, we see by
Proposition 1.3.4 that there is the estimate

|hn,1|T (c)| ≤ cn−1.

Thus, the sequence converges on T (c). The same argument shows that it also con-
verges on each T (cm).

The last assertion follows from the fact that the units u on an affine torus with
u(1)= 1 are the characters as seen by Proposition 1.3.4. �

Thus, one can present the line bundles on A in terms of M-linearizations on the
trivial line bundle over T with respect to the lattice M ; cf. Example 1.7.13.

Proposition 2.7.5. Let M ⊂ T be a lattice of full rank and A := T/M . Then we
have the following:

(a) The isomorphism classes of line bundles on A correspond bijectively to the iso-
morphism classes of M-linearizations of the trivial line bundle A

1
T .

Such a linearization is determined by a couple (r, λ), where λ :M→M ′ is
a group homomorphism and r :M→Gm,K is a map satisfying the relation

〈

m2, λ(m1)
〉= r(m1 +m2)

r(m1) · r(m2)
for all m1,m1 ∈M.

Here 〈_,_〉 : T ×M ′ −→Gm,K is the evaluation of characters at points.
(b) A line bundle L on A is trivial if and only if the homomorphism λ of the corre-

sponding linearization (r, λ) is zero and the map r satisfies r(m)= 〈m,m′〉 for
some m′ ∈M ′ and for all m ∈M .

(c) A line bundle L on A is translation invariant if and only if the homomorphism
λ of the corresponding linearization (r, λ) is zero. In this case r :M→ Gm,K

is a group homomorphism.

Proof. (a) In view of Lemma 2.7.4, we have to consider only the M-linearizations
on the trivial line bundle on T . Consider anM-linearization on the trivial line bundle
T ×A

1, say it is given by morphisms

cm : T ×A
1 −→ T ×A

1, (z, �) �−→ (m · z, cm(z) · �
)

,

via a morphism cm : T →Gm,K . Writing the global function cm as a Laurent series

cm(z)=
∑

m′∈M ′
rm′ ·
〈

z,m′
〉

with coefficients rm′ ∈K , we see that there exists a character m′ = λ(m) in M ′ such
that

cm(z)= rλ(m) ·
〈

z,λ(m)
〉;
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cf. Proposition 1.3.4. The corresponding isomorphism on the trivial line bundle
T × A

1 is necessarily of type (z, �) �−→ (z, 〈z,m′〉 · �). Now the associativity of
the action is equivalent to the condition that

rm1 · rm2 ·
〈

z,λ(m1)
〉 · 〈m1 · z,λ(m2)

〉= rm1+m2 ·
〈

z,λ(m1 +m2)
〉

for all m1,m2 ∈M and all z ∈ T . This in turn is equivalent to the condition that λ is
a group homomorphism λ :M→M ′ and that

〈

m1, λ(m2)
〉= rm1+m2 · r−1

m1
· r−1
m2
.

Thus, we see that r :M→Gm,K,m �→ r(m) := rm, satisfies the condition.
(b) Assume that (r, λ) gives rise to a trivial line bundle on A. Then there exists

an invertible function u on T such that

r(m) · 〈z,λ(m)〉= u(mz) · u(z)−1

for all z ∈ T and m ∈M . Since u(z)= c · 〈z,m′〉 for some m′ ∈M ′ and c ∈K× by
Proposition 1.3.4, it follows that λ= 0 and r(m)= 〈m,m′〉.

Conversely, for a character m′ ∈M ′ the M-linearization defined by the homo-
morphism r(m) := 〈m,m′〉 for m ∈M leads to the trivial line bundle on A.

(c) If (r, λ) corresponds to a translation invariant line bundle on A, then the ac-
tions on T ×A

1 given by

r(m) · 〈z,λ(m)〉 and
〈

x,λ(m)
〉 · r(m) · 〈z,λ(m)〉, for all m ∈M,z ∈ T ,

are isomorphic for every x ∈ T . Due to (b), there exists a character m′(x) in M ′
such that 〈m,m′(x)〉 = 〈x,λ(m)〉 for all m ∈M and x ∈ T . Thus, we see λ= 0 and
m′(x)= 0, since M is a lattice in T .

Conversely, it is easy to see that every pair (r, λ) with λ= 0 leads to a translation
invariant line bundle on A. �

One easily proves the following result.

Lemma 2.7.6. In the above situation we have:

(a) Let (r, λ) be a linearization on A
1
T . Let a be a K-rational point of T and let

τa :A→A be the left-translation by a. Then

τ ∗a
(

r(m),λ
)= 〈a,λ(m)〉 · 〈r(m),λ).

(b) If (ri , λi) are linearizations for i = 1,2, then

(r1, λ1)⊗ (r2, λ2)= (r1 · r2, λ1 + λ2).

(c) [Theorem of the Square] If a, b are K-rational points of T , then

τ ∗a (r, λ)⊗ τ ∗b (r, λ)= τ ∗a+b(r, λ)⊗ (r, λ).
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In the following we want to construct the dual variety A′ of A= T/M ; i.e., the
universal space which parameterizes the isomorphism classes of translation invari-
ant line bundles on A. Moreover, we will define a universal line bundle PA×A′ . This
line bundle is called the Poincaré bundle. It is rigidified along the unit section of A.
For more details see Remark 2.7.8 below.

Theorem 2.7.7. Let M ⊂ T be a lattice of full rank. Then we have:

(a) The dual variety A′ which parameterizes the translation invariant line bundle
on A can be represented as

A′ = T ′/M ′,

where T ′ = SpecK[M] which, as a set of closed points, can be identified with
Hom(M,Gm,K), and where M ′ ↪→ T ′ is regarded via the mapping

M ′ −→Hom(M,Gm,K), m′ �−→m′
∣

∣

M
.

(b) The Poincaré bundle PA×A′ on A× A′ is given by the linearization (R,Λ) of
the trivial line bundle on T × T ′ with respect to the lattice M ×M ′, where

Λ :M ×M ′ −→M ′ ×M,
(

m,m′
) �−→ (m′,m),

R :M ×M ′ −→Gm,K,
(

m,m′
) �−→ 〈m,m′〉.

Proof. (b) The given formula defines a linearization. Indeed, on the one hand we
have

〈(

m2,m
′
2

)

,Λ
(

m1,m
′
1

)〉=m′1(m2) ·m′2(m1)

and on the other hand

R((m1,m
′
1)+ (m2,m

′
2))

R(m1,m
′
1) ·R(m2,m

′
2)
=m′1(m2) ·m′2(m1).

Obviously, P |0×A′ and P |A×0′ are trivial. Its universal property is verified below.
(a) Let L be a translation invariant line bundle on A. By Lemma 2.7.4 the pull-

back p∗L is trivial on T . Then the natural M-linearization on p∗L∼= T ×A
1
K is

given in the manner of Proposition 2.7.5(c) by a homomorphism r :M → Gm,K

which, in turn, may be viewed as a point x′ ∈ T ′; namely, as the one which satisfies
r(m) = 〈x′,m〉. Thus, x′ induces a point p′(x′) ∈ A′. By Proposition 2.7.5(b) the
point p′(x′) is uniquely determined by L. Now consider the (M ×M ′)-action on
the line bundle (T × T ′)× A

1
K which is given by (R,Λ) and restrict it to M × 0′

and to T × {x′}. The resulting morphisms

T ×A
1
K −→ T ×A

1
K, (x, �) �−→ (x, 〈m,x′〉 · �) for m ∈M,

coincide with the ones defining the action on p∗L, because r(m) = 〈x′,m〉 for
m ∈M . Thus, it follows that L∼= (x′ × id)∗PA×A′ for the Poincaré bundle. �
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Remark 2.7.8. While the theorem only states that the set of isomorphism classes
of translation invariant line bundles L on A ⊗ K ′ bijectively corresponds to the
K ′-rational points of A′, we have in fact that A′ satisfies more generally the follow-
ing universal property:

If S is a rigid analytic space, then, for every rigidified translation invariant line
bundle (L, �) on A× S, the map

ϕ : S −→A′, s �−→ [L|A×s],
is holomorphic, where [L|A×s] denotes the isomorphism class of the restriction
L|A×s , and there is a canonical isomorphism L ˜−→(id, ϕ)∗PA×A′ of rigidified line
bundles.

The proof of this more general result requires the notion of cubical structures
on line bundles on A ×K S which is related to the theorem of the cube in Theo-
rem 7.1.6. Any rigidified line bundle on A×K S canonically carries such a cubical
structure. One uses this to show that the pull-back (p, id)∗L on T ×K S is trivial as
a cubical line bundle locally over S cf. Proposition 6.2.10. This is a stronger version
of Lemma 2.7.4.

Furthermore, the M-linearization on (id,p)∗L on T ×K S induces morphisms
of cubical line bundles so that they are given in the manner (r, λ), where r(m) :
S→Gm,K is a holomorphic map for each m ∈M . Our weaker result could be de-
rived from Proposition 1.3.4. Using the technique of cubical structures, the universal
property mentioned above follows in the same way as was explained in the proof
of Theorem 2.7.7; cf. Corollary 6.2.6. A more general situation will be treated in
Sect. 6.3.

Remark 2.7.9. Without using the stronger version in Remark 2.7.8 of Theo-
rem 2.7.7, the following can be proved. Every line bundle L gives rise to a holo-
morphic morphism

ϕL :A−→A′, a �−→ ϕL(x) := τ ∗a L⊗L−1.

If (r, λ) is the M-linearization corresponding to a line bundle L, then the lifting
ΦL : T −→ T ′ of ϕL is given by

T
ΦL

p

T ′

p′

t t ◦ λ

A
ϕL

A′ a ϕL(a)= τ ∗a L⊗L−1,

where the point t ∈ T is viewed as a group homomorphism t :M ′ → Gm,K . Then
the composition t ◦ λ :M→Gm,K is a group homomorphism as well, and hence it
can be viewed as a point of T ′; cf. Proposition 2.7.1(a). In particular, the morphism
ΦL corresponds to the homomorphism λ : M → M ′ of their character groups in
the sense of Proposition 2.7.1(b). Furthermore, ϕL is surjective if and only if λ is
injective.
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Proof. A point t ∈ T is mapped to the M-linearization t ′ :M → Gm,K which is
given by

m �−→ r(m) · 〈tz, λ(m)〉
r(m) · 〈(z, λ(m)〉 =

〈

t, λ(m)
〉= t ◦ λ(m).

If λ :M→M ′ is injective, then the index [M ′ : λ(M)] <∞ and hence ΦL is sur-
jective, because K[M] →K[M ′] is finite. If ϕL is surjective, so is ΦL, and hence
the index [M ′ : λ(M)]<∞ is finite. Thus, λ is injective. �

Definition 2.7.10. Let M ⊂ T be a lattice of full rank. A polarization of the couple
(T ,M) is a linear map λ :M→M ′ such that the bilinear form

M ×M −→K×, (m1,m2) �−→
〈

m2, λ(m1)
〉

,

is symmetric and positive definite; i.e., |〈m,λ(m)〉|< 1 for all m ∈M − {0}.

Remark 2.7.11. Let M ⊂ T be a lattice.

(a) By Proposition 2.7.1(b) every morphism λ :M→M ′ gives rise to a morphism

ϕ : T −→ T ′, t �−→ [ϕ(t) :M −→Gm,K,m �−→ t
(

λ(m)
)= 〈t, λ(m)〉].

If λ :M→M ′ is symmetric, i.e., if λ satisfies the rule
〈

m2, λ(m1)
〉= 〈m1, λ(m2)

〉

for all m1,m2 ∈M,

then ϕ(M)⊂M ′, and hence ϕ induces a morphism ϕ : T/M→ T ′/M ′.
(b) For every linearization (r, λ) of the trivial line bundle T ×A

1
K , the bilinear form

on M given by λ as in (a) is symmetric, i.e., the rule in (a) is satisfied.
(c) If λ :M→M ′ is a symmetric group homomorphism, then there exists an

M-linearization (r, λ) on the trivial line bundle on T which gives rise to a line
bundle on T/M .

Proof. (a) To prove the inclusion ϕ(M)⊂M ′, consider an element m1 ∈M . Then
〈

m2, ϕ(m1)
〉= 〈m1, λ(m2)

〉= 〈m2, λ(m1)
〉

for all m2 ∈M.

Thus, we see that ϕ(m1)= λ(m1) ∈M ′.
(b) The symmetry follows from the relation

〈

m1, λ(m2)
〉= r(m1 +m2)

r(m1) · r(m2)
= 〈m2, λ(m1)

〉

which was explained in Proposition 2.7.5.
(c) Let (e1, . . . , er ) be a basis of M . We choose values c1, . . . , cr ∈ K× and

put r(ei) = ci for i = 1, . . . , g. Then we define r :M→ Gm,K inductively via the
formula

r(m1 +m2) := r(m1) · r(m2) ·
〈

m1, λ(m2)
〉

.
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Due to the symmetry, the definition of r(m) is independent of the representation of
m ∈M as a linear combination in the chosen basis of M . �

Theorem 2.7.12. In the situation of Proposition 2.7.5 let (r, λ) be a pair corre-
sponding to an invertible sheaf L on A. Then the following conditions are equiva-
lent:

(a) L is ample in the sense of Definition 1.7.3.
(b) The morphism λ gives rise to a polarization of (T ,M).
(c) λ is injective and there is a non-trivial global section of L.

In particular, dimΓ (A,L)= #(M ′/λ(M)).

Proof. By Remark 1.7.2 we can regard the sections of L as sections of the line
bundle L, whose corresponding pair in the sense of Proposition 2.7.5 is given by
(r−1,−λ).

In order to show the equivalence of (b) and (c), consider a global section f of
Γ (A,L). Switching back to the line bundle L, we view f as a section of L over A.
Pulling back the situation to T , the line bundle p∗L becomes trivial, and hence the
pull-back of f becomes a holomorphic function on f : T →A

1
K which is invariant

under the M-action given by (r−1,−λ) of M . Now consider the Laurent series

f (z)=
∑

m′∈M ′
am′
〈

z,m′
〉

of f . The invariance of f under the M-action; i.e., the commutativity of the diagram

T ×A
1

cm

T ×A
1 (z, �) (m · z, r(m)−1〈−λ(m), z〉 · �)

T
m

f

T

f

z m · z,

yields

r(m)−1
〈

z,−λ(m)〉 · f (z) =
∑

m′∈M ′
r(m)−1 · am′ ·

〈

z,m′ − λ(m)
〉

= f (m · z) =
∑

m′∈M ′
am′ ·
〈

m · z,m′〉

for all m ∈M . Thus, by checking coefficients, it follows that

r(m)−1 · am′ =
〈

m,m′ − λ(m)
〉 · am′−λ(m) =

〈

m,m′
〉 · 〈m,−λ(m)〉 · am′−λ(m),

and equivalently

am′−λ(m) = 〈m,λ(m)〉
r(m) · 〈m,m′〉 · am′ .
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Since r(i ·m)= r(m)i · 〈m,λ(m)〉i(i−1)/2 for i ∈N, iteration by m yields

am′−λ(i·m) = 〈m,λ(m)〉
i(i+1)/2

r(m)i · 〈m,m′〉i · am′ . (∗)

(c)→ (b): As seen in Proposition 2.7.5, the map λ :M→M ′ fulfills the sym-
metry condition 〈m2, ϕ(m1)〉 = 〈m1, λ(m2)= 〈m2, λ(m1)〉 for all m1,m2 ∈M . Let
f be a global section of L which is not 0. This means that the Fourier expansion
of f =∑am′ 〈z,m′〉 has a coefficient am′ 
= 0. Since λ is injective, we have that
λ(m) 
= 0 for every m ∈ M − {0}. By the formula (∗) we see that all the coef-
ficients (am′−λ(i·m); i ∈ Z) are nonzero. Since the Fourier series converges on T ,
it follows that for all positive c ∈ R and m ∈ M − {0} the coefficients satisfy
|am′−λ(i·m)|/c|i| → 0 for |i| →∞. Now formula (∗) implies that this happens only
if |〈m,λ(m)〉|< 1 for all m ∈M − {0}. Thus, λ :M→M ′ is a polarization.

(b)→ (c): If the inequality |〈m,λ(m)〉|< 1 is satisfied for all m ∈M with m 
= 0,
we see that λ : M → M ′ is injective. Moreover, one can construct a non-trivial
Fourier series by prescribing coefficients on a set of representatives of M ′/λ(M)

by the formula (∗). Then these Fourier series give rise to non-trivial global sections
of L.

In particular, one obtains the formula dimΓ (A,L)= #(M ′/λ(M)).
(a) → (c): If L is ample, then A is an abelian variety. By [74, p. 60] the map

ϕL is surjective. Then it follows from Remark 2.7.9 that λ is injective. Moreover,
L admits a non-vanishing global section; cf. [74, Cor. on p. 159].

(c)→ (a): Note that the morphism ϕL is surjective due to Remark 2.7.9, since
λ is injective by assumption. Then the ampleness of L follows from Lemma 7.1.9
below which is a general basic fact on abeloid varieties. �

Corollary 2.7.13. Let A := T/M be rigid analytic torus as above. The following
conditions are equivalent:

(a) A is an abelian variety.
(b) There exists a polarization of (T ,M).
(c) The transcendence degree of the field of meromorphic functions on A is equal

to the dimension of A.

Proof. (a)→ (b): If A is an abelian variety, there exists an ample invertible sheaf
on A; cf. Proposition 7.1.10. Then the assertion follows from Theorem 2.7.12.

(b) → (a): We may assume that K is algebraically closed. Then this follows
from Theorem 2.7.12 as well. Indeed, if the polarization λ is given, one defines an
ample invertible sheaf L on A by constructing an M-linearization (r, λ) on A

1
T ; cf.

Remark 2.7.11(c). Then the assertion follows from Proposition 7.1.10.
(a)↔ (c): It follows from Proposition 7.1.8(b) which is a general basic fact on

abeloid varieties as well. �
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2.8 Jacobian Variety of a Mumford Curve

In this section we will present an analytic construction of the Jacobian variety of a
Mumford curve. For its precise definition in the general context see Definition 5.1.2.

Let Γ ⊂ PGL(2,K) be a Schottky group of rank g ≥ 1. We denote by

pX :Ω :=ΩΓ −→X :=XΓ := Γ \Ω
the quotient map from the set of ordinary points of Γ to the associated Mumford
curve; cf. Theorem 2.3.1. Note that X has genus g due to Theorem 2.3.1(b). More-
over, we fix a K-rational point z0 ∈Ω .

First we will construct a rigid analytic torus J = T/M which parameterizes Γ -
linearizations on the trivial line bundle Ω ×A

1
K . In a second step we will produce

a canonical map J → JacX from J to the Jacobian JacX of the algebraic curve X.
Finally, it will turn out that this map is an isomorphism. In the following let

H := Γ/[Γ,Γ ]
be the maximal abelian quotient of Γ . There is a canonical isomorphism

H := Γ/[Γ,Γ ] ˜−→H1(X,Z) :=H1(SX,Z), α �−→ cα,

from Γ to the first homology group; cf. Notation 2.4.16. See Remark 2.4.18 for the
identification of H1(X,Z)=H1(SX,Z). Hereby Γ is viewed as the deck transfor-
mation group of pX :Ω→X and of their skeletons pS : SΩ → SX which kills the
homology group of 1-chains. Now we consider the affine torus

T := SpecK[H ].

Its closed points are group homomorphisms t :H →K
×

from H to the multiplica-
tive group of an algebraic closure K of K ; cf. Proposition 2.7.1(a). Then the group
H is identified with the character group

h′ :H ˜−→M ′ :=Hom(T ,Gm,K), c �−→
[

c : t �−→ t (c)
]

,

of T in a canonical way; cf. Proposition 2.7.1(b).
There is a second map h of Γ onto a lattice of T . For this, recall Drinfeld’s

pairing

c :Df

0 × Γ −→Gm,K, (d,α) �−→ c(d)(α)=
∏

γ∈Γ

θ(d;γ z0)

θ(d;γ α−1z0)
,

where Df

0 is the set of finite divisors on Ω of degree 0, and where c(d) is the
automorphy factor of Θ(d; z); cf. Proposition 2.5.5. By Proposition 2.5.8 we have
the morphism

h :H −→ T , α �−→ [c(αz1 − z1) :H →K×
]

.
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The map h sends a transformation α ∈ Γ to the automorphy factor c(αz1 − z1) of
Θ(αz1 − z1; z); this map is independent of the choice of z1; cf. Proposition 2.5.8.
It depends only on the class α of α in H . The group homomorphism c(αz1 − z1)

sends β ∈ Γ to the automorphy factor c(αz1 − z1)(β) ∈ K× evaluated at β . Note
that this depends only on the class of β in H . Moreover, we know by Theorem 2.6.2
that the mapping is injective and that its image

M := h(H)⊂ T

is a lattice in T of full rank. Thus, h :H →M is bijective.

Definition 2.8.1. The isomorphism

λ := h′ ◦ h−1 :M ˜−→M ′

is called the canonical polarization.

We next introduce the dual affine torus

T ′ := SpecK[M].

Its closed points t ′ are the group homomorphisms t ′ :M→K
×

. We have a canoni-
cal map

M ′ −→ T ′, m′ �−→ [m′∣∣
M
:M→K×

]

,

which maps a character m′ to the restriction m′|M onto the lattice M . So we consider
M ′ as a subset of the dual torus T ′ in a canonical way.

We want to describe the Jacobian in terms of Γ -linearizations on line bundles as
proposed by Proposition 1.7.14. This can be done by means of automorphic func-
tions. In the following we consider the rigid analytic torus

J := T/M

which, as it will turn out in Theorem 2.8.7, is the analytic Jacobian variety of X. By
the chosen K-rational point z0 ∈Ω we have a commutative diagram

Ω

̂j

pX

T

pJ

z c(z− z0)

X
j

J z c(z− z0).

The map ̂j sends a point z to the automorphy factor of Θ(z − z0;_). Because of
c(γ z0− z0) ∈M we have the asserted factorization. Let L :=OX(z− z0) be the in-
vertible sheaf associated to the divisor z−z0 and let L= V (L) be its associated line
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bundle on X. Then the invertible sheaf of its sections is S(L)= L−1 =OX(z0− z);
cf. Remark 1.7.2. Thus, Θ(z− z0;_) is a non-vanishing section of p∗XL. Therefore,
the Γ -linearization of p∗XL is given by c(z− z0). Thus, we see that c(z− z0) is the
isomorphism class of the line bundle V (OX(z− z0)); cf. Remark 1.7.2.

Thus, we obtain the following lemma.

Lemma 2.8.2. In the above situation we have:

(a) c(z− z0) is the Γ -linearization associated to V (OX(z− z0)).
(b) If z= βz0 belongs to the orbit Γ z0 of z0, then c(z− z0)(α)= 〈β,α〉 for α ∈ Γ ,

and hence c(z− z0) belongs to M .

Later on, we need further computations for ̂j :Ω→ T .

Lemma 2.8.3. Let z0, z ∈Ω be K-rational points and α ∈ Γ . Then

(a) c(z− z0)(α)=Θ(αz0 − z0; z).
(b.1) h′(α) ◦̂j(z)=Θ(αz0 − z0; z), where h′(α) is viewed as a character.
(b.2) h(α) ·̂j(z)=̂j(αz), where h(α) is viewed as a point of T .

(c) If α,β ∈ Γ , then the evaluation of h′(α) at h(β) is given by

h′(α)
(

h(β)
)= 〈β,α〉,

where the right-hand side is the symmetric bilinear form of Proposition 2.5.8.

Proof. (a) At first, we assume Γ z0 
= Γ z. Then (a) follows from Proposition 2.5.5
and the projective invariance of the cross-ratio. Indeed, we have that

c(z− z0)(α) =
∏

γ∈Γ

θ(z− z0;γ z0)

θ(z− z0;γ α−1z0)

=
∏

γ∈Γ

γ z0 − z

γ z0 − z0

γ α−1z0 − z0

γ α−1z0 − z

=
∏

γ∈Γ

γ z− z0

γ z− α−1z0

γ z0 − α−1z0

γ z0 − z0

=
∏

γ∈Γ

θ(z0 − α−1z0;γ z)
θ(z0 − α−1z0;γ z0)

=
∏

γ∈Γ

θ(αz0 − z0;γ z)
θ(αz0 − z0;γ z0)

= Θ(αz0 − z0; z).
If z = βz0, then c(βz0 − z0)(α) = 〈α,β〉 = 〈β,α〉 = c(αz0 − z0)(β) by Proposi-
tion 2.5.8. The latter coincides with Θ(αz0 − z0;βz0), because c(αz0 − z0) is the
automorphy factor of Θ(αz0 − z0;_) and Θ(αz0 − z0; z0)= 1.
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(b.1) h′(α) ◦̂j(z) is the evaluation of the homomorphism ̂j(z) :H →Gm,K at α,
which is here considered as an element of H . Then it follows from (a) that

h′(α) ◦̂j(z)= c(z− z0)(α)=Θ(αz0 − z0; z).
(b.2) h(α) ·̂j(z) is the automorphy factor of Θ(αz0− z0;_) ·Θ(z− z0,_). Since

c(αz0 − z0)(β) is independent of z0 due to Proposition 2.5.8, it follows that

c(αz0 − z0)(β) · c(z− z0)(β)= c(αz− z)(β) · c(z− z0)(β)

for every β ∈ Γ . The right-hand side is the automorphy factor of the product

Θ(αz− z;_) ·Θ(z− z0,_)=Θ(αz− z+ z− z0;_)=Θ(αz− z0;_),
which equals c(αz− z0). Thus, we see h(α) ·̂j(z)=̂j(αz).

(c) We know that h′(α)(h(β)) is the evaluation of the automorphy factor of
h′(α) at h(β). This coincides with the evaluation of the automorphy factor of
Θ(αz0 − z0;_) at β due to (b). Therefore,

h′(α)
(

h(β)
)= Θ(αz0 − z0, βz)

Θ(αz0 − z0, z)
= 〈β,α〉,

cf. Remark 2.5.7 and Proposition 2.5.8. �

The assertion (c) of Lemma 2.8.3 tells us that Drinfeld’s polarization is the canon-
ical one; namely the evaluation of characters at the points of the lattice.

Theorem 2.8.4. Let Γ be Schottky group of rank g ≥ 1 and H its maximal abelian
quotient. Let Ω be the set of ordinary points of Γ and pX :Ω→X the rigid an-
alytic quotient by Γ . Then H can canonically be identified with H1(X,Z); cf. Re-
mark 2.4.18. Let z0 ∈Ω be a K-rational point. Then with the above notations we
have:

(a) J := T/M is an abelian variety.
(b) The map λ := h′ ◦ h−1 :M →M ′ is a principal polarization and induces an

isomorphism ϕ : J ˜−→J ′ from J to its dual J ′ = T ′/M ′.
(c) The canonical map j : X→ J, z �→ [c(z− z0)], admits the lifting ̂j , which

maps a point z ∈ Ω to the automorphy factor c(z − z0) of the function
Θ(z− z0;_). Thus, we have the following commutative diagram

Ω
ĵ

pX

T

pJ

z c(z− z0)

X
j

J z [c(z− z0)].
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Proof. (a) The claim follows from (b) and Corollary 2.7.13.
(b) Viewing M and M ′ as the character groups of T ′ and of T , respectively, the

isomorphism λ gives rise to an isomorphism ϕ̂ : T → T ′. Thus, it remains to verify
that ϕ̂(M)⊂M ′. This follows from the symmetry

〈

h(α),λ
(

h(β)
)〉= 〈h(α),h′(β)〉 = 〈α,β〉

= 〈β,α〉 = 〈h(β),h′(α)〉= 〈h(β),λ(h(α))〉,
by Proposition 2.5.8 and Lemma 2.8.3(c). Thus, ϕ̂ induces a morphism ϕ : J → J ′.
The bilinear form

M ×M −→K×, (m1,m2) �−→ λ(m1)(m2),

coincides with the symmetric bilinear form studied in Proposition 2.5.8 and is posi-
tive definite due to Theorem 2.6.2.

(c) Due to Lemma 2.8.3(a) the maps ̂j and j are holomorphic. �

Next we want to compare J with the Jacobian Jac(X) of the algebraic curve Xalg.
We remind the reader that our rigid analytic variety J classifies a certain class of
Γ -linearizations on the trivial line bundles on Ω , but this equivalence relation is not
the usual one.

To be precise, we identified two Γ -linearizations c1, c2 if and only if c1⊗ c−1
2 is

induced by u(αz)/u(z), where u is an invertible holomorphic function on Ω of the
special type u(z)=Θ(d; z), where

∑

γ∈Γ γ d = 0; cf. Proposition 2.5.5(b). On the
other hand, to classify isomorphism classes of line bundles on X, we have to allow
any invertible holomorphic function u on Ω .

In the following we will see that our equivalence relation is the correct one. In
other words, we will show that all rational functions on X are of type Θ(d; z) which
are Γ -invariant.

In order to clarify this point, let us have a closer look at the K ′-valued points
of J , where K ′/K is a finite field extension. Consider the group functor D which
associates to K ′ the group

D
(

K ′
) := {d;finite K ′-divisor on Ω

}

.

We will also consider its subgroup functors

D0
(

K ′
) := {d;finite K ′-divisor of degree 0 on Ω

}

,

D00
(

K ′
) := {d ∈D0

(

K ′
); c(d) ∈M};

cf. Proposition 2.5.5. Then we have the quotient

D0(K ′
)

/D00(K ′
)= J
(

K ′
)

,

which can be identified K ′-valued points of J .



88 2 Mumford Curves

Each line bundle L on X admits a global meromorphic section by Lemma 1.7.5.
Thus, the sheaf of sections of L is isomorphic to OX(d) for some divisor d of X.
Therefore, the classification of isomorphism classes of line bundles on X is equiva-
lent to the classification of isomorphism classes of divisors up to linear equivalence.
It follows from Proposition 2.5.5(a) that for each line bundle L on X of degree 0 its
pull-back p∗L admits a trivializing section Θ(d; z) and a Γ -linearization on p∗L
which is given by an automorphy factor c(d). Now two line bundles L1 and L2 of
degree 0 on X with induced Γ -linearizations c1 and c2, respectively, are isomorphic
if and only if there exists an invertible holomorphic function u on Ω such that

c1(α)

c2(α)
= u(αz)

u(z)
for all z ∈Ω.

The equivalence modulo D00 is a stronger condition, because it requires that
there exists a finite divisor d0 with

∑

γ∈Γ γ d0 = 0 such that

c1(α)

c2(α)
= Θ(d0;αz)

Θ(d0; z) = c(d0)(α).

Thus, we obtain an isomorphism of functors

j :D0/D00 ˜−→J, d mod D00 �−→ c(d) mod M,

on the category of finite field extensions of K .
Furthermore, we obtain a canonical surjective map

� : J −→ Jac(X), c(d) mod M �−→ [A1
Ω/c(d)
]

,

by sending the class of c(d) to the isomorphism class of the line bundle A
1
Ω/c(d).

Indeed, on the trivial line bundle (T ×Ω)×A
1
K we have the Γ -linearization, which

sends a point (t, z, �) of (T ×Ω)×A
1
K to the point (t, γ z, t (γ ) ·�) for γ ∈ Γ . Thus,

we obtain a line bundle on T × X. By GAGA in Theorem 1.6.11 this line bundle
is algebraic over every affinoid subdomain of T , and hence it induces a canonical
morphism T → Jac(X) by the universal property of Jac(X); cf. Theorem 5.1.1.
Obviously, this map factors through � : J → Jac(X) as a holomorphic map, because
the points of lattice M are sent to the unit element.

Lemma 2.8.5. The canonical map � : J → Jac(X) is an isomorphism.

Proof. Let g = g(X) be the genus of X. Then both J and Jac(X) have dimension g.
The map � is surjective, because every line bundle on X of degree 0 is induced by
a Γ -linearization c(d) on the trivial line bundle with d ∈ D0(K ′) for some finite
field extension K ′ of K . Since J and Jac(X) are group varieties of the same di-
mension and the map � is a surjective group homomorphism, the fibers of � have
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dimension 0. Now consider the induced canonical maps

Ω(g)
̂j (g)−−→ J

�−→ Jac(X)

d = z1 + · · · + zg �−→ c(d − gz0) mod M �−→
g
∑

i=1

[

pX(zi)− pX(z0)
]

from the g-fold symmetric product Ω(g) to J . The map ̂j (g) factors through
j (g) : X(g)→ J , since c(γ z − z) belongs to M for all z ∈ Ω and all γ ∈ Γ . The
fibers of � ◦ j (g) are isomorphic to the linear system P(H 0(X,OX(D))) over the
isomorphism class [D − g · pX(z0)]. In particular, they are connected; cf. [68, §5].
Therefore, the fibers of � are connected. Since the fibers have dimension 0, they
consist of exactly one reduced point. Thus, we see that � is an isomorphism. �

Lemma 2.8.5 implies the following result.

Corollary 2.8.6. In the above situation we have:

(a) Any rational function on X is (up to a multiplicative scalar) induced by a
Γ -invariant Weierstraß product Θ(d; z), which is associated to a finite divisor
of degree 0 on Ω .

(b) Every automorphic function on Ω without zeros and poles is induced by a
Weierstraß product Θ(d; z) for a finite divisor d with

∑

γ∈Γ γ d = 0.

Proof. (a) If m is a rational function on X with divisor d := div(m), then p∗Xm
has the divisor p∗d and p∗d can be solved by an automorphic function Θ(d; z).
Since d is a principal divisor, the automorphy factor c(d) of Θ(d; z) belongs to M ,
because the morphism � : J → Jac(X) is an isomorphism by Lemma 2.8.5. Thus
there exists a transformation γ ∈ Γ such that c(d) is the automorphic function of
Θ(γ z0− z0;_). This automorphy form is an invertible holomorphic function on Ω .
Thus, we see that Θ(d; z)/Θ(γ z0 − z0; z) is a meromorphic function on Ω , which
is Γ -invariant, and hence it gives rise to a meromorphic function f on X. Since f
has the same divisor as m, the quotient m/f is an invertible holomorphic function
on X, and hence constant. This settles our assertion.

(b) An automorphic function u on Ω without zeros and poles gives rise to a
Γ -linearization of the trivial line bundle on Ω . By Lemma 2.8.5 its automorphy
factor is the automorphy factor of some Θ(γ z0− z0;_). Then u(z)/Θ(γ z0− z0; z)
is Γ -invariant. Thus, the quotient is induced by an invertible holomorphic function
on X and hence constant. �

Finally, let us sum up the results of this section.

Theorem 2.8.7. In the situation of Theorem 2.8.4 we have:

(a) The Jacobian variety J = Jac(X) of X has a Raynaud representation

Jac(X)= T/M
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as rigid analytic torus with T = SpecK[H ] and M = h(H), where h :H → T

maps α ∈H to the automorphy factor of Θ(αz0 − z0;_).
(b) The universal line bundle on X× J is given by the (Γ ×M)-action

C(z, t)(α,m) · �= 〈̂j(z),−λ(m)〉 · 〈t,−h′(α)〉 · 〈h(α),−λ(m)〉 · �
on the trivial line bundle (Ω × T )× A

1
K . Here (α,m) ∈ Γ ×M is a pair and

((z, t), �) ∈ (Ω × T )×A
1
K a point on (Ω × T )×A

1
K . On the right-hand side

we have that λ := h′ ◦ h−1 :M→M ′ as in Definition 2.8.1.
(c) Let PJ×J ′ be the Poincaré bundle on J ×J ′. The lifting ϕ̂′ : T ′ → T of the auto-

duality map ϕ′ : J ′ → J, x′ �→ [j∗PJ×x′ ], is induced by a group homomorphism
λ′ :M ′ →M .

Moreover, λ′ equals −λ−1 =−h ◦ h′−1; cf. Corollary 2.9.16.

For the notion of the Poincaré bundle see Theorem 5.1.4 and for the notion of the
universal bundle on X× J see Theorem 5.1.1. The relationship ϕ̂′(t)= t ′ concern-
ing the autoduality can be expressed by the commutative diagram

H

h h′

M

t ′

λ

M ′
t−1

Gm,K

Proof of Theorem 2.8.7. (a) follows from Theorem 2.8.4 by Lemma 2.8.5.
(b) The Poincaré bundle PJ×J ′ on J ×J ′ is given by the (M×M ′)-linearization

C
(

t, t ′
)(

m,m′
)=m′(t) ·m(t ′) · 〈m,m′〉

on the trivial line bundle over T × T ′; cf. Theorem 2.7.7. The pull-back of the
Poincaré bundle PJ×J ′ under the mapping

(j, idJ ′) :X× J ′ −→ J × J ′

induces the autoduality map ϕ′ : J ′ → J ; cf. Theorem 5.1.6 below. Then the pull-
back of the linearization is given by

(̂j, idT ′)∗C
(

z, t ′
)(

α,m′
) = m′
(

̂j(z)
) · h(α)(t ′) · 〈h(α),m′〉

= 〈̂j(z),m′〉 · 〈h(α), t ′〉 · 〈h(α),m′〉.
This presents a line bundle on X× J ′. It remains to identify the image t ∈ T of the
point t ′ ∈ T ′.
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Of course, the image t equals t := ϕ̂′(t ′), where ϕ̂′ : T ′ → T is the lifting of the
autoduality map ϕ′. This map corresponds to a group homomorphism λ′ :M ′ →M

of the character groups by Proposition 2.7.1(b). Then we see by Remark 2.7.11 that
ϕ̂′ sends t ′ ∈ T ′, which is a group homomorphism t ′ : M → Gm,K , to the point
t := t ′ ◦ λ′ :M ′ → Gm,K . We will see in the proof of (c) below that λ′ = −λ−1.
Thus, we obtain 〈h(α), t ′〉 = 〈t,−h′(α)〉. Likewise we see that the element m′ ∈M ′
corresponds to the element −λ(m).

(c) It is a general fact on Jacobians in Theorem 5.1.6(d) that the autoduality map
ϕ′ is the inverse of the morphism

−ϕΘ = ϕ−Θ : J −→ J ′, a �−→ τ ∗aOJ (−Θ)⊗OJ (Θ)=OJ (Θ − τ−aΘ),

where Θ is the usual theta divisor; i.e., the image Θ := j (g−1)(X(g−1)). The mor-
phism ϕΘ corresponds to a homomorphism λΘ :M →M ′. Thus, we see that λ′
equals −λ−1

Θ . Therefore, it remains to show that λ = λΘ . This will follow from
Riemann’s Vanishing Theorem 2.9.13 below. �

Theorem 2.8.8. In the situation of Theorem 2.8.4, the vector space Γ (X,Ω1
X/K)

of global differential forms on X is generated by the differentials

dlog
(

Θ(αiz0 − z0; z)
)

for i = 1, . . . , g,

where α1, . . . , αg is a basis of Γ .

Proof. The logarithmic differentials dlogχ of the characters χ of T are M-invariant
and generate Γ (J,Ω1

J/K). Indeed, if (ξ1, . . . , ξg) is a system of coordinate functions

on T , then (dξ1/ξ1, . . . , dξg/ξg) is a basis of Γ (J,Ω1
J/K). The pull-back under the

canonical map

j∗ : Γ (J,Ω1
J/K

) ˜−→Γ
(

X,Ω1
X/K

)

is known to be bijective; cf. [68, 9.5]. Since all the characters are of the form
h′(α)(z) for α ∈ Γ , it follows Lemma 2.8.3 that

j∗dlog
(

h′(α)
)= dlog

(

Θ(αz0 − z0;_)
)

for α ∈ Γ.

Since these differential forms depend additively on α, a basis of Γ (X,Ω1
X/K) is

given by the pull-backs of a basis α1, . . . , αg of Γ ; cf. Corollary 2.5.14. �

2.9 Riemann’s Vanishing Theorem

We continue with the notations of Sect. 2.8. Assume, in addition, that K is alge-
braically closed. In Proposition 2.7.1 we introduced the canonical bilinear form

〈_,_〉 : T ×M ′ −→Gm,K,
(

t,m′
) �−→m′(t)= t

(

m′
)

,
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by evaluating characters m′ ∈M ′ at points t ∈ T or, equivalently, by evaluating the
group homomorphism t :M ′ → Gm,K at m′ ∈M ′. Furthermore, we will use the
isomorphism

λ := h′ ◦ h−1 :M ˜−→M ′,

which was defined in Definition 2.8.1. Writing m1 = h(α) and m2 = h(β) for ele-
ments α,β ∈H , we have the symmetric bilinear form

M ×M −→K×, (m1,m2) �−→
〈

m1, λ(m2)
〉= 〈α,β〉,

which positive definite; cf. Theorem 2.8.4.

Lemma 2.9.1. There is a symmetric bilinear form b :M ×M → K× satisfying
b(m1,m2)

2 = 〈m1, λ(m2)〉 for all m1,m2 ∈M .

Proof. Let (e1, . . . , er ) be a basis of M and consider a representation of the sym-
metric quadratic form 〈_, λ(_)〉 by the matrix (�i,j ) with entries �i,j := 〈ei, λ(ej )〉.
If m,n ∈ Z

r , then the bilinear form is given by

〈

∑

i

miei, λ

(

∑

j

nj ej

)〉

=
r
∏

i,j=1

�
mi ·nj
i,j .

Next take a square root bi,j ∈ K× of �i,j for i ≤ j and put bi,j := bj,i for i > j .
Define the quadratic form b via the symmetric matrix (bi,j ). Then we obtain

b

(

∑

i

miei,
∑

j

nj ej

)2

=
r
∏

i,j=1

b
2·mi ·nj
i,j =

r
∏

i,j=1

�
mi ·nj
i,j .

This proves the assertion of the lemma. �

For the remainder of this section we fix a symmetric bilinear form b as in
Lemma 2.9.1 and introduce the theta function.

Definition 2.9.2. The formal Laurent series

ϑ(t) :=
∑

m∈M
b(m,m) · 〈t, λ(m)〉 for t ∈ T

is called the theta function attached to the Mumford curve X.

Lemma 2.9.3. The theta function is a holomorphic function

ϑ : T −→A
1
K

on T . It does not vanish identically and satisfies the functional equation

ϑ(t)= b(m,m) · 〈t, λ(m)〉 · ϑ(m · t)
for all m ∈M and t ∈ T .
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Proof. The series converges on the whole of T , because by Theorem 2.6.2 we have
|b(m,m)| ≤ c2·|m| for some constant c < 1, where |m| is a suitable norm on the
additive group M .

The functional equation can be verified in the following way. Let m ∈M . If we
enumerate the terms of the sum by an index n ∈ M on both sides, we have the
following formulas. Since m+M =M , the left-hand side yields

ϑ(t) =
∑

n∈Zg
b(m+ n,m+ n) · 〈t, λ(m+ n)

〉

=
∑

n∈Zg
b(m,m) · b(m,n)2 · b(n,n) · 〈t, λ(m+ n)

〉

.

For the right-hand side we have that

b(m,m) · 〈t, λ(m)〉 · ϑ(m · t)
=
∑

n∈Zg
b(m,m) · 〈t, λ(m)〉 · b(n,n) · 〈mt,λ(n)〉

=
∑

n∈Zg
b(m,m) · b(n,n) · 〈m,λ(n)〉 · 〈t, λ(m+ n)

〉

.

Since b(m,n)2 = 〈n,λ(m)〉 = 〈m,λ(n)〉, both sides of the formula coincide. �

Definition 2.9.4. The divisor

̂Θ := divϑ

is an effective divisor on T which is invariant under the action of the lattice M by
left translations on T , as follows from Lemma 2.9.3. It is called the theta divisor
associated to the canonical polarization λ. For s ∈ T let

̂Θs := τs ̂Θ

be the translate of the divisor ̂Θ by s, which is the divisor of the function

ϑs : T −→A
1
K, t �−→ ϑ

(

s−1 · t).

Lemma 2.9.5. Consider the holomorphic function

ζ :Ω −→A
1
K, z �−→ ζ(z) := ϑ

(

̂j(z)
)

,

where ̂j :Ω→ T is as defined in Lemma 2.8.3(b). For α ∈ Γ put m = h(α) ∈M .
Then we have

ζ(αz)= [b(m,m) ·Θ(αz0 − z0; z)
]−1 · ζ(z).

In particular, a point z ∈Ω is a zero of ζ of order k if and only if αz is a zero of ζ
of order k for all α ∈ Γ .
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Proof. One knows from Lemma 2.8.3(b.2) that ̂j(αz) = m · ̂j(z). Thus, using
Lemma 2.9.3 we obtain

ζ(αz) = ϑ
(

̂j(αz)
)= ϑ
(

m ·̂j(z))

= [b(m,m) · 〈̂j(z), λ(m)〉]−1 · ϑ(̂j(z))

= [b(m,m) ·Θ(αz0 − z0; z)
]−1 · ζ(z).

Indeed, by Lemma 2.8.3(b.1) we know that 〈̂j(z), λ(m)〉 =Θ(αz0 − z0; z). �

With the same calculation as in the proof of Lemma 2.9.5 one shows

Lemma 2.9.6. Fix s ∈ T and consider the function

ζs(z) := ϑ
(

s−1 ·̂j(z))

on Ω . For α ∈ Γ put m= h(α) ∈M . Then ζs satisfies the rule

ζs(αz)=
[

b(m,m) · 〈s−1, λ(m)
〉 ·Θ(αz0 − z0; z)

]−1 · ζs(z).

Thus, for each s ∈ T the function ζs gives rise to a well defined effective divisor
div ζs on X unless ζs vanishes identically on Ω .

Proposition 2.9.7. Let s ∈ T with ̂j(Ω) 
⊂ ̂Θs . Now consider the function

ψs(z) := ζs(z)

ζ(z)

on Ω . Then ψs(z) is an automorphic function with automorphy factor

s : Γ −→K×, α �−→ 〈s, λ(h(α))〉.

Moreover, let κ ∈ T with ̂j(Ω) 
⊂ ̂Θκ and ̂j(Ω) 
⊂ ̂Θκ·s . Put

ψs,κ(z) := ζs·κ(z)
ζκ(z)

.

Then ψs,κ and ψs have the same automorphy factor which is 〈s, λ(_)〉.

Proof. Note that ζ(Ω) 
⊂ ̂Θ because ̂j(z0) /∈ ̂Θ . In fact, the absolute value of ζ(z0)

is |ζ(z0)| = 1 because of the ultrametric inequality, as b(0,0)= 1 and |b(m,m)|< 1
for m 
= 0. �

Remark 2.9.8. Consider the map

ϕ̂ : T −→ T ′, s �−→ s′ := c(ψs)= s ◦ λ
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which associates to s the automorphy factor c(ψs). The latter is given by

s′ :M −→Gm,K, α �−→
〈

s, λ(m)
〉= s ◦ λ(m).

Here we regard c(ψs) as an M-linearization of the trivial line bundle T ×A
1
K

on T . Let L(c(ψs)) be the associated line bundle on J ; its sheaf of sections is
S(L(c(ψs)))=OJ (Θ − τsΘ), where Θ denotes the image pJ (̂Θ). Thus, the asso-
ciated invertible sheaf L(c(ψs)) is given by

L
(

c(ψs)
)=OJ (τsΘ −Θ);

cf. Proposition 1.7.14. Since ψs,κ and ψs have the same automorphy factor, we have
for every κ ∈ T that the divisor classes

[τs ̂Θ − ̂Θ] = [τs ̂Θκ − ̂Θκ ] = τκ [τs ̂Θ − ̂Θ],
coincide. This reflects the fact that the line bundle associated to [τs ̂Θ − ̂Θ] is trans-
lation invariant.

Lemma 2.9.9. Let s ∈ T with ̂j(Ω) 
⊂ ̂Θs . Then

div ζs := Γ z1(s)+ · · · + Γ zg(s)

is an effective divisor of degree g.

Proof. See [35, p. 199]. This computation is similar to that of the proof of Theo-
rem 2.3.1. Let α1, . . . , αg be a separating basis of Γ ; put αg+i = α−1

i . Consider the
fundamental domain

E := P
1
K −

2g
⋃

i=1

W−
i ,

where W±
i := W±

αi
. By varying the separating morphism ρ : Γ → K

×
, we may

assume that ζs has no zeros on Ai :=W+
i −W−

i , for i = 1, . . . ,2g.
In order to compute the number of zeros of ζs we have to compute the order of

ζs on the annuli Ai with respect to the coordinate functions z− ai , where ai ∈W−
i .

From the transformation formula in Lemma 2.9.6 we obtain that

ζs(αz)=
[

b(m,m) · 〈s−1, λ(m)
〉 ·Θ(αz0 − z0; z)

]−1 · ζs(z),
which implies that

ordAi
ζs + ordAi+g ζs = ordAi

Θ(αiz0 − z0; z)
because of αi(P1

K −W−
i )=W+

i+g . We have

Θ(αiz0 − z0; z)= z− αiz0

z− α−1
i z0

[

z0 − α−1
i z0

z0 − αiz0

∏

γ∈Γ,γ 
=1,αi

γ z− αiz0

γ z− z0

γ z0 − z0

γ z0 − αiz0

]

.
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On (W+
αi
− W−

αi
) the factor in the brackets has order 0 on Ai and the other fac-

tor has order 1. Note that z0 is chosen in E in such a way that it does not lie on
any Ai . In Proposition 2.4.10 we provided a formula for the degree of the divisor of
a meromorphic function on a subdomain of the projective line. This formula yields
that

deg div ζs =
2g
∑

i=1

ordAi
ζs =

g
∑

i=1

ordAi
Θ(αz0 − z0; z)= g.

The sign in the formula has changed, because we use here a coordinate function
which is oriented in the opposite direction; cf. Proposition 2.4.8. Thus, the number
of zeros is equal to g. �

Definition 2.9.10. A point t ∈ T and a ∈ J , respectively, is said to be in general
position if the fiber of the map ̂j (g) :Ω(g)→ T and j (g) : X(g)→ J , respectively,
above t and a, respectively, has dimension 0.

Obviously, t ∈ T is in general position if and only if pJ (t) ∈ J is so. If
pJ (t) = [D − g · z0] represents the isomorphism class of the divisor [D − g · z0],
where D is effective of degree g, then pJ (t) is in general position if and only if
dimH 0(X,OX(D)) = 1. Indeed, the fiber above t is given by the linear system
P(H 0(X,OX(D))), as was mentioned in the proof of Lemma 2.8.5.

It is well known from the theory of algebraic curves that the set of points in J

which are in general position is open and dense in J . An even stronger assertion is
valid; cf. [15, 9.3/4].

Lemma 2.9.11. Let Wg−1 ⊂ Jac(X) be the image of the canonical morphism
j (g−1) :X(g−1)→ Jac(X). The subset U ⊂ Jac(X) of all points δ ∈ Jac(X) which
are in general position is open and dense in Jac(X) and intersects Wg−1 in a dense
set.

Lemma 2.9.12. Let Γ z1, . . . ,Γ zg ⊂Ω be the zeros of ζ and put

κ̂ :=̂j(z1) · . . . ·̂j(zg) ∈ T .
If ̂j(Ω) 
⊂ ̂Θs , we have that

̂j
(

z1(s)
) · . . . ·̂j(zg(s)

) · κ̂−1 ≡ s mod M,

where Γ z1(s), . . . ,Γ zg(s) are the zeros of ζs for s ∈ T .

Proof. On the one hand, it follows from Proposition 2.9.7 that the automorphy fac-
tor of ζs/ζ is s. On the other hand, by Lemma 2.9.9 the functions ζs and ζ , re-
spectively, have exactly g zeros z1(s), . . . , zg(s) and z1, . . . , zg , respectively. From
Corollary 2.8.6 we obtain that

ζs(z)/ζ(z)=Θ
(

z1(s)− z1; z
) · . . . ·Θ(zg(s)− zg; z

) ·Θ(d; z),



2.9 Riemann’s Vanishing Theorem 97

for a finite divisor d with
∑

γ∈Γ γ d = 0. Since

Θ
(

zi(s)− zi; z
)=Θ
(

zi(s)− z0; z
) ·Θ(zi − z0; z)−1 for i = 1, . . . , g

and since Θ(d; z) has no zeros and poles, the automorphy factor of ζs/ζ is given by

̂j
(

z1(s)
) · . . . ·̂j(zg(s)

) ·̂j(z1)
−1 · . . . ·̂j(zg)−1 ≡ s mod M,

which coincides with s mod M . Therefore,

κ̂ :=̂j(z1) · . . . ·̂j(zg)≡̂j
(

z1(s)
) · . . . ·̂j(zg(s)

) · s−1 mod M

is independent of s. �

Theorem 2.9.13 (Riemann’s vanishing theorem). Let κ̂ ∈ T be the constant of
Lemma 2.9.12. Let ̂Wn ⊂ T be the image of Ω(n) under the canonical map

̂j (n) :Ω(n) × {z0} −→ T , d �−→ c(d − n · z0),

for n= 1, . . . , g. Then we have that ̂Θκ̂ = ̂Wg−1.

Proof. We follow the complex analytic proof [38, p. 338].
First, we show that ̂Wg−1 ⊂ ̂Θκ̂ . There is a dense open subset U ⊂ ̂Wg−1 such

that every element δ ∈U is in general position; cf. Lemma 2.9.11. Furthermore, we
can assume that all δ ∈U satisfy ̂j(Ω) 
⊂ ̂Θs for s := δ · κ̂−1, because we know that
̂j(Ω) · ̂Wg−1 = T . If δ ∈U , then we have that

̂j
(

z1(s)
) · . . . ·̂j(zg(s)

)= sκ̂ = δ mod M,

where z1(s), . . . , zg(s) are the zeros of ζs ; cf. Lemma 2.9.12. Since δ ∈ ̂Wg−1, we
can assume δ =̂j(p1) ·̂j(p2) · . . . ·̂j(pg)with p1 = z0. Since δ is in general position,
we know

z1(s)+ · · · + zg(s)≡ p1 + · · · + pg in X(g).

Therefore, we may assume that z1(s)= p1 = z0 and hence that ζs(p1)= 0.
The crucial point now is ϑ(t) = ϑ(t−1) as seen from Definition 2.9.2. Then it

follows that

ϑκ̂(δ)= ϑ
(

δ · κ̂−1
) = ϑ
(

̂j(p2) · . . . ·̂j(pg) · κ̂−1
)

= ϑ
(

s ·̂j(p1)
−1
)

= ϑ
(

̂j(p1) · s−1
)= ζs(p1)= 0,

because ̂j(p1)= 1 and ζs(p1)= 0. Thus, we see that ϑκ̂(δ)= 0 for all δ ∈U . Then
we obtain that U ⊂ ̂Θκ̂ , and hence ̂Wg−1 ⊂ ̂Θκ̂ , because the topological closure of
U equals ̂Θκ̂ .
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Next we show that ̂Θκ̂ ⊂ ̂Wg−1. By the first part we can write

̂Θκ̂ = n · ̂Wg−1 + ̂Θ ′

with effective divisors, where n≥ 1 is an integer and where ̂Θ ′ is an effective divisor
on T . We will first show n= 1 and then ̂Θ ′ = ∅. From Lemma 2.9.9 we know that

deg ζ̂κ = g. (2.1)

On the other hand, we know that

deg
(

̂j(Ω)∩ ̂Wg−1
)≥ g.

Indeed, let

s =̂j(p1) · . . . ·̂j(pg) ∈ T
be a generic point such that [−1](̂j(Ω)) 
⊂ ̂Wg−1 · s−1, where [−1] denotes the
inverse mapping on T . Then [−1](̂j(Ω)) and ̂Wg−1 · s−1 meet in isolated points.
We have that

̂j(pμ)
−1 =
(

∏

ν 
=μ
̂j(pν)

)

· s−1 ∈ ̂Wg−1 · s−1 (2.2)

and thus #([−1](j (X))∩Wg−1)≥ g, where now and in the following we denote by
Wg−1 and Θ ′ the image of ̂Wg−1 and of ̂Θ ′ in J , respectively. For the intersection
number we obtain that

([−1](j (X)) ·Wg−1
)= (j (X) · [−1](Wg−1)

)= (j (X) ·Wg−1
)

,

because a translate of Wg−1 is symmetric; cf. Lemma 2.9.14 below.
Then it follows from (2.1) and (2.2) that n= 1 and that (j (X) ·Θ ′)= 0. In fact,

one can always find an s ∈ T such that ̂j(Ω) 
⊂ ̂Θ ′ · s−1. Then we have

g = n · (j (X) ·Wg−1
)+ (j (X) ·Θ ′).

Since (j (X) · Θ ′) ≥ 0 and (j (X) · Wg−1) ≥ g, we see that n = 1 and that
(j (X) ·Θ ′)= 0 for the intersection number.

It remains to show that Θ ′ = ∅. For s ∈ J put Θ ′s := τsΘ
′. Since (j (X) ·Θ ′)= 0,

we also have that (j (X) ·Θ ′s)= 0. Therefore, we obtain that

j (X)∩Θ ′s 
= ∅ =⇒ j (X)⊂Θ ′s . (∗)

From this one deduces for every s ∈ JK
Θ ′s ∩W2 
= ∅ =⇒ W2 ⊂Θ ′s .
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Indeed, there are the following implications:

Θ ′s ! j (p1) · j (p2) =⇒ Θ ′
s·j (p1)

−1 ! j (p2)

=⇒ Θ ′
s·j (p1)

−1 ! j (p′2) for all p′2 ∈X by (∗)

=⇒ Θ ′s ! j (p1) · j (p′2) for all p′2 ∈X.
Then we also have that Θ ′s ! j (p′1) · j (p′2) for all p′1,p′2 ∈X, and hence W2 ⊂Θ ′s .
Repeating this argument yields the implication:

Θ ′s ∩Wn 
= ∅ =⇒ Θ ′s ⊃Wn

for all n ∈N. But this is impossible, becauseΘ ′s is a divisor. Therefore,Θ ′ ∩Wg = ∅,
and hence Θ ′ = ∅. �

In the sequel of the proof of Theorem 2.9.13 we made use of the following fact
which is a general statement about the theta divisor of a curve over an algebraically
closed field. For the convenience of the reader we will add the proof.

Lemma 2.9.14. Let X be a connected smooth projective curve of genus g with
g ≥ 1 over an algebraically closed field k. Let x0 ∈ X be a k-rational point and
let Wg−1 ⊂ J := JacX be the canonical theta divisor with respect to x0. Then a
suitable translate W of Wg−1 is symmetric; i.e., [−1]J (W)=W .

Proof. Let L be an invertible sheaf on X of degree g − 1. Then we have that L
is isomorphic to OX(D) with an effective divisor D if and only if Γ (X,L) 
= 0.
Furthermore, by the Riemann-Roch Theorem and Serre’s duality Corollary 1.8.2
we have Γ (X,L) 
= 0 if and only if Γ (X,Ω1

X/K ⊗ L−1) 
= 0. Since the degree of

Ω1
X/K is 2 · (g − 1), we can write Ω =N⊗2 for some invertible sheaf N of degree

g − 1. Now put K :=N ((1− g)x0), which has degree 0. If L is an invertible sheaf
of degree 0, then we have the equivalence

[L⊗K] ∈Wg−1 ⇐⇒ Γ (X,L⊗N ) 
= 0

⇐⇒ Γ
(

X,L−1 ⊗N
) 
= 0 ⇐⇒ [

L−1 ⊗K
] ∈Wg−1.

Now let W ⊂ J be the translate of Wg−1 by the inverse of K. Then we have that the
divisor W is symmetric. �

Remark 2.9.15. Let D be a divisor on a rigid analytic torus A= T/M and then let
L :=OA(D) be the associated invertible sheaf. Then there is a canonical morphism
of rigid analytic tori

ϕL :A−→A′, a �−→ τ ∗aL⊗L−1 =OA(τ−aD −D),

from A to its dual A′. If the M-linearization data (d, δ) are associated to L, then ϕL
is induced by the homomorphism δ :M→M ′ of their character groups. As a map
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of points, the lifting ϕ̂L of ϕL is given by

ϕ̂L : T −→ T ′, t �−→ [t ′ :m �−→ t
(

δ(m)
)]

.

Proof. The assertion follows from Remark 2.7.9. �

Riemann’s vanishing theorem tells us that ̂Wg−1 equals a translate ̂Θκ̂ of the theta
divisor ̂Θ . Thus, their M-linearization data coincide at their group homomorphism.

Corollary 2.9.16. In the situation of Theorem 2.9.13, consider the M-linearization
data (c, λΘ) associated to L := OJ (Wg−1) and the data (d,λ) associated to
H := OJ (pJ (Θκ̂)). Then the group homomorphisms λ and λΘ coincide; i.e., the
canonical polarization coincides with the theta polarization.

In particular, the autoduality map ϕ′ is associated to the inverse −λ−1.

Proof. The invertible sheaf associated to the theta divisor has a trivialization given
by 1/ϑ(t). Due to Lemma 2.9.3 the M-linearization is given by

b(m,m) · 〈t, λ(m)〉 · 1

ϑ(t)
= 1

ϑ(m · t) .

The homomorphism λ is not altered by a translation. Thus, by Theorem 2.9.13 we
obtain that λΘ = λ and hence ϕL = ϕH.

Now it is a general fact on Jacobians of algebraic curves that the morphism
−ϕL : J → J ′ is the inverse of the autoduality map; cf. Theorem 5.1.6(d) below.
So, the autoduality map is induced by −λ−1 :M ′ →M . �

Remark 2.9.17. If one knows that the canonical polarization λ is equal to the
theta polarization λΘ , then it is easy to see that there exists a point κ̂ ∈ T such
that ̂Wg−1 = ̂Θκ̂ . Thus, Riemann’s vanishing theorem is a consequence of equality
λ= λΘ .

Proof. Put L :=OJ (Wg−1) and let (c, λΘ) be its M-linearization data as in Corol-
lary 2.9.16. The theta divisor ̂Θ of Definition 2.9.4 gives rise to an effective divisor
pJ (̂Θ) on J with M-linearization data (d,λ) by Lemma 2.9.3.

If the homomorphisms λ and λΘ coincide, the invertible sheaf
OJ (Wg−1 − pJ (̂Θ)) is translation invariant. Its M-linearization is associated to
the group homomorphism κ̂ ′ := d−1 · c :M→K× which is a point κ̂ ′ ∈ T ′. Then
OJ (pJ (̂Θκ̂) −Wg−1) is associated to the M-linearization data d · c−1 · κ̂ ′ = 1 as
follows from Lemma 2.9.3, where κ̂ := κ̂ ′ ◦ λ−1. Thus, the divisor ̂Wg−1 − ̂Θκ̂

can be solved by a meromorphic function ̂f on T satisfying ̂f (m · t) = ̂f (t) for
all m ∈M and t ∈ T . Then ̂f is induced by a meromorphic function f on J , and
pJ (̂Θκ̂)−Wg−1 is the principal divisor div(f ). Thus, it remains to verify that f is
constant.

If s ∈ J , then consider the morphism

js :X −→ J, z �−→ s · j (z)−1.
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It follows from Lemma 2.9.11 that there is an open dense subset U ⊂ J such that
j−1
s (Wg−1) consists of exactly g distinct points for s ∈ U . Now consider such a

point s = j (p1) · . . . · j (pg) ∈U . Then we have that

js(pμ)= s · j (pμ)−1 = j (p1) · . . . · j (pμ−1) · j (pμ+1) · . . . · j (pg) ∈Wg−1.

The inverse image Ds := j−1
s (Wg−1) agrees with the set {p1, . . . , pg} and con-

stitutes an effective divisor of degree g so that j∗s OJ (Wg−1) = OX(Ds) has de-
gree g and H 1(X,OX(Ds)) vanishes for s ∈ U . Moreover, we may assume that
js(p1)= j (p2) · . . . · j (pg) ∈Wg−1 is in general position and so

dimΓ
(

X,OX(Ds)
)= 1.

Now put Es = j−1
s (pJ (̂Θκ̂)). Then the section j∗s f is a global generator of

OX(Ds − Es). Up to a nonzero scalar the sections j∗s f and 1 of Γ (X,OX(Ds))

coincide. This shows that Es = Ds for all s ∈ U . In particular, we have that
s = js(p1) ∈Wg−1 and p1 ∈Ds .

Since Ds = Es , the point p1 belongs to Es . Thus, we see that the point
s′ := j (p2) · . . . · j (pg) belongs to pJ (̂Θκ̂) for general points s′ ∈ Wg−1. So we
have that Wg−1 ⊂ pJ (̂Θκ̂), and hence that the divisor pJ (̂Θκ̂)−Wg−1 = div(f ) is
effective. Thus, f is constant. �



Chapter 3
Formal and Rigid Geometry

In 1974 Raynaud proposed a program [80], where he introduced groundbreaking
ideas to rigid geometry by interpreting a rigid analytic space as the generic fiber
of a formal schemes over SpfR. Here SpfR is always the formal spectrum of a
complete valuation ring R of height 1, where its topology is given by an ideal (π)
for some element π ∈ R with 0 < |π | < 1. Due to results on flat modules [82] his
approach also works in the non-Noetherian case of formal schemes of topologically
finite presentation over Spf(R).

In Sect. 3.1 we start with a mild attempt to understand formal schemes by consid-
ering formal analytic structures on rigid analytic spaces; these consist of extra data
on a given space. This allows us to define a reduction of a rigid analytic space with-
out using the abstract method of formal schemes. For the first time Bosch introduced
such spaces in [8].

In Sect. 3.2 admissible formal R-schemes and formal blowing-ups are defined.
In a canonical way the generic fiber of an admissible formal R-scheme is a formal
analytic space.

In Sect. 3.3 we will discuss the important result in Theorem 3.3.3 of Raynaud
about the relationship between formal schemes and rigid analytic spaces. We omit
the proof of this theorem. It heavily relies on the flattening technique [82]; all de-
tails were worked out by Mehlmann in [67] and by Bosch and the author in [14,
Part II]. Moreover, by using the flattening technique many properties of rigid ana-
lytic morphisms can be transferred to suitable formal R-models. In particular, the
notions of properness in rigid and formal geometry correspond to each other; cf.
Theorem 3.3.12.

Already at the level of Sect. 3.1 a major problem shows up; namely, if the
structural rings of a formal analytic space are of topologically finite type over R.
When the base field is algebraically closed, this question was answered by Grauert-
Remmert [36]. One can also approach the problem from an opposite direction;
namely, how to arrange an R-model of an affinoid algebra which is of topologi-
cally finite type over R with reduced special fiber. This is a deep problem which
was settled by Epp if R is a discrete valuation ring and by Bosch, Raynaud and the
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author in the relative case. The latter approach is quite natural as it also works over
a general admissible formal scheme in Theorem 3.4.8.

In Sect. 3.4 we explain the major steps of this approach. In particular, it is a first
step to provide a semi-stable R-model of a curve in Theorem 4.4.3 and of a curve
fibration; cf. Theorem 7.5.2.

In the last Sect. 3.6 we provide new methods about approximations which are
only used in Chap. 7. This part is deeply related to the significance of properness
of rigid analytic spaces and to Elkik’s method on approximation of solutions of
equations in restricted power series.

In the whole chapter let K,R,k,π be the standard notations as defined in the
Glossary of Notations.

3.1 Canonical Reduction of Affinoid Domains

In this section we will introduce a special concept of formal schemes which is quite
canonical in rigid geometry. We hope that it can relieve the reader from the hesi-
tation to work with formal schemes, because these schemes come equipped with a
geometric interpretation.

3.1.1 Functors AK � ÅK and AK � ˜AK

The building blocks of rigid geometry over a non-Archimedean field K are the
affinoid spaces XK = SpAK , which are defined as the set of the maximal ideals of
AK . We put here an subindex “K”, since we will associate a formal scheme X over
SpfR to XK . If AK is a reduced affinoid K-algebra, then we consider the R-algebra

A := ÅK :=
{

f ∈AK ; |f |XK
≤ 1
}

,

where the sup-norm is defined by

|f |XK
:=max
{∣

∣f (x)
∣

∣;x ∈XK

}

.

Note that ÅK , as a subset of AK , consists of all elements which are power bounded.
If AK = Tn, then the sup-norm coincides with the Gauss norm, which is defined by
the maximum of the absolute values of the coefficients, and hence

T̊n =R〈ξ1, . . . , ξn〉 :=
{

∑

n∈Nn

aνξν ∈R[[ξ ]]; lim
ν→∞aν = 0

}

.

Since every ideal Tn is closed, the epimorphism

α : Tn −→AK
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induces the residue norm on AK , which we denote by |.|α . This gives rise to the
R-algebra

Aα := α
(

R〈ξ1, . . . , ξn〉
)

,

which is of topologically finite type (tft) over R, actually of topologically finite
presentation. Obviously, we have that |f |sup ≤ |f |α for all f ∈ AK . One can show
that the sup-norm is in fact a norm on AK if AK is reduced; cf. [10, 6.2.4/1]. It was
a question of Tate [92] if one can write ÅK also as a suitable Aα . We will settle this
in Sect. 3.4. In Definition 1.4.4 we introduced the canonical reduction of AK , which
is defined by

˜AK := ÅK/ǍK,

where

ǍK :=
{

f ∈AK ; |f |sup < 1
}

.

˜AK is a reduced k-algebra of finite type. There is a canonical map

ρ :XK := Sp(AK)−→ ˜XK :=MaxSpec(˜AK), x �−→ x ∩ ÅK mod ǍK.

The reduction map ρ is surjective and continuous with respect to the Grothendieck
topology on the domain and the Zariski topology on the codomain. ˜XK is called the
reduction of XK .

For the functors AK � ÅK and AK � ˜AK we have the following finiteness
conditions, which can be shown without too much effort; cf. [10, 6.3.5/1].

Proposition 3.1.1. Let ϕ :AK → BK be a morphism of affinoid algebras. Then the
following conditions are equivalent:

(a) ϕ is finite.
(b) ϕ̊ is integral.
(c) ϕ̃ is finite.

Finiteness conditions for ϕ̊ will be dealt with in Sect. 3.1.3.

Remark 3.1.2. If the value group of K is divisible, then it is obvious that ÅK has a
reduced special fiber. However, even if the value set of |AK |XK

coincides with |K|,
the R-algebra ÅK does not need to be of topologically finite type; cf. [10, §6.4.1].

For later use we mention the following result which can easily be verified; cf.
[10, 7.3.4/3].

Lemma 3.1.3. Let ϕ : AK → BK be a homomorphism of affinoid algebras and
let (f1, . . . , fn) be an affinoid generating system of BK over AK . If |_| is a norm
defining the topology of BK , then there exists an ε > 0 such that the following holds:

If (g1, . . . , gn) is a system of elements in BK with |gi − fi | < ε for all i =
1, . . . , n, then (g1, . . . , gn) is an affinoid generating system of BK over AK as well.
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For R-algebras of power bounded functions it is even simpler to prove.

Lemma 3.1.4. Let AK be a reduced affinoid algebra such that its R-subalgebra
ÅK =R〈f1, . . . , fn〉 is of topologically finite type over R. If g1, . . . , gn are elements
of AK with |fi − gi |XK

< 1 for all i = 1, . . . , n, then g1, . . . , gn generate ÅK over
R as well.

3.1.2 Formal Analytic Spaces

In this section we keep the notations of Sect. 3.1.1. An important consequence of
the maximum principle is the following; cf. [10, 7.2.6/3].

Proposition 3.1.5. Let f ∈AK be an element with |f |XK
= 1 and let

XK(1/f ) :=
{

x ∈XK ;
∣

∣f (x)
∣

∣= 1
}⊂XK := SpAK

be the affinoid subdomain of XK . Then AK〈1/f 〉 =OXK
(XK(1/f )) and the canon-

ical open embedding ϕ :XK(1/f )→XK induces an isomorphism

ϕ̃ : Spec ˜AK〈1/f 〉 = ˜XK(1/f ) ˜−→(˜XK)f̃ ⊂ ˜XK

of the reduction of XK(1/f ) to the Zariski open subset (˜XK)f̃ of ˜XK .

If K is algebraically closed, then ÅK is of topologically finite type over R, actu-
ally of topologically finite presentation over R; i.e.,

ÅK =R〈ξ1, . . . , ξn〉/a,
where a ⊂ R〈ξ1, . . . , ξn〉 is finitely generated; see Theorem 3.1.17 further down.
Moreover, if ˜U ⊂ ˜XK is Zariski open and affine, then UK := ρ−1(˜U) ⊂ XK is
an affinoid subdomain associated to the algebra BK := OXK

(UK) with reduction
˜BK = O

˜XK
(˜U), where ρ : XK → ˜XK is the canonical reduction map. Thus, one

can look at the formal R-scheme

X := SpfA−→ SpfR

with A := ÅK . The topology of definition is given by the ideals Aπn for n ∈N and
some element π ∈R with 0< |π |< 1. The geometric topology on the generic fiber
XK =X⊗R K is induced by the pull-back under the reduction map ρ :XK → ˜XK

from the Zariski topology of the special fiber

˜X := ˜XK =X⊗R k.

The structure sheaf OX is the functor which associates the R-algebra B̊K to an
open affine subset ˜U , where BK :=OXK

(ρ−1(˜U)). Note that B̊K is in general not of
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topologically finite type over R. But, if XK is reduced and K algebraically closed,
B̊K is of topologically finite type over R due to Theorem 3.1.17.

Definition 3.1.6.

(a) Let AK be an affinoid algebra. An affinoid subdomain V = Sp(BK) of XK :=
Sp(AK) is called formal analytic open if V is the inverse image of a Zariski
open subset ˜V ⊂ ˜XK :=MaxSpec(˜AK) under the reduction map.

(b) An admissible covering U= {Ui; i ∈ I } of a rigid analytic space XK by affinoid
open subvarieties Ui is called formal analytic if each intersection Ui ∩ Uj is
formal analytic open in Ui for all i, j ∈ I .

(c) A formal analytic space X is a couple (XK,ρ) consisting of a rigid analytic
space XK and a map ρ : XK → ˜X from XK to a reduced k-scheme ˜X of lo-
cally finite type such that there exists an open affine covering U of ˜X with the
following properties:

(i) The covering {ρ−1(˜U); ˜U ∈ U} is admissible and formal analytic.
(ii) For every ˜U ∈ U the inverse image U := ρ−1(˜U)⊂XK is an open affinoid

subdomain of XK and ρ|U :U→ ˜U is the canonical reduction.

The map ρ is called reduction map and ˜X a reduction of X.
(d) Let ρ :X→ ˜X be a formal analytic space. For x̃ ∈ ˜X the subset

X+(x̃) :=
{

x ∈XK ;ρ(x)= x̃
}

is called the formal fiber of x̃ with respect to the reduction ρ. Here X+(x̃) is
viewed as a rigid analytic space.

(e) A morphism of formal analytic space is a morphism of the underlying rigid
analytic spaces which respects the formal structures.

The data of a formal analytic space can be given by a rigid analytic space
equipped with a formal analytic covering.

Example 3.1.7. There are the following standard examples.

(a) Let X = P
n
K be the n-dimensional projective space with homogeneous coordi-

nate functions ξ0, . . . , ξn. Set

Uj :=
{

x ∈ P
n
K ;
∣

∣ξi(x)
∣

∣≤ ∣∣ξj (x)
∣

∣ for i = 0, . . . , n
}

.

Then {U0, . . . ,Un} is a formal analytic covering. The reduction with respect to
this covering is the projective space P

n
k over the residue field k.

(b) Let X be a connected smooth projective curve and let f be a rational function
on X which is not constant. Then the covering consisting of the subsets

U0 :=
{

x ∈X; ∣∣f (x)∣∣≤ 1
}

and U∞ :=
{

x ∈X; ∣∣f (x)∣∣≥ 1
}

is a formal analytic covering of X.
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(c) Let X = SpAK be an affinoid space and f0, . . . , fn ∈AK without common ze-
ros and U := {X(f0/fj , . . . , fr/fj ); j = 0, . . . , n} the associated rational cover-
ing; cf. Definition 1.3.1. Then U is a formal analytic covering of X.

Definition 3.1.8. Let X be a smooth rigid analytic curve. An admissible open sub-
set U ⊂ X is called a closed and/or open disc if U is isomorphic to the closed
and/or open unit disc D

±. Similarly, U is called an annulus of height c ∈ |K×| if it
is isomorphic to an annulus A(c,1)±; cf. Definition 1.3.3.

Lemma 3.1.9. In the situation of Definition 3.1.8 let B ⊂ X be a closed disc and
X projective. If b ∈ B and a ∈ X − B , then there exists a meromorphic function ζ

on X with ζ(b) = 0 and a unique pole in a such that ζ |B is a coordinate function
on B .

Proof. Due to the theorem of Riemann-Roch there exists a meromorphic function
f on X with f (b) = 0, Pol(f ) = {a} and |f |B = 1. Then f : X→ P

1
K is finite

and f |B : B→ D is finite as well. Thus, B is a connected component of f−1(D).
Since the set of algebraic regular functions on X− {a} is dense in OX(B), one can
approximate a coordinate function on B by a meromorphic function on X which
has a pole only in a. Since a good approximation ξ is again a coordinate function,
the function ζ := ξ − ξ(b) satisfies the claim. �

Proposition 3.1.10. LetX be the analytification of a smooth projective curve which
is geometrically connected. Let b1, . . . , bn ∈X be K-rational points and let Bi ⊂X

be closed discs with bi ∈ Bi for i = 1, . . . , n. Assume that B1, . . . ,Bn are pairwise
disjoint. Let B−i be the formal fiber of b̃i with respect to the canonical reduction
SpBi→ Spec˜Bi for i = 1, . . . , n. Put

B0 :=X− (B−1 ∪ · · · ∪B−n
)

.

Then B := {B0,B1, . . . ,Bn} is a formal analytic covering of X. If XB denotes the
associated formal analytic space, then its reduction ˜XB is isomorphic to a configu-
ration of n projective rational curves, which meet in a single point.

Proof. Since X is connected, there exists a point b ∈ X which is not contained in
any Bi for i = 1, . . . , n. Let bi ∈ B−i for i = 1, . . . , n. By the theorem of Riemann-
Roch we see that there exists a rational function fi on X with fi(b) = 0 such that
fi has only a pole in bi . Furthermore, we can adjust fi such that |fi |Bi−B−i = 1 for
i = 1, . . . , n.

Let ξi be a coordinate function on Bi with ξi(bi) = 0. If εi < 1 and close to 1,
then one has by Proposition 1.3.4 that

∣

∣fi(x)
∣

∣= ∣∣ξi(x)
∣

∣

ni+ri for all x ∈ Bi with 1>
∣

∣ξi(x)
∣

∣≥ εi,

where ni is the number of zeros of fi on B−i and ri is the order of fi at bi . Since
the degree of the divisor of fi is 0 and fi has at least one zero outside B−i , we
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have ni + ri < 0. Since the map fi :X→ P
1
K is finite and f−1

i (∞)= {bi}, we see
{x ∈ X; |fi(x)| > 1} is contained in B−i , and hence |fi |X−B−i = 1. Then X − B−i
is a connected component of Di := {x ∈ X; |fi(x)| ≤ 1}, because the morphism
fi :X−B−i →DK to the unit disc is finite. Thus, X−B−i is a formal open subdo-
main of Di and X−Bi is a disjoint union of finitely many formal fibers with respect
to the canonical reduction of Di , because the map f̃i is finite. Then

(

X−B−i
)∩Bi =

(

X−B−i
)− (X−Bi)= Bi −B−i

is the complement of finitely many formal fibers of X − B−i with respect to its
canonical reduction. Thus, we see that (X−B−i )∩Bi is formal open in (X−B−i ).
Obviously, (X − B−i ) ∩ Bi is formal open in Bi . This shows that (X − B−i ,Bi) is
a formal covering of X whose reduction is a rational curve with a unique singular
point. The covering B is the common refinement of the coverings {Bi, (X − B−i )}
for i = 1, . . . , n. �

Example 3.1.11. Let B1, . . . ,Bn be pairwise disjoint closed rational discs in the
projective line and let B−ν ⊂ Bν be a formal fiber with respect to the canonical
reduction of Bν for ν = 1, . . . , n. Consider the affinoid subdomain

X := P
1
K −
(

B−1 ∪̇ · · · ∪̇B−n
)

.

Let ζ be a coordinate function on P
1
K with a pole in X. Let bν ∈ B−ν be a K-rational

point and γν ∈K× such that

ζν := γν

ζ − ζ(bν)

has sup-norm 1 on X for ν = 1, . . . , n. Then the coordinate ring ˜A of the canonical
reduction ˜X of X is given by

˜A= k[ζ̃1, . . . , ζ̃n]/(ζ̃μζ̃ν;1≤ μ< ν ≤ n).

For n= 1 the domain D := P
1
K − B−1 is a closed disc with coordinate ζ1.

For n = 2 the domain A := P
1
K − (B−1 ∪ B−2 ) is a closed rational annulus with

coordinate ξ := (ζ − ζ(b2))/(ζ − ζ(b1)). The height of A is equal to
∣

∣

∣

∣

γ1 · γ2

(ζ(b1)− ζ(b2))2

∣

∣

∣

∣

or its inverse. It is less than 1, because B1 and B2 are disjoint.

Proof. The assertion about the ˜A follows from Proposition 2.4.8, because we have
|ζμ · ζν |X < 1 if μ 
= ν, as the discs are pairwise disjoint.

In the special case n= 1 the function ζ1 is a coordinate on P
1
K with a pole in b1

outside of D := P
1
K −B−1 and a zero inside D.
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In the case n= 2 the function ξ is a coordinate on P
1
K with a pole b1 in B−1 and a

zero b2 in B−2 , both are outside of A. For computing the height one has to determine
the sup-norm of ξ on Ai := Bi − B−i for i = 1,2. Since ζ − ζ(b2) has no zero or
pole in B1, it follows

|ξ |A2 = |ξ |B2 =
∣

∣

∣

∣

γ2

ζ(b2)− ζ(b1)

∣

∣

∣

∣

.

Similarly, one obtains

|ξ |A1 =
1

|1/ξ |B1

=
∣

∣

∣

∣

ζ(b2)− ζ(b1)

γ1

∣

∣

∣

∣

.

The height is the quotient of both or of its inverse. The height is less than 1, since
the absolute function |ξ | cannot be constant on A because of the position of its zero
and its pole. �

For later use we provide the following proposition.

Proposition 3.1.12. Let X be a formal analytic space whose reduction ˜X is irre-
ducible. If U := {U1, . . . ,UN } is an admissible covering of X, then there exists an
index i ∈ {1, . . . ,N} such that Ui contains a non-empty formal open subset V of X.

Proof. We may assume that X is an affinoid space. Due to Theorem 1.3.7 the cover-
ing U admits a refinement by a rational covering given by functions f0, . . . , fn. Each
function has a sup-norm ci = |fi |X with ci ∈

√|K|×. We may assume ci ∈ |K×|,
because we can replace f0, . . . , fn by suitable powers f m

0 , . . . , f mn , and hence that
c0 = 1 ≥ ci for i = 1, . . . , n. Since the reduction ˜X is irreducible, the sup-norm is
multiplicative by Remark 1.4.6. Therefore, X0 :=X(f1/f0, . . . , fn/f0) is a subdo-
main of X which contains the non-empty formal open part X(1/f0). �

Lemma 3.1.13. LetK be a complete algebraic closure ofK and letXK be a quasi-
compact rigid analytic space. Consider a formal analytic structure on XK ⊗K K

given by a finite admissible covering V= {V1, . . . , Vr } with affinoid open subspaces
Vi of XK ⊗K K . Then there exists a finite separable field extension K ′/K such that
V is defined over K ′.

Proof. First assume that XK is affinoid. For each V ∈V there exists rational cov-
ering U := {U1, . . . ,Un} of XK ⊗K K such that V ∩ Uj is a rational subdomain
of Uj ; cf. Theorem 1.3.7. The functions, which define Uj and V ∩Uj as a subset of
XK and Uj , respectively, can be approximated by linear combinations of functions
in OXK

(XK) with coefficients in K , and hence with coefficients in the algebraic
closure Kalg. Since there are only finitely many coefficients involved, they are con-
tained in a finite extension K ′/K . If the characteristic of K is 0, the extension K ′/K
is separable.
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If the characteristic is p > 0, we rise the functions to suitable pe-power, then the
coefficients become separable and we succeed in that case also. Thus, there exists a
finite separable field extension K ′/K such that each Vi is defined over K ′; i.e., there
exists an open subvariety Wi ⊂XK ⊗K K ′ with Wi ⊗K ′ K = Vi for i = 1, . . . , r .

It remains to see that eachWi is affinoid. Since Vi is affinoid, there exist functions
f1, . . . , fn which constitute a generating system of the K-algebra of Vi . Since by
Lemma 3.1.3 good approximations of f1, . . . , fn constitute a generating system as
well, we may assume that they are defined over a finite field extension K ′′/K ′.

If the characteristic of K is p > 0, one can raise f1, . . . , fn to pe-powers such
that they are defined on Wi ⊗K ′ K ′′, where K ′′/K ′ is separable and finite. Now they
are no longer a generating system over K ′′, but they give rise to a finite morphism
of Wi ⊗K ′ K ′′ to an affinoid space. Then Wi ⊗K ′ K ′′ is affinoid as well.

In the general case one starts with a finite covering {X1
K, . . . ,X

N
K } by affinoid

subvarieties. Due to the above reasoning, every V ∈V is defined over a finite sepa-
rable extension K ′/K . To verify that each V ∈V is affinoid, one can copy the above
given proof. �

3.1.3 Finiteness Theorem of Grauert-Remmert-Gruson

The notion of a formal analytic structure can be carried out over every non-
Archimedean field K . The disadvantage is that the formal R-algebras ÅK are in
general not of topologically finite type over R, whereas the reduction ˜AK is of finite
type over k and reduced. Thus, it would suffice to produce a model with reduced
special fiber; i.e., to find an R-algebra of topologically finite type A ⊂ ÅK with
A⊗R K = AK such that A⊗R k is reduced. We will see in Proposition 3.4.1 that
such a model coincides with ÅK .

This problem was stated by Tate in his Harvard Notes [92] as a finiteness conjec-
ture for affinoid morphisms; cf. Theorem 3.1.17. Originally, this result was achieved
by Grauert-Remmert [36] for algebraically closed base fields; the general case was
shown by Gruson [43] using a different proof. A crucial definition is the following
notion of a stable field.

Definition 3.1.14. Let K be a field with a non-Archimedean valuation, not neces-
sarily complete.

(a) Let L/K be an algebraic field extension. The spectral norm of an element x ∈ L
is defined by

|x|sp := max
1≤ν≤n

ν
√|cν |,

where T n + c1T
n−1 + · · · + cn ∈K[T ] is the minimal polynomial of x.

(b) The field K is called stable if every finite field extension L of K is a K-
Cartesian vector space with respect to its spectral norm |.|sp; i.e., there exists a
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K-basis (v1, . . . , vn) of L such that

|c1v1 + · · · + cnvn|sp =max
{|c1| · |v1|sp, . . . , |cn| · |vn|sp

};
cf. [10, 3.6.1/1 and 2.4.1/1].

For example, every non-Archimedean field with a discrete valuation is stable; cf.
[10, 3.6.2/1]. Obviously, every algebraically closed field is stable. The main theorem
in this approach is the following result; cf. [10, 5.3.2/1].

Theorem 3.1.15 (Transitivity of stability). The field of fractions Q(Tn) is stable if
the ground field K is stable.

This leads to the so-called Gradgleichung.

Theorem 3.1.16 (Gradgleichung). Let K be a non-Archimedean field and assume
that K is stable. Let ϕ :AK ↪→ BK be finite monomorphism of affinoid algebras of
pure dimension d , where the reduction ˜AK is an integral domain and where BK is
reduced. If |K| = |BK |sup, then we have

[BK :AK ] = [˜BK : ˜AK ].

Proof. If AK = Td is a Tate algebra, the assertion follows from [10, 3.6.2/8] as
mentioned above. Indeed, due to Proposition 3.1.1 the extension ˜Td → ˜BK is finite.
Furthermore, the field of fractions Q(Td) is stable. Due to Theorem 3.1.17 for every
f ∈ Td with |f | = 1 holds

[

BK 〈1/f 〉 : Td〈1/f 〉
]= [BK : Td ] and

[

˜BK [1/f̃ ] : Td [1/f̃ ]
]= [˜BK : ˜Td ].

Since there exists an f ∈ Td with |f | = 1 such that ˜BK [1/f̃ ] splits into a product
of domains, we may assume that the reduction of BK 〈1/f 〉 is irreducible. Then the
assertion follows from [10, 3.6.2/8]. In the general case, by Corollary 1.2.6 there
exists a Noether normalization Td ↪→ AK . So we have the equalities [BK : Td ] =
[˜BK : ˜Td ] and [AK : Td ] = [˜AK : ˜Td ]. Thus, the assertion follows from the degree
formula for finite extensions. �

Actually, the argumentation in the proof of Theorem 3.1.15 goes the opposite
direction. The preliminary of the proof of Theorem 3.1.15 is the criterion that a
finite field extension L/K is K-Cartesian and fulfills |L|sp = |K| if and only if the
degrees of the field extension [L :K] and of the residue extension [˜L : ˜K] coincide;
[10, 3.6.2/8]. Therefore, the main burden in the proof is to establish this equality. In
fact, it is well-known for discretely valued fields. In [10, 5.3.3/4] it is directly shown
for stable fields with divisible value group by a clever consideration. In [10, §5.3.4]
it is descended to a general stable field.

For the following result see [10, §6.4.1]; a proof will be discussed in Sect. 3.4.
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Theorem 3.1.17 (Finiteness theorem). Let K be a non-Archimedean field and AK

be a reduced affinoid K-algebra.

(a) Assume that K is stable and that AK satisfies |K| = |AK |sup. If ϕ : BK →AK

is a finite morphism of affinoid algebras, then the morphism ϕ̊ : B̊K → ÅK is
finite.

In particular, ÅK is an R-algebra of topologically finite type.
(b) If K is stable and |K×| is divisible (e.g. K is algebraically closed), then the

R-algebra ÅK is of topologically finite type over R.
(c) If K is discretely valued, then every finite morphism ϕ : BK → AK of affinoid

algebras induces a finite morphism ϕ̊ : B̊K → ÅK .

3.2 Admissible Formal Schemes

In this section we will give a survey on the main tools of formal geometry and
thereafter in Sect. 3.3 we will discuss its relation to rigid analytic spaces. Instead of
starting with affinoid algebras, Raynaud started with R-algebras of type

A :=R〈ξ1, . . . , ξn〉/a
which do not have R-torsion and which are of topologically finite presentation. The
latter means that a is finitely generated. Note that an R-module M has no R-torsion
if and only if M is flat over R. We call R-algebras as above admissible.

In the theory of formal schemes one fixes an ideal of definition. In our case it
is given by πA, where 0 
= π ∈ mR is any element in the maximal ideal mR of R.
Thus, these R-algebras are equipped with the ideal topology given by (Aπn;n ∈N)

and they are complete and separated with respect to this topology. Moreover, we
have that

A= lim←−
n∈N

An with An :=A/Aπn+1.

The topology does not depend on the choice of π , because any other π ′ ∈R with
0< |π ′|< 1 induces the same topology.

Since we consider arbitrary valuation rings R of rank 1, the following result is
important in the study of such R-algebras; cf. [82, 3.4.6].

Theorem 3.2.1 (Gruson-Raynaud). Let A be an R-algebra of topologically finite
type and M a finitely generated A-module which is flat over R. Then M is an A-
module of finite presentation. In particular, if An →M is a surjective homomor-
phism, then its kernel is finitely generated.

Corollary 3.2.2. Let A=R〈ξ1, . . . , ξn〉/a be of topologically finite type.

(a) If A is a flat R-algebra, it is of topologically finite presentation.
(b) Every R-algebra A of topologically finite presentation is a coherent.
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Moreover, we need to know the procedure of complete localizations to obtain
formal affine schemes; cf. [39, I, §10]. Let A be an R-algebra of topologically finite
presentation and f ∈A. Then set

A〈1/f 〉 := lim←−
n∈N

Af /Af π
n+1 = lim←−

n∈N

(

A/Aπn+1)

f
,

which is an R-algebra of topologically finite presentation as well.
If elements f1, . . . , fn of A generate the unit ideal, then the sequence

A→
n
∏

i=1

A〈1/fi〉⇒
n
∏

i,j=1

A〈1/fifj 〉 (∗)

is exact. In the usual way one can define an affine formal scheme

X := SpfA

associated to an R-algebra A of topologically finite presentation. Its underlying
topological space is X0 := SpecA⊗R (R/Rπ), which coincides with X⊗R k. The
infinitesimal levels Xn := X ⊗R (R/Rπ

n+1) of formal schemes are indicated by a
subindex “n”. The structure sheaf on open sets U of SpfA is given by

OX(U) := ker

(

r
∏

i=1

A〈1/fi〉⇒
r
∏

i,j=1

A〈1/fifj 〉
)

,

where f1, . . . , fr ∈A induce a covering of U ; i.e.,

U =X0(1/f1)∪ · · · ∪X0(1/fr).

Since the sequence (∗) is exact, OX is in fact a sheaf. Furthermore, we define the
stalk at a point x ∈ SpfA by the local ring

OX,x = lim−→
x∈U

OX(U).

Since admissible R-algebras are coherent, every finitely generated A-module M
gives rise to a coherent OX-module FM in the usual way. The notion of coherence
is local on X. In fact, if F is an OX-module which is of type F |Ui ∼= FMi for an
affine open covering {U1, . . . ,Un} of X = SpA with finitely generated OX(Ui)-
modules Mi , then M := F(X) is a finitely generated A-module and the canonical
morphism FM ˜−→F is an isomorphism.

Definition 3.2.3. A formal R-scheme X (in this book) is a locally ringed space
(X,OX) such that each point x ∈ X admits an open neighborhood U , where
(U,OX|U) is isomorphic to an affine formal scheme SpfA, where A is an R-algebra
of topologically finite presentation and its topology is defined by the ideal Aπ .

X is called an admissible formal R-scheme if, in addition, its structure sheaf OX

does not have R-torsion; i.e., OX is R-flat.
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Example 3.2.4. A typical case is the completion of an R-scheme of finite presenta-
tion along its the special fiber.

(a) Let X := A
n
R be the affine R-space of dimension n. The π -adic completion of

R[ξ1, . . . , ξn] is the restricted power series ring R〈ξ1, . . . , ξn〉. Thus, we have
that X0 = A

n
R0

is the n-dimensional affine R0-space and Spf(R〈ξ1, . . . , ξn〉) is
the formal n-dimensional polydisc.

(b) Let X =Gm,R = SpecR[ξ,1/ξ ] be the 1-dimensional affine R-torus, its π -adic
completion is SpfR〈ξ,1/ξ 〉, the so-called formal torus. Its underlying topolog-
ical space is the affine torus X0 =Gm,R0 over R0.

(c) Let X = P
n
R be the projective n-space over R. If we introduce homogeneous

coordinates ξ0, . . . , ξn and equip X with the associated canonical covering
{U0, . . . ,Un} where Uν := {x ∈ X; ξν(x) 
= 0}, then the π -adic completion is
the formal scheme with underlying topological space X0 = P

n
R0

and coordi-
nates ξ0,0, . . . , ξn,0, where ξj,0 = ξj mod π . Their associated R-algebras are
OX(Uν)=R〈ξ0/ξν, . . . , ξn/ξν〉 for ν = 0, . . . , n.

Note that in cases (a) and (b) not all K-valued points of X specialize on the
formal completion, whereas in the case (c) all K-valued points specialize due to the
valuative criterion of properness.

Remark 3.2.5. Assume that K is algebraically closed. Then a formal analytic
space X in the sense of Definition 3.1.6 with reduction ρ : X→ ˜X induces an ad-
missible formal R-scheme with underlying topological space ˜X and algebras

OX(U)= O̊X

(

ρ−1(U)
)

for open affine subsets U of ˜X. Note that the topology of X is induced by the Zariski
topology of ˜X via ρ.

Since K is algebraically closed, OX(U) is topologically of finite type over R due
to Theorem 3.1.17. However, in general, it suffices to ask that there exists a open
formal analytic covering {Ui = SpAi; i ∈ I } of X such that the R-algebras Åi are
of topologically finite type; cf. Corollary 3.2.2.

The crucial idea of Raynaud is the use of admissible formal blowing-ups.

Definition 3.2.6. Let A be an admissible R-algebra and let X = Spf(A) be the
associated affine formal scheme.

(a) An ideal I = (f0, . . . , fr )⊂A is called open if πn ∈ I for an n ∈N.
(b) An admissible formal blowing-up X′ → X of a finitely generated open ideal

I on Spf(A) is the completion of the algebraic blowing-up X′alg → X of I on
Spec(A) with respect to its special fiber X′alg ⊗R R/πR.

It is clear that the generic fiber of the algebraic blowing-up is not changed, since
I ⊗K = A⊗R K is invertible. A system of generators (f0, . . . , fr ) of the ideal I
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gives rise to a canonical covering of X′alg and hence of X′. Indeed, X′alg can be
regarded as the closed subscheme

X′alg := V
((

(ξifj − ξjfi; i, j = 0, . . . , r) : πN
))⊂ P

n
A,

where the homogeneous ideal consists of all elements which are multiplied by a big
power πN into the first ideal. The latter process is necessary in order the make the
locally principal ideal IOXalg invertible. Let X′i be the open subscheme of X′, where
ξi,0 := ξi mod π does not vanish, then

OX′
(

X′i
)=A〈f0/fi, . . . , fr/fi〉/

(

πN-torsion
)

.

Of course, one has to show that every non-zero divisor on X′alg remains a non-
zero divisor on X′. The latter is true, since the extension OX′alg

→OX′ is flat. This is

well known if R is Noetherian; for the general case see Corollary 3.5.9 below. One
can also introduce the formal blowing-up by the following formal scheme

X′ = lim−→
n∈N

Proj

(

⊕

m∈N
Im ⊗R R/π

nR

)

.

This procedure can be generalized to blowing-ups of coherent sheaves of open
ideals I ⊂OX on an admissible formal scheme

XI := lim−→
n∈N

Proj

(

⊕

m∈N
Im ⊗R R/π

nR

)

−→X.

The admissible formal blowing-up has the following properties, which can be
proved easily; cf. [9, §8.2].

Proposition 3.2.7. Let X be an admissible formal scheme and I ⊂ OX be a co-
herent sheaf of open ideals. Then we have the following.

(a) XI is an admissible formal scheme over SpfR.
(b) The ideal IOXI is invertible.
(c) If ϕ : Y → X is a morphism of admissible formal schemes such that IOY is

invertible, then ϕ factorizes through XI →X in a unique way.

In particular, the admissible formal blowing-up is uniquely determined.

(d) If K ′/K is a finite field extension with associated extension R′/R of their valu-
ation rings, then every K ′-valued point of X extends uniquely to an R′-valued
point of XI .

(e) Admissible formal blowing-ups commute with flat base change.
(f) If X is quasi-compact, then the composition of admissible blowing-ups X′ →X

and X′′ →X′ is an admissible formal blowing-up X′′ →X of a suitable open
ideal on X.
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(g) Assume that X is quasi-compact. If U ⊂ X is an open subscheme and if
J ⊂ OX|U is a coherent sheaf of open ideals, then J is the restriction of a
coherent sheaf I ⊂OX of open ideals.

In particular, every admissible formal blowing-up UJ → U extends to an
admissible formal blowing-up XI →X.

3.3 Generic Fiber of Admissible Formal Schemes

The interpretation of rigid spaces as generic fibers of admissible formal schemes
was the innovative idea of Raynaud. His new insight made the theorems of Kiehl
on coherent modules [50] and [51] into corollaries of well-known facts in algebraic
geometry [61, §1]. Moreover, it opens an access to the work of Grothendieck [39].
Many interesting geometric results could be shown by this technique; cf. [14, II, §5].

If A=R〈ξ1, . . . , ξn〉/a is an admissible formal R-algebra, then we put

Arig :=A⊗R K =K〈ξ1, . . . , ξn〉/a ·K.
Arig is an affinoid K-algebra. Its maximal spectrum

Xrig := Sp(Arig)

is called the generic fiber of the formal affine scheme X := Spf(A). Obviously this
association applies to morphisms, and hence it gives rise to a functor. Therefore, one
can generalize this procedure for every admissible formal scheme over Spf(R).

Definition 3.3.1. Let X be an admissible formal SpfR-scheme, then the rigid ana-
lytic space Xrig associated to X is called the generic fiber of X.

If XK is a rigid analytic space which is the generic fiber of an admissible formal
SpfR-scheme X, then X is called an R-model of XK . Similar definitions apply to
morphisms and coherent sheaves.

An important observation of this functor is the following fact which easily fol-
lows from Proposition 3.2.7.

Proposition 3.3.2. Let X = SpfA be an admissible affine formal R-scheme. Con-
sider an open ideal I = (f0, . . . , fn) ⊂ A and let ϕ : X′ → X be the admissible
formal blowing-up of I on X. Then we have the following:

(i) ϕrig :X′rig →Xrig is an isomorphism.
(ii) Put X′i := {x ∈ X′;fiOX′ = IOX′ }. Then ϕrig maps (X′i )rig onto the rational

subdomain Xrig(f0/fi, . . . , fn/fi) for i = 0, . . . , n; cf. Definition 1.3.1.

The main point in the approach of Raynaud is to determine the essential image
of his functor X�Xrig. For its proof see [14, Part II].
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Theorem 3.3.3 (Existence of integral models). The functor

rig : (Admissible Formal R-Schemes)−→ (Rigid Analytic K-Spaces)

gives rise to an equivalence of categories between

(1) the category of quasi-compact, quasi-separated admissible formal R-schemes,
localized by admissible formal blowing-ups, and

(2) the category of rigid analytic K-spaces which are quasi-compact and quasi-
separated.

An admissible formal scheme X or a rigid analytic space XK is called quasi-
compact if X or XK , respectively, admits a finite (admissible) covering by affine or
affinoid open subspaces {Ui; i ∈ I }, respectively. It is called quasi-separated if the
intersection of two affine or affinoid subspaces, respectively, is quasi-compact.

There is a general procedure of localization by a family of morphisms in a cat-
egory. This simply means that the morphisms of the localizing family are regarded
as isomorphisms. Thus, a morphism χ :X ��� Y in the localized category is given
by a diagram

X′

ϕ
ψ

X
χ

Y,

where ϕ belongs to the localizing family and ψ is a true morphism.
In our case, we localize the category of admissible formal R-scheme by the fam-

ily of admissible formal blowing-ups. Thus, a morphism X ��� Y in this localized
category is a diagram as above, where ϕ is an admissible formal blowing-up and ψ
is a true morphism such that χrig ◦ ϕrig = ψrig. Therefore, χ is an isomorphism if
and only if there exists a commutative diagram

X′′

ϕ′

χ ′
Y ′′

ψ ′

X′

ϕ

Y ′

ψ

X
χ

Y

where all vertical arrows, ϕ ◦ ϕ′, and ψ ◦ ψ ′ are blowing-ups and χ ′ is an isomor-
phism. For technical reasons it is useful to have the more precise statement [14, II,
5.5–7].



3.3 Generic Fiber of Admissible Formal Schemes 119

Theorem 3.3.4. Let XK be a rigid analytic space which is quasi-compact and
quasi-separated. Let UK be a finite covering of XK by open affinoid subvarieties
of XK . Then there exists an admissible formal R-model X of XK such that UK is
induced by an open covering U of X.

Let X and Y be admissible formal R-schemes and assume that X and Y are
quasi-compact. Let fK :Xrig → Yrig be a rigid analytic morphism. Then there exists
an admissible blowing-up X′ → X such that fK is induced by a formal morphism
f ′ :X′ → Y .

Remark 3.3.5. LetXK be a rigid-analytic space which is quasi-compact and quasi-
separated.

(a) If X is an admissible formal R-scheme with generic fiber XK , then the generic
fiber of every open subscheme of X is admissible. Likewise every open covering
of X induces an admissible covering of XK .

(b) Let XK be a rigid analytic space and VK ⊂XK an affinoid subdomain. If V+(v)
is a formal fiber of a point v ∈ VK , then the covering {VK,XK − V+(v)} is an
admissible covering of XK .

Proof. (a) This follows from Theorem 3.3.3.
(b) By Theorem 3.3.4 we have an admissible formal R-model X of XK such

that VK is the generic fiber of an open formal subscheme V ′ of X. Due to Proposi-
tion 3.2.7 we may assume that V ′ is presented as an admissible formal blowing-up
p : V ′ → V . Let v0 ∈ V0 be the reduction of v. Since A0 = p−1(v0) is a closed sub-
scheme of X0, we see that X0 −A0 is an open subscheme of X, and hence that the
covering {VK,XK −X+(v)} is induced by {V ′0,X−A0}. Thus, by (a) the covering
{VK,XK − V+(v)} is admissible. �

Sometimes we will consider morphisms f : Y → X of admissible formal
schemes whose generic fiber frig : Yrig → Xrig has a certain property. Therefore
we introduce the following notions; for details see [14, Part III, §3].

Definition 3.3.6. Let f : X→ Y be a morphism of admissible formal schemes
over SpfR.

(a) f is called a rig-étale cover if f is surjective and frig is étale.
(b) f is called rig-flat if frig is flat.
(c) f is called a rig-isomorphism if frig is an isomorphism.
(d) f is called rig-quasi-finite if frig is quasi-finite.
(e) f is called rig-finite if frig is finite.

The main tool for proving Theorem 3.3.3 was provided by the paper [82] of
Gruson and Raynaud. In the following we will state some of its consequences in
order to explain the relationship between formal and rigid analytic geometry. Proofs
and details can be found in [14, II, 4.1].
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Theorem 3.3.7 (Flattening). Let f :X→ T be a morphism of quasi-compact ad-
missible formal R-schemes. Let M be a coherent OX-module. Let n ∈ N such that
M is rig-flat over T in dimension ≥ n.

Then there exists an admissible formal blowing-up T ′ → T such that the strict
transform M′

of M on X′ :=X×T T
′ is T ′-flat in dimension ≥ n; i.e., there exists

an open subscheme U ′ of X′ with

dim
((

X′0 −U ′0
)/

T ′0
)≤ n− 1

such that

M′∣
∣

U ′ =M′∣
∣

U ′/(π-torsion)

is T ′-flat, where M′ is the pull-back of M to X′.

A coherent OX-module M is called rig-flat over T in dimension ≥ n if there
exists a closed subscheme Y of X with dim(Y/T )rig ≤ (n− 1) such that M|(X−Y)
is rig-flat over T . For example, if dim(X/T )rig ≤ (n− 1), then X→ T is rig-flat in
dimension ≥ n.

The flattening technique can be applied to morphisms and is a means to improve
properties of R-models; cf. [14, II, §5].

Corollary 3.3.8. Let f :X→ Y be a morphism of quasi-compact admissible for-
mal R-schemes as above.

(a) If dim(X/Y )rig ≤ n, then there exists an admissible formal blowing-up Y ′ → Y

such that the induced map f ′ : X′ → Y ′ of the strict transform has relative
dimension ≤ n.

(b) If frig is quasi-finite, one can choose Y ′ → Y such that f ′ : X′ → Y ′ is quasi-
finite as well.

(c) If frig is an open (resp. closed) immersion, then one can choose Y ′ → Y such
that f ′ :X′ → Y ′ is an open (resp. closed) immersion.

(d) If frig is flat, then the image of frig is a finite union of open affinoid subvarieties
of Yrig.

The assertion in Corollary 3.3.8(d) can be generalized to a remarkable statement
on the image of a rigid analytic morphism which will be used in Remark 7.2.4.

Proposition 3.3.9. Let uK : XK → YK be a morphism of quasi-compact, sepa-
rated rigid analytic spaces. Assume that XK admits a smooth formal R-model X
with geometrically connected special fiber. Then there exist a dense open formal
subscheme U of X and an admissible formal R-scheme V , whose generic fiber VK
is an admissible open subvariety of YK with the following properties:

(i) The map vK := uK |UK : UK −→ YK factorizes through the generic fiber of a
closed subscheme V ′ of V .

(ii) V ′ is a smooth formal R-scheme.
(iii) The map vK extends to a faithfully flat morphism v :U→ V ′.
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Proof. Since the special fiber of X is irreducible, we may assume that XK and YK
are affinoid spaces due to Proposition 3.1.12. Then there exists an affine formal
R-model Y of YK such that uK is induced by a morphism u :X→ Y .

Consider the product XK ×XK . Inside the product there is the fibered product
ZK :=XK ×YK XK as a closed subvariety which can be regarded as a graph of an
equivalence relation. Denote by Z ⊂X×X the schematic closure of ZK . Since X is
smooth over R, there exists a dense open subscheme U ⊂X such that each projec-
tion Z→X is faithfully flat over U , because the map Zk→Xk of the special fibers
is generically flat. Thus, we may replace X by U and assume that both projections
Z→X are faithfully flat. Now consider the projections

pi,j :X×X×X −→X×X

for 1≤ i < j ≤ 3 from the triple to the two-fold product. Since ZK is the graph of
an equivalence relation and the schematic closure commutes with flat base change,
we have

p∗1,2Z ∩ p∗2,3Z = p∗1,3Z ∩ p∗2,3Z,
meaning that Z is a graph of an equivalence relation on X.

Next we assert that, after a further shrinking of X, the formal fppf -quotient
X/Z exists as a formal affine scheme over SpfR. Indeed, Z induces an equivalence
relation Zn on Xn :=X⊗R Rn for every n ∈N, where Rn :=R/Rπn+1. Due to [4,
Theorem 7.1] there exists the fppf -quotient Qn :=Xn/Zn as an algebraic space in
the sense of sheaves. Moreover, Qn is flat over Rn. In [4] the theorem is only stated
in the case, where one considers schemes of finite type over a Noetherian base.
However, by the usual techniques [41, Exp. V, §9] it can be generalized to the case
of finite presentation over a general base. Unfortunately, there is no proof in [4], but
it is implicitly given in [49]. Indeed, if Z is a flat equivalence relation on X, then by
[54, Lemma 3.3] one reduces the problem to a flat quasi-finite equivalence relation.
Then, after an étale localization, one arrives at a finite flat equivalence relation on
an affine scheme by [54, Proposition 4.2]. The latter is effective by [41, Exp. V,
Theorem 4.1(iv)]. So the quotient is representable by an algebraic space.

By an étale localization one can only expect an algebraic space. Due to [55,
I, Proposition 5.19] there exists a dense open subset U0 ⊂ Q0 which is an affine
scheme; alternatively, one can use [41, Exp. V, Theorem 8.1] to have a generic
quotientX0/Z0 as an affine scheme. After a suitable shrinking ofX, we may assume
that Q0 is smooth over R0 and affine. Then the open subscheme Un ⊂ Qn with
Un⊗R/Rπ =U0 is an affine scheme as well by [55, III, Theorem 3.3]. Moreover, it
is smooth over Rn. Indeed, since the special fiber Qk :=Q⊗R k of Qn is dominated
by the geometrically reduced fiber Xk , there is an open dense subscheme of Qk

which is smooth. Since Qn is flat over Rn, the schemes Qn are smooth over Rn
for all n ∈ N. Then the limit Q := lim−→Qn is the fppf -quotient Q := X/Z in the

category of admissible formal schemes and the morphism X→Q is faithfully flat.
After the shrinkings we made, Q is an affine smooth formal R-scheme.

The map uK : XK → YK can be factorized through a monomorphism
iK :QK → YK . Since such a map is quasi-finite, it follows from Corollary 3.3.8
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that there is an admissible formal blowing-up Y ′ → Y such that the strict transform
Q′ → Y ′ is quasi-finite. Then there exists a dense open part U ⊂ Q and an open
subscheme V ⊂ Y ′ such that U→ V is finite. Since QK → YK is a monomorphism,
the restriction v : U → V is a closed immersion. The image V ′ of v is isomorphic
to Q, and hence a smooth formal R-scheme. �

Let us briefly explain how flattening techniques are used as an important tool in
the proof of the existence of R-models in Theorem 3.3.3.

Any affinoid space XK = SpAK has an admissible formal R-model X = SpfA.
Indeed, if AK =K〈ξ 〉/aK for a system ξ := (ξ1, . . . , ξn) of variables, then set a :=
aK ∩R〈ξ 〉. Now A :=R〈ξ 〉/a is an admissible R-model due to Corollary 3.2.2.

The construction of an admissible formal R-model for a quasi-compact quasi-
separated rigid space is local with respect to the Grothendieck topology. Thus, it
suffices to consider an open immersion ϕK of an affinoid subdomain UK := SpBK
ofXK := SpAK and to explain how to glue the associatedR-models. If (f1, . . . , fn)

is an affinoid generating system of AK , then each gj := ϕ∗K(fj ) has sup-norm
|gj |UK ≤ 1. Thus, we may assume by Proposition 3.1.1 that (g1, . . . , gn) belong
to B , where B is an R-model of BK as above. Then the morphism ϕK induces a
morphism ϕ∗ : Y := SpfB→X := SpfA of the above mentioned R-models. How-
ever, it does not need to be an open immersion, but ϕrig : Yrig →Xrig is flat. Now the
flattening technique provides an admissible formal blowing-up X′ →X such that its
strict transform ϕ′ : Y ′ →X′ is flat. Then it is not difficult to see that ϕ′ : Y ′ →X′
is an open immersion. The same reasoning can be used to show the existence of an
R-model for a rigid analytic map ϕK : Yrig → Xrig between R-models of affinoid
spaces. Indeed, one considers the graph ΓK ⊂ Y ×R X and looks at the projection
p2 : ΓK →Xrig. Then one can argue as above.

One can also show a similar result for coherent sheaves; cf. [61, 2.2].

Proposition 3.3.10. Let XK be quasi-compact quasi-separated rigid analytic
space. If FK is a coherent OXK

-module, then there exists an admissible formal
R-model X of XK and a coherent formal OX-module F on X without R-torsion
such that Frig :=F ⊗R K is isomorphic to FK .

One can use Proposition 3.3.10 to deduce Kiehl’s Theorem 1.6.2 from
Grothendieck’s formal existence theorem [39, III, §5] in the case of a Noethe-
rian base ring R; cf. [61, 2.3]. The case of a general R is proved in [1, 2.11.10
and 4.7.36].

Definition 3.3.11. A morphism ϕ : Y →X of admissible formal schemes is called
proper if ϕ0 : Y0 →X0 is proper.

Note that every morphism ϕ : Y →X of admissible formal schemes gives rise to
morphisms ϕn := ϕ ⊗R/Rπn+1 for all n ∈N. It is well known that ϕn is separated
or proper if and only if ϕ0 is. A deeper result is the relationship between properness
in the formal and in the rigid analytic case; cf. [61, 3.1] for a Noetherian base ring
R and [94] for the general case.
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Theorem 3.3.12. Let ϕ : Y → X be a morphism of admissible formal schemes.
Then the following conditions are equivalent:

(a) ϕ : Y →X is proper.
(b) ϕrig : Yrig →Xrig is proper in the sense of Definition 1.6.3.

Similarly as before, one can deduce the Finiteness Theorem 1.6.4 of Kiehl from
Grothendieck’s finiteness theorem [39, III, 4.1.5] for a Noetherian base ring R; cf.
[61, 2.7]. For the general case see [1, 2.11.5 and 4.8.22].

Remark 3.3.13. The implication “(b)→ (a)” in Theorem 3.3.12 is easy to verify.
Indeed, we may assume that X = SpfA is affine. Then consider two open coverings
(U1

K, . . . ,U
n
K) and (V 1

K, . . . ,V
n
K) of Yrig by admissible open affinoid subvarieties

such that Uj
K �Xrig V

j
K for j = 1, . . . , n; cf. Definition 1.6.3.

If UK = SpBK �XK
VK = SpCK with XK := SpAK , then for suitable affine

models ϕ : U := SpfB → V := SpfC the schematic image ϕ0(U0)⊂ V0 is finite
over X0. In fact, due to Definition 1.6.3 we may assume that CK can be repre-
sented in the form AK〈ξ1, . . . , ξN 〉/c such that |ξi |UK < 1. The latter implies that
ϕ0 :U0 → V0 factorizes through the zero section Z0 of SpecC0 → SpecA0. There-
fore, the schematic closure ϕ0(U0) in V0 is finite over X0.

By Theorem 3.3.4 there exists an R-model Y ′ → Y , which can be chosen as
an admissible formal blowing-up, such that all the subvarieties Uj

K and V j
K are in-

duced by open subschemes Uj and V j of Y ′, respectively. Moreover, each V j is an
admissible formal blowing-up of some SpfCj as considered above. By the above
reasoning we obtain that the schematic closure of Uj

0 in Y ′0 is proper over X0 for
j = 1, . . . , n. Thus, Y ′0 →X0 is proper, and hence Y →X is proper as well.

The opposite implication is much harder to prove, since it requires the con-
struction of suitable affinoid coverings; cf. [61, §3] for the Noetherian case. The
proof loc. cit. works also in the general case, after Abbes has generalized parts
of Grothendieck’s theory about formal geometry to schemes of topologically finite
presentation [1].

The implication “(a)→ (b)” will not be used in this book, because one can pro-
ceed as Abbes by defining a proper rigid morphism ϕK : YK → XK by requiring
an R-model ϕ : Y →X which is proper in the formal sense; cf. [1, 7.2.9]. Then the
Finiteness Theorem 1.6.4 remains true, cf. [1, 7.3.12].

The implication “(a)→ (b)” is easy in the case of dimension 1, since a proper
formal curve is algebraic due to Grothendieck existence theorem [39, III, §5] and
hence proper as rigid analytic variety in Remark 1.6.10.

3.4 Reduced Fiber Theorem

In Sect. 3.3 we have seen that every quasi-compact quasi-separated rigid analytic
space XK admits an admissible formal R-model X. In general, the special fiber
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X⊗R k of X will not be reduced; one even cannot expect that without extending the
base ring R.

The existence of R-models with reduced special fiber is the objective of this sec-
tion. It is closely related to the Finiteness Theorem 3.1.17 and, moreover, it provides
the first major step towards the stable reduction theorem for algebraic curves. In this
section we will look at the problem from different points of view. The first two sub-
sections will report on the literature by explaining the main ideas of their approaches
while the third one, which is the natural one, will be studied in more details.

3.4.1 Analytic Method of Grauert-Remmert-Gruson

Given a geometrically reduced affinoid algebra AK , we are interested in finding a
R-model A of AK such that the special fiber A⊗R k is geometrically reduced. That
means to find a representation

α :K〈ξ1, . . . , ξn〉 −→AK

such that

Aα := α
(

R〈ξ1, . . . , ξn〉
)

has geometrically reduced special fiber. The surjective map α induces a Banach
norm |_|α on AK . The next proposition explains the meaning of the reduced special
fiber.

Proposition 3.4.1. In the above situation assume that AK is reduced. Then the
following assertions are equivalent:

(a) Aα ⊗R k is reduced.
(b) |f |α = |f |sup for all f ∈AK .

Obviously, the condition (b) implies Aα = ÅK .

Proof. (a)→ (b): It is always true that |f |sup ≤ |f |α for all f ∈AK . Consider now
an f ∈ AK with f 
= 0. There exists a c ∈K× such that |c| = |f |α . Thus, we have
g := f/c ∈ Aα and 0 
= g ∈ Aα ⊗R k. If |g|sup < 1, then gN → 0 for N →∞,
because |_|sup is norm on AK by [10, 6.2.1/4(iii)]. Since Aα ⊂ AK is open, the
residue class g is nilpotent in Aα ⊗R k. Since Aα ⊗R k is reduced, we see that g
is 0. This contradicts the assumption. Thus, we see that |f |sup = |c| = |f |α .

(b)→ (a): Since |f |α = |f |sup for all f ∈AK and |AK |α = |K|, so |AK |sup=|K|
and, hence ÅK ⊗R k = ÃK is reduced. Thus, we see that Aα ⊗R k is reduced. �

The Finiteness Theorem 3.1.17 implies the Reduced Fiber Theorem 3.4.2. Actu-
ally, the Reduced Fiber Theorem is equivalent to the Finiteness Theorem.
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Theorem 3.4.2 (Reduced fiber theorem). Let AK be a geometrically reduced affi-
noid algebra. Then there exists an étale field extension K ′/K such that the power
bounded subalgebra ÅK ′ of AK ′ :=AK ⊗K K ′ is of topologically finite type over
the valuation ringR′ ofK ′ and has a geometrically reduced special fiber ÅK ′ ⊗R′ k′.

Moreover, if A ⊂ ÅK is an R-subalgebra of topologically finite type such that
A⊗R K =AK , then A⊗R R

′ → ÅK ′ is finite.

Proof. First, assume that K is separably closed. Then K is stable due to [10,
3.6.2/2]. Since AK is geometrically reduced, we have |K| = |AK | due to the maxi-
mum principle in Theorem 1.4.2. Then, it follows from Theorem 3.1.17 that ÅK is
an R-algebra of topologically finite type with geometrically reduced reduction.

In the general case, let K be the completion of a separable closure of K and let
Ksep be the algebraic separable closure of K in K . As we discussed above, there
exists an epimorphism

α :K〈ξ1, . . . , ξn〉 −→AK̂⊗KK

such that the associated residue norm is the sup-norm ofAK̂⊗KK . WritingR for the
valuation ring of K , we see that A= α(R〈ξ1, . . . , ξn〉) is an R-model of AK̂⊗KK

with reduced special fiber. Due to Lemma 3.1.4 we can replace α(ξi) by approxima-
tions belonging to the image of AK ⊗K Ksep. Moreover, we may assume that there
is a finite étale extension K ′ of K such that the epimorphism α is obtained from an
epimorphism

α :K ′〈ξ1, . . . , ξn〉 −→AK̂⊗KK
′

by tensoring with K over K ′. Let R′ be the valuation ring of K ′ and set
A′ := α(R′〈ξ1, . . . , ξn〉). Since A = A′̂⊗R′R, we see that the special fiber of A′
is geometrically reduced. Due to Proposition 3.4.1 the residue norm |_|α coincides
with the sup-norm on AK ′ :=AK ⊗K K ′ and ÅK ′ coincides with A′.

The additional assertion follows from Proposition 3.1.1. �

Corollary 3.4.3. Let XK be a quasi-compact geometrically reduced rigid analytic
space. Let K be a complete algebraic closure of K .

Consider a formal analytic structure on XK ⊗K K given by a finite admissible
covering V= {V1, . . . , Vr} by affinoid subspaces Vi of XK ⊗K K . Then there exists
a finite separable field extension K ′/K such that V is defined over K ′ and O̊X′K (V )
is an R′-algebra of topologically finite type for every formal open affine subspace
V ⊂X′K :=XK ⊗K K ′.

In particular, for any quasi-compact formal analytic space XK there exists a
suitable étale base field extension K ′/K such that XK ⊗K K ′ is the generic fiber of
an admissible formal R′-scheme.

Proof. As seen in Lemma 3.1.13 there exists an étale field extensionK ′/K such that
V is defined over K ′. So we may assume K =K ′. Due to Theorem 3.4.2, there ex-
ists an étale field extensionK ′/K such that each O̊XK

(Vi⊗K K
′) is an R′-algebra of

topologically finite type with geometrically reduced reduction for i = 1, . . . , r . Then
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it follows from Proposition 3.1.5 that, for every open affine subscheme Ṽ ⊂ X̃, the
pre-image V := ρ−1(Ṽ ) is affinoid and its subalgebra of power bounded functions
ÅK is topologically of finite type over R′ with geometrically reduced reduction. �

3.4.2 Elementary Method of Epp

H. Epp found an elementary approach to prove the reduced fiber theorem for dis-
crete valuation rings. However elementary does not mean simple. Epp’s approach is
limited to discrete valuation rings R; it does not work for arbitrary valuation rings
of height one. Therefore, we assume in this subsection that R is a complete discrete
valuation ring. In the following we present the statement of Epp and explain the
main ideas of his paper [25].

An extension of discrete valuation rings R ⊂ S which is not necessarily fi-
nite is called dominating if the induced map Spec(S)→ Spec(R) is surjective.
A dominating extension of discrete valuation rings is called weakly unramified if
the uniformizer π of R is a uniformizer of S as well; this means the morphism
Spec(S)→ Spec(R) has reduced fibers.

Epp’s paper is written in the style of commutative algebra. One fixes a universal
domain Ω which contains all discrete valuation rings under consideration. The join
T1T2 of two discrete valuation rings T1 and T2 contained in Ω is the normalization
of the ring theoretic join of T1 and T2 in Q(Ω); the latter is the smallest subring of
the field of fractions Q(Ω) which contains T1 and T2. For the following statement
see [25, 1.9].

Theorem 3.4.4 (Epp). Let R ⊂ S0 ⊂ S be a dominating extension of (complete)
discrete valuation rings such that S0 ⊂ S is finite and R ⊂ S0 is weakly unramified.
If the characteristic of k is p > 0, assume that

�p
∞ :=

∞
⋂

i=1

�p
i

(∗)

is separable algebraic over k, where k := kR, � := kS0 are the residue fields of R
resp. S0. Then there exists a finite extension R ⊂R′ of discrete valuation rings such
that the normalization S′ of the ring theoretic join of SR′ in its field of fractions is
weakly unramified over R′.

Since the valuation rings under consideration in Theorem 3.4.4 are complete and
SR′ is a finite extension of S, the ring S′ is a discrete valuation ring.

Remark 3.4.5. The condition (∗) is always satisfied in geometric situations, be-
cause such residue fields kS are finitely generated over k; for example, if S is the
local ring of a (formal) R-model of an algebraic or rigid analytic space over the field
of fractions Q(R).

What is the application of this result?
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Example 3.4.6. Let X := Spf(A)→ Spf(R) be a formal affine curve with smooth
generic fiber and assume X to be normal. More generally, one can consider a normal
topologically finite type algebra A over R with geometrically reduced generic fiber.
Let x ∈ X be a generic point of the special fiber; this corresponds to a prime ideal
p⊂A of height 1.

Thus, R ⊂ S :=Ap is a dominating extension of discrete valuation rings. More-
over, let X→D

d := SpfR〈ξ 〉 be a Noether normalization. Then, in a similar way as
above, the generic point of the special fiber of Dd over R gives rise to a discrete val-
uation ring S0 :=R〈ξ 〉q which is weakly unramified over R. Thus, R ⊂ S0 ⊂ S is an
extension as considered by Epp. Then Epp’s result yields a R′-model of XK ⊗K K ′,
whose special fiber is generically geometrically reduced.

This example can be used to show the Reduced Fiber Theorem 3.4.2 without too
much effort; only the additional tool of Lemma 3.4.17 is needed, which is not so
difficult to verify.

Epp’s proof is split into the equal and the unequal characteristic case. The method
of Epp consists in explicit calculations of equations.

Note first that, in the case of residue characteristic 0 or the case, where the mul-
tiplicity N of the special fiber of S over S0 is prime to the residue characteristic, the
statement directly follows from the famous lemma of Abhyankar [40, Exp. X, 3.6];
in fact, after the base change by the extension R ⊂ R′ := R[ N√π] the assertion is
fulfilled for a suitable N .

Let us now consider the unequal characteristic case: Using Kummer theory and
the lemma of Abhyankar, which works also in Epp’s situation, one can reduce to the
case, where the degree [S : S0] = pr is a power of p and, moreover, that S0 ⊂ S is
Galois and p-cyclic; and finally to the case

S = S0[ζ ]/
(

ζp − u
)

,

where u = 1+m ∈ S0 with m ∈ mS0 is a principal unit. Then there is a statement
which precisely characterizes, when S/S0 is weakly unramified. There is the fol-
lowing lemma of Epp [25, 1.4].

Lemma 3.4.7. In the above situation assume that a primitive p-th root of unity is
contained in R. Let e ∈ N be the absolute ramification index; i.e., πe ∼ p up to a
unit, and e1 := [e/(p− 1)]. Assume ζp = 1+ aπrp with rp > 0 and a unit a ∈ S×0 .
Then S0 ⊂ S is weakly unramified if one of the following conditions is satisfied

(1) 0< rp < e+ e1 and a ∈ �− �p ,
(2) rp ≥ e+ e1.

Then Epp uses Hensel’s expansion of principal units

u= (1+a1π
1) · . . . ·(1+ae+e1−1π

e+e1−1) ·(1+u∞)= (1+u0) ·(1+u1) ·(1+u∞),
where ai ∈ S0 are liftings of ai ∈ � and u∞ ∈ Rπe+e1 . The term u0 collects all
factors, where ai belongs to �− �p , and u1 collects all terms with ai ∈ �p − k. The



128 3 Formal and Rigid Geometry

expansion can be stopped after e+e1, because one can extract the p-th root from the
higher terms. Using Lemma 3.4.7, one can settle the term (1+u0) after extending R
by R′ := R[√π]. The term (1+ u1) can be dealt with in a similar way by reducing
the exponent j (i) in ai ∈ �pj(i) . The term (1+ u∞) ∈ R will be canceled after the
base change to R′ :=R[ p√1+ u∞]. The only extensions of R used here are of type
tp

r = π and tp = u∞.
Let us now consider the equal characteristic case char(R)= p 
= 0. In this case,

one has R = k[[π]] and S0 = �[[π]]. One can easily reduce to the case �p
∞ = k.

Since one can assume that S/S0 is Galois and p-cyclic, then by Artin-Schreier the-
ory one has S = S0[[ζ ]], where ζ satisfies an equation of type

ζp − ζ = a−Nπ−N + · · · + a−1π
−1 + a0 with ai ∈ �, N ∈N.

If N = 0, the extension S0 ⊂ S yields an unramified extension of R.
If N 
= 0 and all aν ∈ k, the extension S0 ⊂ S is associated to an equation of

type ζp − ζ = d + a0 with d contained in the field of fractions of R and a0 in R. If
a0 ∈ k, the equation stems from a finite separable extension of R and we are done.
If a0 /∈ k, one first performs the extension of R given by the equation zp − z = d .
Then the defining equation becomes the form zp − z= a0 which is unramified.

Now assume that there is an ν < 0 with aν ∈ � − k. Then, after an extension
R′ = R[t] of the base ring with t = πp

r
for a suitable r ∈ N, one can transform

the situation in such a way that a−N ∈ �− �p . Thus, one can rewrite the defining
equation in the form

ζp − ζ = t−N(a−N + dt) with d ∈ S0,

where the integer N is divisible by p, so that N = pq . If one puts η := t · ζ , one
obtains

ηp − η · t (p−1)q = a−N + dt with d ∈ S0.

Modulo t , the equation becomes ηp = a−N . Since a−N /∈ �p , the equation is irre-
ducible over �, and so the extension S0 ⊂ S is weakly unramified. �

3.4.3 The Natural Approach

In this section we will give a further approach to show the Reduced Fiber Theo-
rem. We call this approach natural, since it follows a naive idea explained after
Remark 3.4.19. This also works in the relative situation, but it is rather technical;
cf. [14, Part IV, 2.1]. The case of relative dimension 1 will be used for proving the
uniformization of abeloid varieties in Sect. 7.6. Therefore we mainly focus on this
case. It should be remarked that even in the approach of Grauert-Remmert the proof
is done by reduction to the case of curves. In the following let R be a complete
valuation ring of height 1 and set S := SpfR.

Theorem 3.4.8 (Relative reduced fiber theorem). Let T be an admissible formal
R-scheme and X→ T a quasi-compact morphism of admissible formal R-schemes
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such that X/T is flat and Xrig/Trig has reduced geometric fibers, equidimensional
of dimension d . Then there exists a commutative diagram of admissible formal T -
schemes

X X′ Y ′

T T ′

such that

(i) T ′ → T is a rig-étale cover,
(ii) X′ :=X×T T

′,
(iii) Y ′ →X′ is a finite rig-isomorphism,
(iv) Y ′ → T ′ is flat and has reduced geometric fibers.

A morphism X→ T has equidimensional fibers of dimension d if every fiber is
non-empty and of pure dimension d . For T = SpfR this theorem settles the absolute
case of Theorem 3.4.2 and covers the Finiteness Theorem 3.1.17 for algebraically
closed fields by Proposition 3.4.1. In the following we explain the main steps and
ideas of the proof in the case of relative dimension 1. We remind the reader that the
proof in the general case makes use of the 1-dimensional case. Some parts work in
arbitrary relative dimension without more effort. We consider the case of relative
dimension d ≥ 1 until Example 3.4.26.

A measure for the non-reducedness of a fiber is its geometric multiplicity. The
multiplicity of an irreducible k-scheme X is the length of OX,x , where x is the
generic point of X. The geometric multiplicity is the multiplicity of X⊗R k

′, where
k′/k is a radicial extension by a perfect field k′.

Let us start with two reduction steps in order to focus on the main problem. As
in the proof of the flattening technique [14, Part II], an essential tool is also the étale
factorization of a formal morphism through a smooth morphism with geometrically
irreducible fibers. For our applications we add some more properties.

Proposition 3.4.9. In the above situation, let x ∈ X0 be a point of a special fiber
and f : (X,x)→ (T , t) a pointed morphism.

(a) Then there exists a commutative diagram of formal S-schemes

(X,x)

f

(X′, x′)
u

g

(Z′, z′)

h

(T , t) (T ′, t ′)
v
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where

(i) T ′, Z′, X′ are affine and u, v are elementary étale,
(ii) h is smooth with irreducible geometric fibers of dimension d ,

(iii) g is finite and x′ is the only point above z′.

(b) If f is flat at x, then g is flat over the generic point of Z′(t ′).
(c) Assume that f : X→ T is flat. Let x be the generic point of an irreducible

component X(t)0 of X(t) :=X×T k(t) and let N be the geometric multiplicity
of X(t)0. Then one can choose the factorization as above, where u, v are étale
such that g is finite flat and g∗OX′ is a free OZ-module of rank N . In particular,
g0 is radicial.

A morphism (T ′, t ′)→ (T , t) of pointed schemes is a morphism sending t ′ to t .
It is called elementary étale if it is étale and the residue field extension k(t ′)= k(t)

is trivial.

Proof. The statement is local on (X,x) and (T , t). Therefore we may assume that
X = SpfA and T = SpfB are affine.

(a) As a first step, we prove the statement for the reduction X0 → T0; i.e., in the
case of schemes of finite presentation. This case is settled in [82, 1.1.1]. We sketch
its proof in the following; we omit the subindex “0”.

First we choose a closed specialization ξ of x in the fiber X(t); so we have
dimAξ ⊗ k(t) = d and dimAx ⊗ k(t) = r ≤ d . Then there exists a system of ele-
ments (a1, . . . , ad) in A such that their images in A(t) := A⊗B k(t) is a system of
parameters of the local ring A(t)ξ and (a1, . . . , ar ) of the ring A(t)x . Now consider
the morphism g :X→ Z :=A

d
T given by (a1, . . . , ad) and set z := g(x). Then g is

quasi-finite at x and ξ .
The closure of z := g(x) in Z ⊗ k(t) is geometrically irreducible and reduced,

because it is the locus of the coordinate functions ζ1, . . . , ζr of Ad
T . Thus, there exists

an elementary étale base change (Z1, z1)→ (Z, z) such that there exists a connected
component (X1, x1) of X1 := X ×Z Z1 such that (X1, x1)→ (Z1, z1) is finite and
x1 is the only point above z1. In particular, (Z1, z1),→ (T , t) is smooth and the
fiber Z1(t) is connected. Since the point z and hence the point z′ are geometrically
integral, the scheme Z1(t) is geometrically integral of dimension d .

There exists an étale surjective base change (T1, t1)→ (T , t) such that there ex-
ists a section σ : (T1, t1)→ (Z1, z1). The union of the connected components of
the fibers of Z1 ×T T1/T1, which meet σ , is an open subscheme U1 of Z1 ×T T1

due to [39, IV, 15.6.5]. Furthermore, there exists an elementary étale neighborhood
(T ′, t ′)→ (T , t) such that T1 ×T T

′ → T ′ is finite in a open neighborhood of t1.
Replacing (T1, t1) by that neighborhood, we may assume that (T1, t1)→ (T ′, t ′) is
finite étale.

Then the projection p :Z1 ×T T1 → Z1 ×T T
′ is finite and

Z′ := Z1 ×T T1 − p(Z1 ×T T1 −U1 ×T T1)
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is an open neighborhood of z′ := z1 ×T T
′. Set X′ :=X1 ×Z1 Z

′ and x′ := (x1, z
′).

So
(

X′, x′
)→ (Z′, z′)→ (T ′, t ′)

fulfills the claim in the case of schemes of finite presentation.
The case of admissible formal schemes follows from the lifting properties of étale

and smooth morphisms. In fact, the morphism u0 and v0 lift to formal elementary
étale morphisms due to the lifting property of étale maps. The morphism h0 lifts as
well, because h0 is affine. Since v ◦ h :Z′ → T is smooth and affine, the morphism
f ◦ u : X′ → T factorizes through v ◦ h by the lifting property of smooth formal
morphisms.

(b) If f is flat, then g : X′ → Z′ is a morphism of flat formal T -schemes of
topologically finite presentation. On the fiber of t the scheme Z′(t) is smooth, then
X′(t) is generically flat over Z(t) due to [39, IV2, 6.9.1]. By the criterion of flatness
on fibers [39, IV3, 11.3.11], the morphism g is flat at the generic point of Z′(t).

(c) For the proof of (c) we will study the case of schemesX0 → T0 more carefully
than in (a). In the following we omit the subindex “0” as in the proof of (a). In
the following let X be an affine scheme over T , where T is the spectrum of an
affine scheme over R0 of finite presentation. So X(t) is the spectrum of an affine
k(t)-algebra of finite type. Note that the underlying reduced k(t)-scheme X(t)red of
X(t) :=X×T Speck(t) is not necessarily geometrically reduced; but there is a finite
radicial extension k′/k(t) such X(t)′red is geometrically reduced, where X(t)′ =
X(t)⊗k(t) k

′. The multiplicity of X(t)′ is the geometric multiplicity of X(t).
Let Ω be the module Ω1

X/T of relative differential 1-forms and Ω ′ be the pull-
back of Ω to X′. There are canonical surjections

Ω ′�Ω1
X(t)′/k′ �Ω1

X(t)′red/k
′ .

Thus, after replacing X by a dense open subscheme, there exist functions a1, . . . , ad
on X such that the pull-backs of the derivatives da1, . . . , dad to X′red give rise to a
basis of the sheaf of k′-differential forms on X(t)′red. Thus, a1, . . . , ad induce a map
a :X −→A

d
T such that

ared :X(t)′red −→A
d
k(t) ⊗ k′

is étale. Let α be the generic point of Ad
k and let k(α) ⊂ � ⊂ k(x) be the maximal

étale subextension of k(x)/k(α). In particular, k(x)/� is radicial.
After shrinking X, these field extensions can be realized by a factorization

X(t)red

g(t)

Z(t)
h(t)

A
d
k(t)

of a(t) such that Z(t) is irreducible with field of rational functions � and such that
Z(t) is étale over Ad

k ; in particular smooth over k(t). Since Z(t) is étale over Ad
k ,
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the morphism Xred → Z lifts to a factorization

X(t)−→ Z(t)−→A
d
k(t).

Without loss of generality we can assume that X(t) and Z(t) are affine and so
small that X(t)→ Z(t) is finite, and also flat due to the generic flatness over an
integral scheme [39, IV2, 6.9.1]. Thus, OX(t)(X(t)) is a locally free OZ(t)(Z(t))-
module of a certain rank r . Then r is equal to the geometric multiplicity N . In
particular, X(t)′red → Z⊗ k′ is an isomorphism.

Now we lift g(t) to a morphism X → Z. We already have the morphism
(X,x)→ (Ad

T ,α). Then we perform the étale base changeX′ :=X×
A
d
T
Z. Thus, we

obtain an étale neighborhood (X′, x′)→ (X,x) and the projection (X′, x′)→ (Z, z)

which is quasi-finite on the fiber of t . After a further étale base change (Z′, z′)→
(Z, z) we may assume that (X′, x′)→ (Z′, z′) is finite. Thus, we arrive at a factor-
ization

(X′, x′)
g

(Z′, z′)
h

(T , t)

where h is smooth and g is finite flat at x′ due to [39, IV3, 11.3.11].
After shrinking Z′ we may assume that g∗OX′ is a free OZ′ -module of rank N .

After a final étale base change (T ′, t ′)→ (T , t)we may assume thatZ′ → T ′ admits
a section and hence, as in the proof of (a), that the fibers of Z′/T ′ are geometrically
irreducible. Since g(t) is radicial, g remains radicial in a neighborhood of z.

Finally, one lifts the whole situation to the formal level as described in the proof
of (a) and (b). �

Corollary 3.4.10. In the situation of Proposition 3.4.9, let X→ T be a flat and
quasi-compact. For N ∈N the set of points

E(X/T ,N) :=
{

t ∈ T0; geometric multiplicity of X(t) is less
or equal to N at all generic points of X(t)

}

is open in T0.

Proof. Since the image of a flat map is open, the assertion follows from Proposi-
tion 3.4.9(c). �

There are further improvements of Proposition 3.4.9.

Proposition 3.4.11. Let f : X→ T be a morphism of quasi-compact admissible
formal R-schemes. Assume that f is rig-flat and its rig-fibers are geometrically
reduced and equidimensional of dimension d ≥ 0.
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Then, after replacing T by a suitable admissible formal blowing-up and X by the
strict transform with respect to this blowing-up, there exists a commutative diagram

X′ U ′ Y ′

g

X

f

U Z

h

T T ,

where

(i) X′ →X is an admissible formal blowing-up and U ⊂X is a T -dense open,
(ii) U ′ :=X′ ×X U→U is a finite rig-isomorphism,

(iii) Y ′ →U ′ is étale with T -dense image,
(iv) g : Y ′ → Z is finite, rig-étale, and flat,
(v) h :Z→ T is smooth with equidimensional fibers of dimension d .

An open subset U ⊂X is called T -dense in X if the fiber U(t)⊂X(t) is dense
in X(t) for all points t ∈ T .

Proof. Due to Corollary 3.3.8 we may assume that f : X→ T is flat and hence
faithfully flat, because frig is surjective. Let Ω := Ω1

X/T be the sheaf of relative
differential forms of degree 1. Since the rig-fibers are geometrically reduced, the
points in the fiber X(t), where Ω1

X(t)/t is generated by d elements, is open dense in
X(t), for every rig-point t of T .

Therefore, the subset consisting of the points x ∈ Xrig, where Ωx is generated
by d elements is open dense in every rig-fiber; more precisely its complement is a
closed analytic subset DK of Xrig which is rare in every rig-fiber. Again after replac-
ing T by a further admissible formal blowing-up, we may assume that the closure
D of DK in X is flat in dimension d ; i.e., it is of relative dimension≤ (d−1). Thus,
there exists a T -dense open subscheme U of X such that U/T is rig-smooth. Thus,
we may replace U by X and assume that X/T is rig-smooth.

Then Ω is a locally rig-free OX-module of rank d . By Theorem 3.3.7 there exists
an admissible formal blowing-up p :X′ →X such that the strict transform M′ of Ω
is a locally free OX′ -module of rank d . Note that M′ can be different from Ω1

X′/T ;

but we still have a surjective map p∗Ω1
X/T →M′, which is locally split and rig-

bijective, and, moreover, a canonical morphism p∗Ω→Ω ′ :=Ω1
X′/T which is rig-

bijective. After replacing T by an admissible blowing-up T ′ → T , we may assume
that X′ → T is faithfully flat by Corollary 3.3.8. Thus, we have a proper morphism
p : X′ → X of formal schemes with equidimensional fibers of dimension d . Then
there exists a T -dense open subscheme U of X such that p is finite over U , because
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the subset, where the dimension of the fibers of p0 is 0, is open dense in X0 due to
[39, IV3, 13.1.5]. Now put U ′ :=X′ ×X U .

The remaining assertions are local on T and U ′. Let t be a point of T0,
x′ a generic point of U ′(t) and x := p(x′) ∈ U(t). Then there exist functions
a1, . . . , ad defined in an open neighborhood of x in U such that the images of
p∗(da1), . . . , p

∗(dad) in M′ give rise to a k(x′)-basis of M′⊗T k(x
′). After shrink-

ing U , we obtain the map

a = (a1, . . . , ad) :U −→A
d
T .

After modifying a1, . . . , ad by elements of the square of the maximal ideal of x, we
may assume that a is quasi-finite at x.

Let a′ :U ′ →A
d
T be the induced morphism. By the construction a′ is quasi-finite,

since U ′ → U is finite, and rig-étale. Over a suitable étale neighborhood Z→ A
d
T

of the generic point of Ad
k(t) there exists an open neighborhood Y ′ of U ′ ×

A
d
T
Z of x′

such that the induced map g : Y ′ → Z is finite and rig-étale. The morphism Y ′ → Z

is a morphism of flat formal T -schemes and, moreover, Z is a smooth formal T -
schemes. Thus, Y ′ → Z is flat on an open dense subset of each fiber; cf. [39, IV2,
6.9.1]. Due to the criterion of flatness on fibers [39, IV3, 11.3.11], the map Y ′ → Z

is flat over a T -dense open subscheme of Z. After shrinking Y ′ and Z the assertion
follows. �

Proposition 3.4.11 has some useful consequences.

Corollary 3.4.12. In the situation of Proposition 3.4.11 the morphism f admits
sections locally for a rig-étale cover.

Proof. Consider the situation of the assertion in Proposition 3.4.11. The assertion
is local on T . The morphism Z→ T admits a section σ : T ′ → Z after an étale
base change T ′ → T of a neighborhood of t . Now T ′′ := Y ′ ×Z T

′ → T ′ is finite
and rig-étale and σ induces a section σ ′′ : T ′′ → Y ′ via the first projection T ′′ →U ′
composed with Y ′ →X. Thus, we see that X→ T admits a section after a rig-étale
surjective base change. �

Corollary 3.4.13. In the situation of Proposition 3.4.11 let t be a point of T0 and
let N be the maximum of the geometric multiplicities occurring in the fiber Y ′(t).
Then there exists an étale neighborhood T ′ → T of T such that, after replacing
X and Z by T ′-dense open subschemes, all conditions of Proposition 3.4.11 are
satisfied and, in addition,

(iv) g is finite, flat, rig-étale and g∗OY ′ is locally free of rank N ,
(v) h :Z→ T is smooth with irreducible fibers of dimension d ,

(vi) there exists a monogenous OZ-subalgebra of g∗OY ′ which coincides with
g∗OY ′ on the rigid part.
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Proof. The new conditions are local on Y ′, Z and T . Let t ∈ T0 be a point and
y′ ∈ Y ′(t) by the generic point of the fiber. Then apply Proposition 3.4.9 to the mor-
phism g : Y ′ → Z. Thus, we obtain an étale neighborhood Y ′′ → Y ′ of y′ and an
étale neighborhood Z′ → Z of g(y′) such that the induced map g′ : Y ′′ → Z′ satis-
fies condition (iv). After an étale base change T ′ → T and replacing Z′ by an open
subscheme Z′′ of Z′ ×T T

′, the induced map h′ : Z′′ → T satisfies condition (v).
Thus, it remains to show condition (vi). Let V → Z be the vector bundle corre-

sponding to the locally free OZ-module g∗OY ′ . For every formal Z-schemeZ′ → Z

and every section σ : Z′ → Z there is a discriminant d(σ ). Indeed, let b1, . . . , bN
be a basis of g∗OY ′ over OZ(Z) and b′1, . . . , b′N its dual basis. Then σ associates to
each b′i a function σ ∗b′i ∈OZ′ and hence an element

b := σ ∗b′1 · b1 + · · · + σ ∗b′N · bN ∈ g∗OY ′ ⊗OZ
OZ′ .

Then the discriminant is given by

d(σ ) := det
(

b0, . . . , bN−1) ∈OZ′ .

The locus of d(σ ) gives rise to a closed subscheme Δ(σ) of Z′.
We can apply this to the universal section τ := id : Z′ := V → V . The locus

Δ(τ) is a hypersurface of V , because g is rig-étale. So Δ(τ) does not contain any
rigid fiber of Y ′/Z. Thus, Δ(τ) is rig-flat over T .

Due to Corollary 3.3.8 there exists an admissible formal blowing-up T ′ → T

such that the strict transform of Δ(τ) is flat over T ′; i.e., the relative dimension of
Δ(τ ′)/Z is at most d − 1. In particular, Δ(τ) is rare in every fiber of V over Z.
Since a vector bundle has many local sections, it admits such ones which do not
meet Δ(τ).

Thus, we see that, locally on T , there exists a T -dense open subscheme Z′ of
Z and a section ν : Z′ → (V −Δ(τ)) depending on Z′. Then σ := τ ◦ ν : Z′ → V

gives rise to a section f of g∗OY ′ over Y ′ ×Z Z′ which generates g∗OY ′ as an
OZ-algebra over the rigid part of Z′. Now we replace Y by the formal spectrum
SpfOZ[f ]. Then g : Y → Z has all the required properties after shrinking Z to a
T -dense open subscheme. �

Remark 3.4.14. Let W := SpfOZ[f ] be the admissible formal scheme associated
to the subalgebra of g∗OY ′ mentioned in Corollary 3.4.13(vi). If one finally arrives
at a morphism W ′ →W which is a finite rig-isomorphism with geometrically re-
duced fibers over T , then W ′ dominates the Y ′ mentioned in Theorem 3.4.8 after a
suitable admissible blowing-up of T . This will follow from Lemma 3.4.17(a) below.

Proposition 3.4.9 can be used to reduce the proof of Theorem 3.4.8 to an étale
cover of X with T -dense open image in X. We start with some preparations.

Lemma 3.4.15. Let Z→ T be a surjective smooth morphism of admissible formal
S-schemes with irreducible geometric fibers and let ι :U ↪→ Z be the immersion of
an open subscheme with a T -dense image in Z.
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(a) If f ∈ OZ(Z) does not vanish identically on any fiber of Z/T , then f is a
non-zero divisor on the infinitesimal neighborhood Zλ for all λ ∈N.

(b) The canonical restriction map OZ −→ ι∗(OZ|U)∩OZrig is bijective.

Proof. (a) We may assume that Z = SpfC→ T = SpfB is a morphism of affine
formal schemes and let Bλ→ Cλ be the associated morphism. Since we may per-
form an étale base change, we may assume that there is a section σλ of Zλ→ Tλ
outside the locus of f . Then, by a standard argument on direct limits, we reduce
to a Noetherian bases keeping the smoothness and the section. Furthermore, it is
possible to keep the connectedness of the fibers due to [39, IV3, 15.6.5]. Thus, we
may assume that Bλ is Noetherian. Since Bλ→ Cλ is flat with irreducible geomet-
ric fibers, the associated prime ideals of Cλ are the generic points of certain fibers
of Z0 → T0 due to [17, IV2, no 6, théorème 2]. Thus, f does not belong to the
associated prime ideals, and hence f is not a zero-divisor.

(b) We may assume that Z = SpfC is affine. The injectivity of the restriction
follows from (a). In fact, if g ∈ C with g|U = 0 and hence g|Uλ = 0 for λ ∈ N,
then for each λ ∈ N there exists an f ∈ C which does not vanish on a T -dense
open subset of U such that fg|Zλ = 0. By (a) we obtain that g|Zλ = 0. Due to the
separateness of the topology on C we obtain g = 0.

Now consider a element h ∈ OZ(U) ∩ Crig. Then there exists a smallest λ ∈ N

such that πλh ∈ C. If λ= 0, then there is nothing to show. If λ ≥ 1, then πλh= 0
on U0. Then there exists a function f ∈ C such that fπλh ∈ πC and f is invert-
ible on a T -dense open subset U ′ ⊂ U . Since f is a non-zero divisor on Z0 due
to (a), we see πλh ∈ πC. Since C has no π -torsion, πλ−1h ∈ C. This contradicts
the minimality of λ. �

Lemma 3.4.16. Let Z → T be a quasi-compact smooth formal R-morphism
and Y → Z a proper morphism of admissible formal schemes, which is a rig-
isomorphism. Then there exists an admissible formal blowing-up T ′ → T such that,
after the base change by T ′ → T and replacing Y by its strict transform, there exists
a T -dense open subscheme U of Z such that Y ×Z U→U is an isomorphism.

Proof. There exists an admissible blowing-up T ′ → T such that the strict transform
Y ′ of Y is flat over T ′. After replacing T by T ′ we may assume that Y is flat over T .
Now look at the morphism Y(t)→ Z(t) of the fibers of a closed point t of T0.
Due to the generic flatness there is a dense open subscheme V (t) of Z(t) such that
Y(t)→ Z(t) is flat over V (t); cf. [39, IV2, 6.9.1]. Due to the criterion of flatness
on fibers [39, IV3, 11.3.11], the map Y → Z is flat over the generic point of Z(t) of
every closed point of T . Since the locus, where Y → Z is flat, is open due to [39,
IV3, 11.3.1], there exists a T -dense open subscheme U ⊂ Z such that Y →Z is flat
over Z. In loc. cit. the statement is presented only for morphisms of finite presenta-
tion, but by the usual techniques reducing to the map of the level Y0 → Z0 it can be
carried over to our situation. By reason of dimensions the map Y → Z is quasi-finite
and hence finite over U , because it is proper. Since it is a rig-isomorphism and flat
over U , it is an isomorphism over U . Indeed, it can be checked after a faithfully
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flat base change. Thus, we perform the base change by U ′ := Y ×Z U . Then we
have the tautological section of U ′′ := U ′ ×U U ′ → U ′. Since U ′′rig → U ′rig is an
isomorphism, we see that U ′′ →U ′ is an isomorphism. �

Lemma 3.4.17. Let X→ T be a morphism of admissible formal schemes, which
is flat and has reduces geometric fibers. Then we have the results:

(a) The smooth locus W of X/T is open and T -dense in X.
If U ⊂W is a T -dense open subscheme, then the canonical map

OX −→ ι∗(OX|U)∩OXrig

is bijective, where ι :U→X is the inclusion map.
If f is a rigid analytic function on Xrig with |f |Xrig ≤ 1, then there exists an

admissible blowing-up T ′ → T such that f is defined on X×T T
′.

(b) If there exists an étale surjective formal morphism V →X and the assertion in
Theorem 3.4.8 holds for V , then it holds also for X.

(c) If there exists a T -dense open subset U ⊂ X such that the assertion in Theo-
rem 3.4.8 holds for U , then the assertion holds for X.

The additional assertion in (a) is the relative version of Proposition 3.4.1.

Proof. (a) The case, where X→ T is smooth, was settled in Lemma 3.4.15(b).
Since X→ T is flat, the morphism X→ T is smooth at a point x of X if and

only if the map of the fibers X(t)→ Speck(t) is smooth at x. Since the fiber is
geometrically reduced, the smooth locus is open dense in every fiber. Since the
smooth locus of X/T is open in X, the set W is T -dense and open in X.

The further assertion can be checked étale locally. So we may assume that
X→ T admits a factorization

X := SpfA
g

Z = SpfC
h

T = SpfB

as was established by Proposition 3.4.9. Let V ⊂ Z be a T -dense open subscheme of
Z over which g is flat; cf. Proposition 3.4.9(b). We may assume that U = g−1(V ).
Then A is finite C-module and locally free over V . Set A := g∗OX . There exists an
exact sequence of C-linear maps

0→N→ Cr →A∗ :=HomC(A,C)→ 0.

Then consider the induced exact sequence

0→A∗∗ :=HomC

(

A∗,C
)→ Cr =HomC

(

Cr,C
)→N∗ :=HomC(N,C).

Since N∗ has no π -torsion, A∗∗ is a finitely generated C-module due to The-
orem 3.2.1. Composing the injection A∗∗ ↪→ Cr with the canonical embedding
A→ A∗∗, we end up with a map j : A→ Cr and set Q := Cr/j (A). Since
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A is a locally free OZ-module over V , the morphism A→ A∗∗ is an isomor-
phism over V and Q is locally free over V . Then we assert that A→ Cr is uni-
versally injective. To verify the assertion, it suffices to show that the canonical
map A ⊗T k(t)→ Cr ⊗T k(t) is injective for all closed point t of T0. The lat-
ter is clear, because the fibers of X/T do not have embedded components and
the map g∗OX|V → Or

Z|V splits locally over V . Thus, we see that the quotient
Q := Cr/j (A) is flat over T . Thus, the map A/πA→ Cr/πCr is injective.

Now the assertion follows easily. Indeed, if h ∈ OX(g
−1(V )) ∩ Arig, then

j (h) ∈ C by Lemma 3.4.15(b). Furthermore, if h 
= 0, then there exists a mini-
mal r ∈ N with πrh ∈ A. In particular, we have that πrj (h) ∈ πrC. Since the map
A/πA→ C/πC is injective, we obtain r = 0, and hence h ∈A.

Concerning the last assertion, look at the T -dense open part Z of X, where X
is smooth over T . Let Y → Z be the morphism associated to OZ →OZ[f ]. Then
Y →Z is a finite rig-isomorphism. Due to Lemma 3.4.16 there exists an admissible
blowing-up T ′ → T and a T -dense open subscheme U ⊂ Z such that f is defined
on U ×T T

′. Thus, the assertion follows from what we have proved already.
(b) Assume that there is an étale surjective morphism V →X such that the asser-

tion of Theorem 3.4.8 holds for V → T . Thus, there exists a rig-étale cover T ′ → T

and a morphism W ′ → V ′ := V ×T T
′ which is a finite rig-isomorphism such that

W ′ → T ′ is flat with reduced geometric fibers. Due to the additional assertion in (a),
after a suitable admissible formal blowing-up of T there exists a canonical descent
datum on the finite morphism W ′ → V ′ with respect to the étale surjective mor-
phism V ′ →X′. Since this is a descent problem of finitely generated modules, such
a descent is effective. Therefore, the finite formal V ′-scheme W ′ descends to a fi-
nite formal X′-scheme Y ′. Properties like geometrically reduced fibers and flatness
descend under étale surjective morphisms.

(c) Due to (b) we are free to work étale locally on X. Likewise as in the proof
of (a), we may assume that we have a factorization X→ Z→ T . Now we proceed
as in (a) till we end up with the C-module Q := Cr/A. We may replace U by
g−1(V ) for some T -dense open subscheme V of Z.

But now we only assert that Arig → Cr
rig is universally injective; the latter implies

that Cr
rig/Arig is flat over Trig. To verify the assertion, consider a rigid point t ∈ Trig.

It suffices to show that A ⊗T K(t)→ Cr ⊗T K(t) is injective. The injectivity is
clear, since X/T has geometrically reduced rigid fibers and the map g∗OX|V →Or

Z

splits locally over V . Thus, we see that Qrig := Cr
rig/Arig is flat over Trig.

Due to the flattening technique in Theorem 3.3.7 there exists an admissible for-
mal blowing-up T ′ → T such that the strict transform Q′ of Q is flat over T ′. Since
Q′ is a quotient of Q, we have an exact sequence

0→A′ → Cr →Q′ → 0

together with a canonical map A→ A′. Due to Theorem 3.2.1 the C-module A′ is
finitely generated. The morphism A→A′ is an isomorphism over V and over Zrig.
Moreover, A′ is flat over T ′, since Q′ and Cr are flat over T ′. Since Z/T has
geometrically reduced fibers, the fibers of A′ have no embedded components.
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To finish the proof, we set X′ := SpfA′. The algebra structure, which is given
over Xrig and over V , extends uniquely to an algebra structure on all of A′. Fur-
thermore, X′ is finite over X as it is finite over Z and X′ ×Z V = X ×Z V . Thus,
X′ corresponds to an admissible formal T -scheme over X which is as required. In
fact, the geometric fibers of X′/T are generically reduced, because the fibers of
V/T are so, and they do not have embedded components. Thus, we see that the
fibers of X′/T are geometrically reduced. �

Using the factorization in Corollary 3.4.13 and the descent arguments in
Lemma 3.4.17, to prove Theorem 3.4.8 suffices to consider the following situation;
cf. Remark 3.4.14.

Notation 3.4.18. In the sequel we will consider the following special case.

X = SpfA
g

Z = SpfC
h

T = SpfB ,

where

(1) the fibers over T0 have geometric multiplicity ≤N ,
(2) X→ Z is finite, rig-étale and free as module of rank N ≥ 2,
(3) OX =OZ[f ],
(4) Z→ T is smooth with irreducible geometric fibers of dimension 1.

Moreover, we will consider the characteristic polynomial

F(ξ)= ξN + c1ξ
N−1 + · · · + cN ∈ C[ξ ]

of the multiplication by f on A. Due to [18, Chap. IV, §6, Props. 7 and 11] the
discriminant of f is

Δ(f ) := (−1)N(N−1)/2NX/Z

(

F ′(f )
) ∈ C,

where NX/Z is norm of A over C.

Since X→Z is rig-étale, the discriminant Δ(f ) is rig-invertible. If one alters f
by c ∈ C to f − c = βg with g ∈ Arig satisfying |g|Xrig ≤ 1 and β ∈ B , then β is
rig-invertible and the characteristic polynomial of g is

G(ξ)= 1

βN
F(βξ + c) ∈ C[ξ ]

due to Lemma 3.4.17 after replacing T by an admissible blowing-up. The discrim-
inant of g satisfies ΔX/Z(f ) = βN(N−1)ΔX/Z(g). In particular, Δ(f ) is a lower
bound of the discriminant of g for every transformation g := (f −c)/β of the above
type after every base change T ′ → T .
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Remark 3.4.19. Let c ∈ C and g := (f − c)/β ∈ Arig as in Notation 3.4.18. Let
t ∈ T0 be a closed point with residue field k(t) and let k(t) be the algebraic clo-
sure of k(t). Put A′ := A[g] and Y := SpfA′. Then the following possibilities can
happen:

(I) The canonical morphism C⊗B k(t)→ (A′ ⊗B k(t))red is not an isomorphism at
the generic point and hence the geometric multiplicity of the component X′(t)
is less than N .

(II) The canonical morphism C ⊗B k(t)→ (A′ ⊗B k(t))red is an isomorphism at
the generic point. In other words, there exists an c′ ∈ A′ ⊗B k(t) such that the
pull-back of the polynomial G(ξ) is of type G(ξ)= (ξ − c′)N . In this case, the
fiber Y(t) is irreducible and its geometric multiplicity is still N .

The idea is now to choose a generic translation by c in order to obtain a min-
imal β . Such a translation can be performed only after a suitable rig-étale exten-
sion T ′ → T . If one has such a transformation, then the geometric multiplicities
of Y := SpfOZ[g] → T have dropped, because the minimal polynomial of g is no
longer a power (ξ − u)N over T0. Thus, proceeding by induction on the geometric
multiplicity, we achieve the slightly weaker result that the special fiber is geometri-
cally reduced over a dense open part. The final step to make the whole fiber reduced
follows from Lemma 3.4.17(c).

Unfortunately, this approach does not work as easily as it looks like, for two
reasons. Firstly, one can perform the minimum only in a finite dimensional space
over T . Secondly, one can control only the last coefficient of the characteristic poly-
nomial cN which is (−u)N if restricted to a geometric closed fiber in the case of
multiplicity N . So one has to extract its N -th root.

The tame case, where N is prime to the residue characteristic, can be easily han-
dled by the translation c1/N and the relative maximum principle of Theorem 3.4.23
further down.

Remark 3.4.20. Suppose that the degree N is invertible on S. Then we can replace
f by (f + c1/N) and F ∈ C[ξ ] by G(ξ) = F(ξ − c1/N). Thus, we may assume
c1 = 0, and hence the coefficient of ξn−1 in G vanishes. Then the reduction G(ξ) to
every fiber cannot be of type (ξ − c)N with c 
= 0. Thus, if we can adjust the norm
of (f − c1/N) via dividing it by some β ∈OS(S), which represents its “maximum
on the fibers”, we can drop the geometric multiplicity of the fibers. Therefore, in
case of residue characteristic 0, if we provide the relative maximum principle of
Theorem 3.4.23, then it is enough to kill the geometric multiplicities as asserted and
hereby, to complete the proof of Theorem 3.4.8.

As a second tool we need an important result from commutative algebra.

Proposition 3.4.21 (Gruson-Raynaud). Consider a smooth morphism ϕ : Z =
Spf(C)→ T = Spf(B) of admissible formal affine schemes. Assume that ϕ is faith-
fully flat with irreducible geometric fibers of dimension d ≥ 1.
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Then C has a topological basis over B; i.e., there exists a topological generating
system E := (ei; i ∈ I )⊂ C such that every c ∈ C has a unique representation as a
convergent series

c= ˆ∑
i∈I

bi · ei with bi ∈ B for i ∈ I.

Proof. Let π ∈ mR with π 
= 0. Then C/Cπ is a smooth (B/Bπ)-algebra of fi-
nite type. Due to a remarkable result of Gruson and Raynaud [82, 3.3.1], the flat
(B/Bπ)-module C/Cπ is projective and hence free as its rank is not finite due to
the assumption on the fibers. Thus, there exists a system E := (ei; i ∈ I )⊂ C such
that E gives rise to an (B/Bπ)-basis E0 := (ei; i ∈ I ) ⊂ C := C/Cπ of C/Cπ .
Then it is easy to see that E is a topological B-basis of C; cf. [14, II, 1.8]. �

Corollary 3.4.22. In the situation of Proposition 3.4.21 let I ⊂ C be a finitely
generated ideal of C such that the locus V (I) of I does not contain the whole fiber
Z(t) of any rigid point of t of T . Then I admits a finitely generated open ideal of
coefficients b ⊂ B; i.e., I contains a power of the parameter π and satisfies the
following:

(i) I ⊂ bC

(ii) for every formal morphism B → B ′ with I · C′ = 0 follows bB ′ = 0 where
C′ := C ⊗B B

′.

The ideal of coefficients is uniquely determined and finitely generated.

Proof. Let I be generated by f1, . . . , fn. Consider the convergent series

fi = ˆ∑
j∈I

bi,j · ej with bi,j ∈ B

of fi with respect to a topological B-basis of C. Then

b := (bi,j ; j ∈ I,1≤ i ≤ n)

is finitely generated. In fact, for every rig-point t of T there exists an element bi,j
with bi,j (t) 
= 0. Thus, finitely many of them generate the unit ideal of B ⊗R K and
hence a power of π belongs to b. Therefore, b is open. Since the series presenting fi
converges, the ideal b is finitely generated. It is clear that b satisfies the properties
(i) and (ii). �

With these tools we are now able to prove the relative maximum principle.

Theorem 3.4.23 (Relative maximum principle). Let T be an admissible formal R-
scheme and X→ T a quasi-compact flat formal morphism with non-empty equidi-
mensional fibers of dimension d . Let f be a global function on X such that f is not
nilpotent on any rigid fiber of X/T .



142 3 Formal and Rigid Geometry

Then there is a commutative diagram of admissible formal T -schemes

X X′ Y ′

T T ′

with the following properties:

(i) T ′ → T is a rig-flat, rig-quasi-finite cover,
(ii) Y ′ →X′ :=X×T T

′ is a finite rig-isomorphism,
(iii) there exist a rig-invertible function β on T ′ and a function g on Y ′ being in-

vertible on an open subset V ′ of Y ′, which maps surjectively to T ′, such that
f = βg on Y ′.

If, in addition, the rigid fibers of X/T are geometrically reduced, one can choose
T ′ → T to be a rig-étale cover.

Proof. After replacing T by an étale cover T ′ → T we may assume that X admits
an étale cover X′ → X such that X′ is covered by finitely many open subschemes
X1, . . . ,Xr where each Xρ admits a factorization

Xρ = SpfAρ −→Zρ = SpfCρ −→ T = SpfB

as in Proposition 3.4.9. Moreover, by shrinking Zρ to a T -dense open subscheme,
we may assume that Aρ is a locally free Cρ -module of a certain rank nρ ; cf. Propo-
sition 3.4.9(b). Then f |Xρ has a characteristic polynomial over Cρ ; say

ξnρ + c1,ρξ
nρ−1 + · · · + cnρ,ρ ∈ Cρ[ξ ].

Let n := lcm{n1, . . . , nr} be the lowest common multiple of n1, . . . , nr . By
Lemma 1.4.1 the sup-norm on the fiber Fρ(z) of Xρ,rig → Zρ,rig for z ∈ Zρ,rig is
given by

|f |n!Fρ(z) =max
{∣

∣ci,ρ(z)
∣

∣

n!/i; i = 1, . . . , nρ
}

.

Put γi,ρ := c
n!/i
i,ρ for i = 1, . . . , nρ and ρ = 1, . . . , r . The B-algebra Cρ has a topo-

logical basis by Proposition 3.4.21. Thus, we can consider the ideal b ⊂ B of the
coefficients of all the γi,ρ for i = 1, . . . , nρ and ρ = 1, . . . , r . Since f is not nilpo-
tent on any rigid fiber of X/T , the ideal b is open. Since the coefficients of the γi,ρ
converge to 0, the ideal b is finitely generated.

Now consider the admissible blowing-up T ′ → T of b. Again, we write T in
place of T ′. Locally on T , the ideal b is principal. Working locally on T , we may
assume that b is principal. Let β ′ be local generator of b. Then we can write

γi,ρ = β ′ · γ ′i,ρ with γ ′i,ρ ∈ C
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for i = 1, . . . , nρ and ρ = 1, . . . , r . The ideal of coefficients of (γ ′i,ρ; i, ρ) is the
unit ideal, and hence there is a T -dense open subscheme Z′ρ of some Zρ where
(γ ′i,ρ; i, ρ) coincides with the unit ideal of OZρ .

The base change

B→ B ′ := B[β]/(βn! − β ′
)

induces a faithfully flat base change T ′ → T , which is rig-finite but in general not
rig-étale. One can extract the n!-root of β ′ over T ′. So we can write

c
n!/i
i,ρ = γi,ρ = βn!γ ′i,ρ,

and hence
(

ci,ρ/β
i
)n!/i = γ ′i,ρ

for i = 1, . . . , nρ . Since β is rig-invertible, one can view ci,ρ/β
i as a func-

tion on Zrig. Since sup-norm |ci,ρ/βi | ≤ 1, we may assume ci,ρ/β
i ∈ Cρ by

Lemma 3.4.17(a).
Now we can look at the rigid analytic function g := f/β as an element of Aρ,rig.

Since g satisfies the integral equation

ξnρ + (c1,ρ/β
1)ξnρ−1 + · · · + (cnρ /βnρ

) ∈ Cρ[ξ ], (∗)

the extension Aρ → Aρ[g] is finite and hence Yρ := SpfAρ[g] satisfies the asser-
tion. This holds for every ρ = 1, . . . , r .

We see by Eq. (∗) above that g is invertible over an open part of Y covering T .
In fact, c1,ρ/β

1, . . . , cnρ /β
nρ generate the unit ideal in OZρ over the T -dense open

part Z′ρ of Zρ covering T for some ρ.
Next let us turn to the additional assumptions. Here we proceed in the same way

as above till we arrive at the function β ′ on T ′. Now we avoid to extract the n!-
root of β ′. At this level we can already look at the T -scheme Yρ := SpfAρ[gn!]. As
before let Y ′ρ be the open subscheme, where the absolute value function |gn!| takes
the value 1. This scheme covers T .

If the rigid fibers of Xρ/T and hence of Yρ/T are geometrically reduced,
then there exists a section ε : T ′ → Y ′ρ after a rig-étale cover T ′ → T ; cf. Corol-
lary 3.4.12. Then β := ε∗f is a rig-invertible function on T ′, and hence one can
proceed as above with g := f/β . �

The relative maximum principle can be generalized to open ideals.

Corollary 3.4.24. Let T be an admissible formal R-scheme and X→ T a quasi-
compact flat formal morphism with non-empty equidimensional fibers of dimen-
sion d . Assume that the rigid fibers are geometrically reduced.
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If I ⊂ OX is a coherent sheaf of open ideals, then there exist a commutative
diagram

X X′

T T ′

and two invertible open ideals Imin and Imax of OT ′ such that:

(i) T ′ → T is a rig-étale cover,
(ii) X′ is flat over T ′ and proper over X×T T

′,
(iii) the diagram is rig-Cartesian,
(iv) the pull-back I ′ of I on X′ is locally principal,
(v) IminOX′ ⊂ I ′ ⊂ ImaxOX′ , and the open parts of X′, where IminOX′ = I ′ and

ImaxOX′ = I ′, respectively, covers T ′.

Proof. Let X′ →X be the formal blowing-up of I on X. Using an admissible for-
mal blowing-up on T we may assume that X′ → T ′ is flat by Corollary 3.3.8. So
we can replace X by X′ and assume that I is invertible on X.

We start with the case where I is principal, say generated by f . Then we apply
Theorem 3.4.23 to f to get Imax = β ·OT ′ . Since I is an open ideal, there exists
an n ∈ N with πn ∈ I and hence πn = h · f . Then let Ihmax ⊂OT be the max-ideal
associated to h. Then Imin := πnIhmax satisfies the required properties.

In the case where I is invertible, but not necessarily principal, there is an open
cover X∗ of X such that the pull-back of I becomes principal. Then an easy descent
argument reduces the assertion to the special case we considered. �

If the ideal I is principal, then it is not necessary to blow up I , and the assertion
of Corollary 3.4.24 is valid for X′ :=X×T T

′. Moreover, if X→ T is smooth with
irreducible geometric fibers, an admissible formal blowing-up T ′ → T is enough to
obtain the assertion of Corollary 3.4.24.

As a third tool we introduce multiplicative filtrations; cf. [14, IV, 3.1].

Definition 3.4.25. Let X and T be an affine schemes and f : X→ T a flat mor-
phism of finite type. A geometrically reduced multiplicative filtration on the OT -
algebra f∗OX consists of a filtration

OT =M0 ⊂ · · · ⊂Mn ⊂Mn+1 ⊂ · · · ⊂ f∗OX

by OT -modules with the following properties

(i) f∗OX =⋃n∈NMn,
(ii) MmMn ⊂Mm+n for all m,n ∈N,

(iii) each quotient Mn/Mn−1 is a locally free OT -module of finite type,
(iv) the graded OT -algebra

⊕

n∈N(Mn/Mn−1) is of finite type and has reduced
geometric fibers.
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A basis of (Mn)n∈N is a basis (en,λ;λ ∈Λ(n))n∈N of f∗OX such that, for each
n ∈N, the system (en,λ;λ ∈Λ(n)) is a system in Mn lifting a basis of the quotient
Mn/Mn−1.

For example, if X =A
1
T then the sets Mn of polynomials of degree less or equal

n give rise to a geometrically reduced multiplicative filtration on the OT -algebra
f∗OX and the monomials of degree n constitute a basis of the filtration.

Example 3.4.26. Let ϕ :Q→ T be a flat projective morphism of relative dimen-
sion 1 whose geometric fibers are irreducible and reduced. Let Δ be a closed sub-
scheme of Q which is contained in the smooth part of Q/T with the following
properties:

(i) Δ→ T is étale.
(ii) Δ meets every fiber of Q/T in at least 2 · dimH 1(Q(t),OQ(t))− 1 points for

every geometric point t of T .

Put Z :=Q−Δ and f := ϕ|Z . Then f :Z→ T is affine and
(

Mn := ϕ∗OQ(nΔ);n ∈N
)

,

yields a geometrically reduced multiplicative filtration of f∗OZ and commutes with
base change.

Proof. For a detailed proof see [14, IV, 3.3]. Besides the cohomological facts, which
are due to the base change theory [39, III2, 7.8.7], the main idea for showing the
property (iv) of Definition 3.4.25 is the following: Let t ∈ T be a geometric point.
Consider a function h on (Q−Δ)⊗R k(t) with h ∈Mn ⊗R k(t). If a power hN

belongs to MNn−1⊗R k(t), then hN has a pole of an order at most Nn− 1 at every
point of Δ and hence h has a pole of an order at most n− 1 at every point of Δ.
Thus, h belongs to Mn−1 ⊗R k(t). �

As a fourth tool we need a compactification theorem for curve fibrations.

Lemma 3.4.27. In the situation of Notation 3.4.18 assume, in addition, that the
morphism h : Z→ T is of relative dimension 1.

Then, after replacing T by a suitable rig-étale cover T ′ → T and Z by T -dense
open subscheme, there exists a commutative diagram

X

g

̂P

Z

h

̂Q

ϕ̂

T
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of flat formal T -schemes with the following properties:

(i) The horizontal morphisms are open immersions with T -dense image.
̂P and ̂Q are the π -adic completion of P and Q, respectively, where

(ii) ϕ :Q→ T is flat projective with irreducible, reduced geometric fibers.
(iii) The morphism g is the restriction of a finite morphism γ : P →Q.
(iv) There exists a closed subscheme Δ of Q, which is contained in the smooth part

of Q/T with the properties as on Example 3.4.26 and Z ⊂Q−Δ.

In particular, ϕ∗OQ(Q−Δ) admits a geometrically reduced multiplicative fil-
tration. The function f with X = SpfC[f ] can be replaced by the restriction of an
element of Γ (P − γ ∗Δ,OP ).

The proof of Lemma 3.4.27 is postponed to Corollary 3.7.6 of Sect. 3.7, because
it makes use of the approximation argument of Proposition 3.6.9, which will be
explained in Sect. 3.6.

Now we come to the main point:

Proof of Theorem 3.4.8 in the case of relative dimension 1.
We will follow the plan explained after Remark 3.4.19. As explained earlier, we

may start with the situation described in Notation 3.4.18.

X = SpfA
g

Z = SpfC
h

T = SpfB ,

where A= C[f ]. Let

F(ξ) := ξN + c1ξ
N−1 + · · · + cN ∈ C[ξ ]

be the characteristic polynomial of f . Proceeding by descending induction on the
maximum of geometric multiplicities N in the fibers, our problem is now to reduce
the multiplicity N in the given situation.

We are allowed to shrink Z to a T -dense open subscheme; cf. Lemma 3.4.17(c).
By Lemma 3.4.27 we may view X→ Z as a morphism induced from P → Q

of projective T -schemes, where the geometric fibers of Q/T are irreducible and
reduced. We may replace Z by Q−Δ and X by P ×Q (Q−Δ) or by its completion
with respect to the π -adic topology. We have a geometrically reduced multiplicative
filtration of OQ(Q−Δ) by Example 3.4.26

M0 ⊂M1 ⊂M1 ⊂ · · · ⊂ C :=OQ(Q−Δ).

By abuse of notation we denote by C now OQ(Q−Δ).
Since X→Z is rig-étale, the discriminant Δ(f ) is rig-invertible. We introduced

a function δ ∈ B which is rig-invertible such that δ represents the minimum of Δ(f )
on the fibers of Z/T . The infinitesimal neighborhood Zλ → Tλ has an induced
geometrically reduced multiplicative filtration for every λ≥ 1.
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In the following we denote by “−” the reduction modulo δ. Since δ generates an
open ideal of B , there exists an integer r ∈ N such that the coefficients cν of the
characteristic polynomial F satisfy cν ∈Mr for ν = 1, . . . ,N , where (Mn,n ∈ N)

is the induced filtration of C/Cδ over B/Bδ. Let e := (e1, . . . , e�)⊂Mr be a basis
of Mr . Thus, we have

Mr := Be1 ⊕ · · · ⊕Be� ⊂ C.

Now consider the characteristic polynomial

F(η− ζ ) := ηN +Q1(ζ )η
N−1 + · · · +QN(ζ ) ∈ C[ζ ][η]

of (f + ζ ) over D�
Z := Z×R D

�
R , where ζ := ζ1e1 + · · · + ζ�e�.

Then consider the ideal (QN !/1
1 , . . . ,Q

N !/N
N ) of O

D
�
Z

. This ideal is open, because
X→ Z is rig-étale. By Corollary 3.4.22 we see that there exists an ideal of co-
efficients I ⊂ O

D
�
T

. Thus, there exists a D
�
T -dense open part D′Z ⊂ D

�
Z such that

with
(

Q
N !/1
1 , . . . ,Q

N !/N
N

)

OD′Z = IOD′Z .

Since I is open, we can apply the minimum principle of Corollary 3.4.24 to I
and the morphism D

�
T → T . Thus, after a suitable rig-étale cover of T , the minimum

is given by a function β̃ on T which is rig-invertible. The minimum is attained on
an open part D′′T →D

�
T of some admissible blowing-up of D�

T which covers T . The
following diagram presents our situation

D
�
X D′X (f + ζ )

D
�
Z D′Z (Q

N !/1
1 , . . . ,Q

N !/N
N )OD′Z = IOD′Z

D
�
T D′′T IminOD′′T = β̃OD′′T

T β̃ = βN !

The function β̃ is minimal for all possible choices of c ∈Mr and this remains
true after every base change T ′ → T . Indeed, let B→ B ′ be an extension of π -adic
rings and c′ ∈ Mr ⊗B B ′; say c′ = b′1e1 + · · · + b′�e� with b′1, . . . , b′� ∈ B ′. Then
(b′1, . . . , b′�) gives rise to a point b′ ∈ D

�
T ′ . Since D′

Z′ ⊂ D
�
Z′ is D

�
T ′ -dense open,

there exists a point z′ ∈ D′
Z′ above b′ under the map D

�
Z′ → D

�
T ′ . Let Q′ν be the
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coefficients of the characteristic polynomial of f − c′; these coefficients coincide
with Qν(z

′). Since z′ ∈D′Z , we see

(

Q
N !/1
1 , . . . ,Q

N !/N
N

)

ODZ′,z′ = IODZ′,z′ .

Therefore,

|β̃|1/N ! ≤ N

min
ν=1

{∣

∣Q1/ν(z′
)∣

∣

}= ∣∣(f − c′
)(

z′
)∣

∣.

After a further suitable rig-étale base change of T , there exists a section into D′′T ,
so that we can assign values to the variables ζ = (ζ1, . . . , ζ�). Thus, we obtain a
function c ∈Mr ⊂ C, and hence c ∈ C. The relative maximum of gN ! for g := f −c
is given by β̃ as a rig-invertible function of T . By the supplement of Theorem 3.4.23
there exists a further rig-étale cover T ′ of T such that the minimum function β̃ can
be replaced by βN !, where β is a rig-invertible function on T ′. Then the function
g/β becomes integral over Z after a further admissible blowing-up T ′′ → T ′ by
Lemma 3.4.17(a). By replacing T by T ′′ we obtain a finite rig-isomorphism Y →X,
where OY is generated by g/β over OZ ; i.e., Y = SpfOZ[g/β].

Now we look at the characteristic polynomial of g/β over Z

G(ξ)= 1

βN
F(βξ + c)= ξN + q1ξ

N−1 + · · · + qN ∈ C[ξ ];

cf. Notation 3.4.18. It remains to see that for every fiber Y(t) of Y/T the character-
istic polynomial of g/β|X(t) over Z(t) cannot be of type (η− u)N with a function
u on Z(t)⊗k k

′ for any radical extension k′/k; cf. Remark 3.4.19.
In fact, otherwise we would have

qN = β−NQN(c)= (−u)N on Z(t)⊗k k
′.

Thus, the restriction of β−NQN(c) to Z(t) and the function uN belongs to
MNr ⊗ k′ as qN ∈ MNr . Using the geometric reducedness of the graded ring
⊕

n∈NMn+1/Mn, we see that u ∈ Mr ⊗ k′. Then we choose a finite flat exten-
sion T ′ → T , which lifts k′, and perform the base change T ′ → T . Thus, we can
consider a new translation of g/β of the allowed type; i.e., a translation by a linear
combination c′ ∈Mr of e1, . . . , e�, and obtain a contradiction to the minimality of
β around t .

Thus, we see that we can drop the geometric multiplicity. So we succeed by
descending induction on the geometric multiplicity of the fibers of X/T . This fin-
ishes the proof of the Relative Reduced Fiber Theorem 3.4.8 in the case of relative
dimension 1.

For the general case of dimension greater than 1 we refer to [14, Part IV, §4],
because it is not essential for this book. The proof is done by reduction to the
1-dimensional case. �
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3.5 Complements on Flatness

In the following let R be a complete valuation ring of height 1 with maximal
ideal mR , not necessarily Noetherian. The purpose of this section is to provide some
statements on flatness for extensions of polynomial rings or restricted power series
rings by formal power series rings over R. In the Noetherian case all statements of
this section are well-known; cf. [17, Chap. III, §5.4].

Lemma 3.5.1. Let A be a commutative ring and let M be an A-module. Then the
following conditions are equivalent:

(i) M is A-flat.
(ii) The canonical morphism a⊗AM→ aM is injective for every finitely generated

ideal a⊂A.

Proof. See [17, III, §2.2, Lemma 3]. �

Moreover, we recall some well-known techniques on Weierstraß division for for-
mal power series rings, which follow easily from Euclid’s algorithm.

A formal power series f ∈ R[[ξ1, . . . , ξn]] is called ξn-distinguished of order
b ∈N if for the power series expansion

f =
∞
∑

ν=0

fνξ
ν
n ∈R[[ξ1, . . . , ξn−1]][[ξn]]

with fν ∈R[[ξ1, . . . , ξn−1]] the coefficient fb is a unit and the coefficients fν belong
to (mR, ξ1, . . . , ξn−1) for ν = 0, . . . , b− 1.

A monic polynomial ω ∈ R[[ξ1, . . . , ξn−1]][ξn] of degree b is called a formal
Weierstraß polynomial if it is ξn-distinguished of order b in R[[ξ1, . . . , ξn−1]][[ξn]].

Theorem 3.5.2 (Weierstraß division theorem). Let g be a power series in
R[[ξ1, . . . , ξn]]. If g is distinguished in ξn of order b, then for every f in
R[[ξ1, . . . , ξn]] there exists a power series q ∈ R[[ξ1, . . . , ξn]] and a polynomial
r ∈R[[ξ1, . . . , ξn−1]][ξn] with deg r < b such that f = qg+ r .

The elements q, r are uniquely determined.

Theorem 3.5.3 (Weierstraß preparation theorem). Let g be a power series in
R[[ξ1, . . . , ξn]]. If g is distinguished in ξn of order b, then there exist a uniquely
determined Weierstraß polynomial ω ∈R[[ξ1, . . . , ξn−1]][ξn] of degree b and a unit
e ∈R[[ξ1, . . . , ξn]] such that g = eω.

If g ∈R[[ξ1, . . . , ξn−1]][ξn] is a polynomial, then e ∈R[[ξ1, . . . , ξn−1]][ξn].

Proposition 3.5.4. Let ξ1, . . . , ξn be variables. Then the following ring extensions
are flat:

(i) R[ξ1, . . . , ξn]→R[[ξ1, . . . , ξn]],
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(ii) R〈ξ1, . . . , ξn〉→R[[ξ1, . . . , ξn]],
(iii) R[ξ1, . . . , ξn]→R〈ξ1, . . . , ξn〉.

Proof. (i) We make use of Lemma 3.5.1. So let a= (a1, . . . , a�)⊂R[ξ1, . . . , ξn] be
a finitely generated ideal, a 
= 0. We have to show that the canonical morphism

a⊗R[ξ1,...,ξn] R[[ξ1, . . . , ξn]] −→ aR[[ξ1, . . . , ξn]]

is injective. We will prove this by induction on the number n of variables. For n= 0
there is nothing to show. Now let n ≥ 1 and assume that the assertion is true for
n− 1. Since a is finitely generated, there exists an element t ∈R such that

|t | =max
{|a|;a ∈ a

}

,

where |a| is the Gauss norm of a. Thus we can write every a ∈ a as

a = t · α for some α ∈R[ξ1, . . . , ξn].

Moreover, there exists a polynomial p ∈ R[ξ1, . . . , ξn] with tp ∈ a and |p| = 1.
Similarly as in Remark 1.2.3 one shows that there exists a transformation of vari-
ables such that, in the new coordinates, p is distinguished in ξn as an element of
R[[ξ1, . . . , ξn]]. Due to Proposition 3.5.3 we can write

p = e ·ω,

where e,ω ∈ R[[ξ1, . . . , ξn−1]][ξn] are polynomials, e is a unit in the power series
ring R[[ξ1, . . . , ξn]] and ω is a Weierstraß polynomial in R[[ξ1, . . . , ξn−1]][ξn] of
finite degree b.

Now consider an element

�
∑

λ=1

aλ ⊗ fλ ∈ a⊗R[[ξ1,...,ξn−1]][ξn] R[[ξ1, . . . , ξn]]

such that

�
∑

λ=1

aλ ⊗ fλ �−→
�
∑

λ=1

aλ · fλ = 0.

Then we use Weierstraß division in Theorem 3.5.2

fλ = qλ ·ω+ rλ with qλ ∈R[[ξ1, . . . , ξn]], rλ ∈R[[ξ1, . . . , ξn−1]][ξn],

and Euclid’s algorithm

aλrλ = t · hλ ·ω+ bλ with hλ, bλ ∈R[[ξ1, . . . , ξn−1]][ξn], degbλ < b.
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Then the relation can be rewritten as

0 =
�
∑

λ=1

aλ · fλ =
�
∑

λ=1

aλ · qλ ·ω+ aλ · rλ

=
(

�
∑

λ=1

aλ · qλ + t · hλ
)

·ω+
�
∑

λ=0

bλ.

Due to the uniqueness of the decomposition in Theorem 3.5.2, we obtain

�
∑

λ=0

bλ = 0 and
�
∑

λ=1

aλ · qλ + t · hλ = 0. (∗)

Due to the induction hypothesis the canonical homomorphism

a⊗R[ξ1,...,ξn] R[[ξ1, . . . , ξn−1]][ξn] ˜−→A := aR[[ξ1, . . . , ξn−1]][ξn]
is an isomorphism. Thus, it remains to see that

A⊗R[[ξ1,...,ξn−1]][ξn] R[[ξ1, . . . , ξn]] −→ aR[[ξ1, . . . , ξn]] (∗∗)

is injective. We can write aλ = tαλ with αλ ∈R[ξ1, . . . , ξn]. Then look at the relation
of the tensors

�
∑

λ=1

aλ ⊗ fλ =
�
∑

λ=1

aλ ⊗ qλω+
�
∑

λ=1

aλ ⊗ rλ

=
�
∑

λ=1

aλω⊗ qλee
−1 +

�
∑

λ=1

aλrλ ⊗ ee−1

=
�
∑

λ=1

αλteω⊗ qλe
−1 +

�
∑

λ=1

(teωhλ + ebλ)⊗ e−1

=
�
∑

λ=1

teωαλ ⊗ qλe
−1 +

�
∑

λ=1

teωhλ ⊗ e−1

= teω⊗
(

�
∑

λ=1

αλqλ + hλ

)

e−1

= teω⊗ 0= 0.

In the fourth line we used the relation
∑�

λ=1 ebλ = 0. The last line is true, because
the multiplication by t on R[[ξ1, . . . , ξn]] is injective and because the relation (∗)
implies

t ·
(

�
∑

λ=1

αλqλ + hλ

)

=
�
∑

λ=1

aλqλ + thλ = 0.

This shows that the map (∗∗) is injective.
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(ii) and (iii) follow in the same way by using Weierstraß division for the ring of
restricted power series. �

A similar result holds in the mixed case.

Proposition 3.5.5 (Gabber). Let ξ = (ξ1, . . . , ξm) and η = (η1, . . . , ηn) be sets of
variables. Then the extension R〈ξ 〉[η] −→R〈ξ, η〉 is flat.

It is not clear how to handle this case by the Weierstraß theory. Therefore, we
make use of the following lemma due to Gabber.

Lemma 3.5.6. Let A be a flat R-algebra and M an A-module. The following con-
ditions are equivalent:

(a) M is A-flat.
(b) M ⊗R K is A⊗R K-flat, M/πM is A/πA-flat and the π -torsion of M is 0.

Proof. (a)→ (b): Flatness commutes with base change. Since A is R-flat, so M is
R-flat, and hence M has no π -torsion.

(b)→ (a): Let N be an A-module. We will show TorAq (M,N)= 0 for all q ≥ 1.
Then this implies that M is A-flat.

If N = A/πA, then 0 → A
π−→ A→ N → 0 is a projective resolution of N .

Moreover, 0→M
π−→M→M ⊗A N → 0 is exact due to (b). Thus, we have that

TorAq (M,N)= 0 for q ≥ 1.
If πN = 0, then consider a projective resolution P∗ → M → 0. Then the

sequence P∗/πP∗ → M/πM → 0 is exact, because TorAq (M,A/πA) vanishes
for q ≥ 1, as shown above. Since M/πM is a flat A/πA-module, the sequence
P∗ ⊗A N→M ⊗A N→ 0 is exact, and hence TorAq (M,N)= 0 for q ≥ 1.

If πnN = 0 for some n ∈N, then it follows TorAq (M,N)= 0 for q ≥ 1 by induc-
tion from the preceding result by looking at the long exact TorA∗ (M,_)-sequence
associated to the sequence

0→ πn−1N→N→N/πn−1N→ 0.

If N consists of πN-torsion exclusively, then N is the direct limit of the sub-
modules of πn-torsion for n ∈N. Since Tor commutes with filtered direct limits, the
vanishing of TorAq (M,N)= 0 for q ≥ 1 holds as well.

If N has no π -torsion, the sequence

0→N
ϕ−→N ⊗R K→Q→ 0

is exact, where Q is the cokernel of ϕ. In particular, Q is πN-torsion. Since
TorAq (M,Q) = 0 for q ≥ 1, as shown above, and M ⊗R K is flat over A, we ob-
tain the vanishing of TorAq (M,N) = 0 for q ≥ 1 by looking at the long exact Tor-
sequence.
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Finally, in the general case we consider the exact sequence

0→ (N : πN
)→N→ F → 0

defining F , where (N : πN) is the submodule of πN-torsion. Thus, F is free of
πN-torsion. By considering the long exact TorA∗ (M,_)-sequence, the vanishing of
TorAq (M,N)= 0 for q ≥ 1 follows from the preceding results. Thus, we see that M
is A-flat. �

Proof of Proposition 3.5.5. Apply Lemma 3.5.6 to A= R〈ξ 〉[η] and M = R〈ξ, η〉.
Then M fulfills the condition (b) in Lemma 3.5.6. Indeed, A and M are free of
π -torsion, A/πA = M/πM , and A ⊗R K → M ⊗R K is flat. The latter holds,
because every maximal ideal n of M ⊗R K is generated by the maximal ideal m :=
n ∩ A⊗R K by Corollary 1.2.7 and the m-adic completion of A⊗R K coincides
with the n-adic completion of M ⊗R K . �

Finally let us discuss applications of these results.

Corollary 3.5.7. Let K be a non-Archimedean algebraically closed field, X a re-
duced formal analytic space of pure dimension d and reduction map ρ :X→ ˜X.
Consider X also as an admissible formal scheme over SpfR. For a closed point
x̃ ∈ ˜X one has the local ring OX,x̃ and the ring O̊X(X+(x̃)) of 1-bounded holo-
morphic functions on the formal fiber X+(x̃) := ρ−1(x̃). Then the canonical map
OX,x̃ −→ O̊X(X+(x̃)) is faithfully flat.

Before we start with the proof, let us note the following.

Remark 3.5.8. The ring O̊Dd (Dd+(0̃)) of 1-bounded functions is canonically iso-
morphic to R[[ξ1, . . . , ξd ]]. This ring is local and Henselian.

Proof. It is evident that the ring of 1-bounded functions on D
d+(0̃) isR[[ξ1, . . . , ξd ]].

If the valuation of K is discrete, then this ring is the completion of R[ξ1, . . . , ξd ]
with respect to (π, ξ1, . . . , ξd), and hence it is local and Henselian. In the general
case it is also true. In fact, one easily shows the lifting of simple zeros of monic
polynomials; cf. [78, VII, §3, Prop. 3]. �

Proof of Corollary 3.5.7. In our application in Lemma 5.4.3 we only need the
case where X is smooth. So let us treat this case first. We may assume that
X = SpfA is affine and smooth of dimension d at x̃. Then there exists a gen-
eral projection ξ̃ : Spec ˜A→ A

d
k which is finite and étale at x̃. Thus, we obtain

functions ξ1, . . . , ξd ∈ A which induce ξ̃ . Then (ξ1, . . . ξd) give rise to a mor-
phism ξ : X → D

d
R , which is finite and étale at x̃. Since the ring O̊

D
d
K
(0̃) is

Henselian, O̊Dd (Dd+(0̃))→ OX,x̃ ⊗O
D
d
R
,0̃
O̊Dd (Dd+(0̃)) is an isomorphism. Then

it is easy to see that O̊
D
d
K
(0̃)→ O̊X(X+(x̃)) is an isomorphism, and hence that
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OX,x̃ ⊗O
D
d
R
,0̃
O̊Dd (Dd+(0̃)) = O̊X(X+(x̃)). Thus OX,x̃ → O̊X(X+(x̃)) is faithfully

flat as follows by base change from Proposition 3.5.4(ii).
The general case is more complicated. We may assume that X = SpfA is affine.

Then there exists a Noether normalization T := R〈ξ1, . . . , ξd〉 such that T → A is
finite; cf. Corollary 1.2.6 and Theorem 3.1.17. Let ϕ : X→ Z := SpfT be the as-
sociated map of formal schemes and assume that the origin z̃ is the image of x̃.
Then, the ring of 1-bounded functions on Z+(z̃) is the formal power series ring
R[[ξ1, . . . , ξd ]]. The pre-image of z̃ under ϕ̃ : ˜X→ ˜Z consists of finitely many
points x̃1, x̃2, . . . , x̃r . Thus, one obtains a decomposition

O̊X

(

ϕ̃−1(Z+(z̃)
))= O̊X

(

X+(x̃1)
)⊕ · · · ⊕ O̊X

(

X+(x̃r )
)

,

by O̊Z(Z+(z̃))-modules. Then one can show by the methods of [7, §5] that the
canonical homomorphism

A⊗T O̊Z

(

Z+(z̃)
)−→ O̊X

(

X+
(

ϕ̃−1(z̃)
))

is an isomorphism. Since T → O̊Z(Z+(z̃)) is flat by Proposition 3.5.4(ii), the exten-
sion A→ O̊X(X+(ϕ̃−1(z̃))) is flat, because flatness commutes with base change.
Thus, the morphism A→ O̊X(X+(x̃)) is flat, and hence OX,x̃ → O̊X(X+(x̃)) is
flat. The latter extension is faithfully flat, since the ring OX,x̃ is local and its maxi-
mal ideal is a proper ideal of O̊X(X+(x̃)). �

Corollary 3.5.9. Let A be an admissible formal R-algebra and let I ⊂ A be an
open ideal. Let Xalg

I →X := SpfA be the blowing-up of I on X and let Xfor
I be the

formal blowing-up of I on X. Then the canonical map Xfor
I →X

alg
I is faithfully flat.

Proof. The flatness follows from Proposition 3.5.5 by base change. The extension
is faithful, since the canonical map is an isomorphism on the special fibers. �

Remark 3.5.10. One can also ask if R〈ξ 〉[η] → R〈ξ 〉[[η]] is flat. Probably, the
assertion is true, but it is not covered by our results. One knows that R〈ξ 〉[[η]] is flat
over R〈ξ 〉, since R〈ξ 〉 is a coherent ring due to Corollary 3.2.2. More generally, one
can ask if A→A[[η]] is flat for every commutative ring A. The latter is true if A is
a coherent ring; see the article of Soublin [91, Prop. 12]. But it is false in general.
A counterexample is given by the following:

Let A be a local ring with maximal ideal m and residue field k. Assume that m is
not finitely generated and satisfies m2 = 0. Then the canonical homomorphism

ρ :A[[η]]/mA[[η]] −→ (A/m)[[η]] = k[[η]]
is not injective. We assert that A[[η]] is not flat over A.

Every flat A-module M is free, because a lifting (ei; i ∈ I ) of a basis (ei; i ∈ I )
of M ⊗A k generates M due to Nakayama’s lemma and the flatness of M implies
that (ei; i ∈ I ) is linearly independent. Now assume that M =A[[η]] is flat over A.
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Thus, choose a basis (eh;h ∈ H) of A[[η]]/mA[[η]] over the field k := A/m in
the following way. First, choose a basis (ei; i ∈ I ) of k[[η]] and liftings ei ∈A[[η]].
Since the map ρ is not injective, (ei; i ∈ I ) does not generate A[[η]]/mA[[η]]. Thus,
one has to add elements (ej ; j ∈ J ). Finally, choose a lifting (eh;h ∈ H) of this
system with H = I ∪ J . This is a basis of A[[η]] over A as seen above. Thus, every
b ∈ A[[η]] has a unique representation b =∑h∈H aheh, where ah ∈ A and almost
all ah = 0. Now b ∈ mA[[η]] if and only if ah ∈ m for all h ∈ H . On the other
hand, an element b ∈mA[[η]] is a finite sum m1b1 + · · · +mrbr with mρ ∈m and
bρ ∈A[[η]]. Since m2 = 0, one can view bρ as an element of k[[η]]. Thus, b is linear
combination b =∑i∈I niei with ni ∈m. Thus, if b ∈ A[[η]] and not in

⊕

i∈I Aei ,
we obtain two different representation of b. Thus, we arrive at contradiction.

3.6 Approximation in Smooth Rigid Spaces

The main result of this section is an approximation theorem for rigid analytic mor-
phisms. Consider an affinoid space TK and two separated TK -spaces ZK and XK .
Let UK be an open subspace ofZK and let ϕ :UK →XK be an TK -morphism. Then
we want to approximate ϕ by a TK -morphism ϕ′ :U ′K →XK , where U ′K is an open
subspace of ZK such that UK is relatively ZK -compact in U ′K ; i.e., UK �ZK U ′K ,
cf. Definition 3.6.1 below for the precise definition.

As a natural condition we have to assume that the image ϕ(UK) is relatively TK -
compact in XK . One expects that such a statement is valid under mild conditions;
for instance, if UK is affinoid, ϕ(UK) is relatively TK -compact in XK and O(ZK)
is dense in O(UK). We can show such a statement under the additional condition
that XK is rig-smooth over TK .

Without the smoothness there is only a local result proved under the additional
condition that UK is relatively compact in ZK in the absolute sense and that XK is
affinoid; this can be shown by adapting Artin’s method [3] to the rigid analytic case;
cf. [66].

Our proof in the smooth case involves mainly two methods. We use the main
result of [61] to reduce to the case, where XK is affinoid. Then we adapt Elkik’s
approximation technique [24] to the rigid analytic case. Before we start with precise
statements, let us recall the notion of relative TK -compactness.

In the following, when we consider formal R-schemes X, we denote by Rn the
ring R/Rπn+1 and by Xn the Rn-scheme X ⊗R Rn for n ∈N. As usual, π is an
non-zero element in the maximal ideal mR of R.

Definition 3.6.1. Let TK be a rigid space assumed to be quasi-separated and quasi-
compact. Thus, TK is the generic fiber of an admissible formal R-scheme T ; cf.
Theorem 3.3.3. Let XK be a quasi-separated, quasi-compact TK -space. An open
subspace UK of XK is called relatively TK -compact in XK if there exists a model
X→ T of XK → TK , where UK is induced by an open subscheme U of X such
that the schematic closure U0 of U0 in X0 is proper over T0; i.e., U is relatively
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T -proper in X. In sign we will write UK �TK XK . In the case TK = Sp(K) we only
write UK �XK .

A subset MK of XK is called relatively TK -compact in XK if it is contained in
an open subspace which is relatively TK -compact.

If all spaces under consideration are affinoid, this notion of relative TK -compact-
ness coincides with Kiehl’s notion UK �TK XK ; cf. Definition 1.6.3.

If there exists one model X such that UK is induced by a relatively proper
T -subscheme U of X, then it holds for every other model X′ of XK on which
UK is induced by an open subscheme; cf. [61, 2.5 and 2.6].

If XK is proper over TK , every open subspace UK of XK is relatively
TK -compact in Xk ; this applies in particular to XK = TK .

We mention some elementary properties which are easy to verify. In the follow-
ing we simplify the notation by omitting the index “K”.

Remark 3.6.2. In the above situation let V ⊂X be a further open subscheme of X.
Then the following holds:

(a) If U ⊂ V and V �T X, then U �T X.
(b) If U �X V ⊂X and U �T X, then U �T V .
(c) If Ui �Ti Xi for i = 1,2, then U1 ×U2 �T1×T2 X1 ×X2.

Proof. It is only necessary to explain (b). In terms of models U �X V ⊂X means

that the schematic closure U
V

0 of U0 in V0 is closed in X0. Thus, U
V

0 equals the

schematic closure U
X

0 of U0 in X0. Since U �T X, we see U �T V . �

In order to make the notion more transparent we add the following lemma.

Lemma 3.6.3. Let ci, c′i ∈
√|K×| with ci ≤ c′i ≤ 1 for i = 1, . . . , n. Put

D
n
K(c) := SpK〈ξ1/c1, . . . , ξn/cn〉.

Let r ∈N with r ≤ n. Then the following conditions are equivalent:

(a) D
n
K(c)�D

r
K (1)

D
n
K(c

′), where D
n
K(1)→ D

r
K(1) is the projection to the first co-

ordinates.
(b) ci < c′i if c′i < 1 for i ≤ r and ci < c′i for i ≥ r + 1.

Proof. (b)→ (a): This is clear in the case n= 1. Indeed, let X ⊂X′ be a model of
D

1
K(c)⊂D

1
K(c

′), where X′ → T ′ = SpfR〈ξ/c′〉 is an admissible blowing-up.
If r = 0, then ξ/c′ takes values on Xrig with norm less than 1. Thus, the scheme

X0 is mapped to the origin under the map X′0 → T ′0, and hence the closure X0 is
proper over R0; i.e., Dn

K(c)�D
n
K(c

′).
If r = 1 and c′ < 1 then c < c′ and the assertion follows as above.
If r = 1 and c′ = 1, the assertion is evident.
The general case follows by taking products; see Remark 3.6.2(c).
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(a)→ (b): By fixing (n − 1) coordinates of Dn
K(1) one can reduce to the case

n= 1.
If r = 0, there exists R-models X ⊂X′ of the discs D1

K(c)⊂D
1
K(c

′) where X is
an open subscheme of X′ and X′ is an admissible blowing-up of T ′ := SpfR〈ξ/c′〉.
The closure X0 of the scheme X0 is mapped to a proper R0-subscheme of T ′0 under
the map X′0 → T ′0. Since it is connected and contains the origin, it consists of a
single point, which is the origin. Due to the maximum principle it follows c < c′.

If r = 1 and c′ = 1, there is nothing to show.
If r = 1 and c ≤ c′ < 1, then D

1
K(c)� D

1
K(1). Thus we see by Remark 3.6.2(b)

that D1
K(c)�D

1
K(c

′), and hence we are reduced to the case r = 0. �

For further use, we mention the following result on properness which is much
stronger than Theorem 3.3.12. This result is proved in [61, Theorem 5.1] if the
valuation is discrete and in [94, Theorem 5.1] for a general valuation of rank 1.

Theorem 3.6.4. Let f : Y → X be a separated morphism of admissible formal
schemes, where X = Spf(B) is affine. Let V be an open subscheme of Y such that
its associated rigid analytic space Vrig is affinoid and the schematic closure V 0 of V0
in Y0 is proper over X0. Then there exists an admissible formal blowing-up Y ′ → Y

and an open subscheme V ′ of Y ′ such that the following holds:

(i) V ′rig is affinoid and the schematic closure V
′
0 of V ′0 in Y ′0 is proper over V 0 and

hence proper over X0.
(ii) The schematic closure of (V ×Y Y

′)0 in Y ′0 is contained in V ′0. In particular,
Vrig is relatively compact in V ′rig over Xrig.

(iii) Vrig is a Weierstraß domain in V ′rig.

Definition 3.6.5. A separated rigid analytic space XK is said to have no boundary
if every admissible open affinoid subvariety UK of XK is relatively K-compact in
XK ; i.e., UK �XK .

Proposition 3.6.6. Let XK/K be a separated scheme of finite type over K . Then
the associated rigid-analytic variety has no boundary.

Proof. By Nagata’s compactification theorem we can view XK as a dense open
subscheme of a proper K-scheme YK . Now YK is a proper rigid analytic space by
Remark 1.6.10 and it has no boundary by Theorem 3.6.4. Thus, it remains to see that
every admissible open affinoid subvariety UK of XK admits an affinoid enlargement
U ′K disjoint from YK −XK .

Indeed, let V → SpfR be an admissible formal R-scheme, whose generic fiber
Vrig is an admissible open subvariety of YK , and let UK be associated to a for-
mal open subscheme U of V such that the schematic closure U0 of U0 in V0
is proper over R0. Now let J0 ⊂ OV be a coherent sheaf of ideals with locus
V0−U0. Note that J0|U0 =OU0 . Then look at the coherent sheaf of ideals given by
J := ker(OV →OV /J0).
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Let W(n)→ V be the admissible formal blowing-up of the sheaf of open ideals
I(n) := (π,J n) for n ∈ N and let V (n) be the open subscheme of W(n), where π
belongs to J n. For large n ∈N the generic fiber of V (n) is disjoint from YK −XK ,
since the system (V

(n)
rig ;n ∈N) is a filter of admissible neighborhoods of UK . More-

over, UK is relatively compact in V
(n)
rig . Now one can apply Theorem 3.6.4 to the

situation UK � V
(n)
rig . �

Theorem 3.6.7 (Approximation theorem). Let T = SpfA be an admissible affine
formal scheme over Spf(R). Let X be a separated admissible formal T -scheme and
assume that X→ T is rig-smooth. Let Z→ T be an admissible formal scheme
and U an open subscheme of Z. Let ϕ :U→X be a T -morphism. Assume that the
following conditions are satisfied:

(i) Zrig is affinoid and Urig is a Weierstraß domain in Zrig.
(ii) ϕ(U)⊂ V �T X, where Vrig is affinoid.

Let λ0 ∈N. Then there exists an admissible formal blowing-up Z′ → Z which is
finite over U and an open subscheme U ′ of Z′ such that

(a) the schematic closure of (Z′ ×Z U)0 in Z′0 is contained in U ′0,

(b) the schematic closure U
′
0 is proper over U0,

(c) there exists a morphism ϕ′ : U ′ →X such that ϕ′|U coincides with ϕ up to the
level λ0.

For the notion of a Weierstraß domain see Definition 1.3.1. A more general ap-
proximation theorem is shown in [66, 5.1.1]; actually one can avoid the assumption
that Xrig is smooth if in addition Urig � Zrig is assumed. Moreover, one can show
a smoothening result [66, 5.2.1] in the style of [15, 3.6.12]. Some explanations are
necessary to illustrate the assertions in down-to-earth terms.

Remark 3.6.8. One can rephrase the assertion in terms of sections after the base
change Z→ T . We replace X→ T by p :X×T Z→ Z, where p is the projection.
The morphism ϕ gives rise to a section of p over U .

Since the generic fibers ZK := Zrig, UK :=Urig, and XK :=Xrig are affinoid,
one can rewrite the problem in terms of solutions of a finite system of equations.
Thus, consider the following situation

XK

p|X

D
n
ZK
(1+ ε)

p

UK

σ

ZK,

where XK = V (f ) is a closed rig-smooth subvariety of Dn
ZK
(1+ε) for an ε > 0 and

σ is a section of p|X with σ(UK)⊂XK∩Dn
ZK
(1). The system f = (f1, . . . , fm) is a
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finite family of holomorphic functions on D
n
ZK
(1+ε). The section σ is equivalent to

a solution y = (y1, . . . , yn) ∈OZK (UK)
n such that f (y)= 0. Theorem 3.6.7 asserts

that one can approximate the solution y by a solution y′ ∈OZK (U
′
K)

n on a domain
U ′K which is strictly larger than UK relatively to ZK ; i.e., UK �ZK U ′K .

In return, y′ gives rise to a section σ ′ : U ′K → XK . The composition with first
projection X×Z→X yields a morphism ϕ′ as required.

Before we start the proof, let us recall the lemma of Elkik, which is of interest
for itself; cf. [24, Lemma 1, p. 555] and [24, Remark on p. 560].

Proposition 3.6.9. Let T = Spf(A) be an admissible affine formal scheme and let
V = Spf(B) be an admissible formal T -scheme. Assume that V → T is rig-smooth.
Then there exists an integer λ1 ∈N with the following property:

Let U = Spf(C) be an admissible affine formal scheme over T . Let λ be an
integer with λ ≥ λ1 and let τλ : Uλ→ Vλ be a T -morphism. Then there exists an
T -morphism σ :U→ V which coincides with τλ on Uλ−λ1 .

In particular, if τλ is an isomorphism, then σ is an isomorphism also.

The result of Elkik asserts that a nearby solution y, i.e., |f (y)| ≤ |π |λ, over U
can be improved to a true solution defined over U if λ is large enough. The last
condition depends only on the determinant of certain minors of the Jacobi matrix
(∂f /∂Y ). For the convenience of the reader we reproduce the statement of Elkik
here, which obviously implies Proposition 3.6.9.

Let us introduce a more general setting:
Let A be a commutative ring, and let B = A[Y ]/I be an A-algebra of fi-

nite presentation with I = (f1, . . . , fq)⊂ A[Y ] := A[Y1, . . . , YN ] and polynomials
f1, . . . , fq ∈ A[Y ]. For every p ∈ {1, . . . , q} and for every index α = (α1, . . . , αp)

with 1≤ α1 < · · ·< αp ≤ q put

Fα := (fα1 , . . . , fαp )⊂A[Y ]
Kα :=
{

g ∈A[Y ];gI ⊆ Fα
}

Mα :=
(

∂fαi

∂Yj

)

i=1,...,p,j=1,...,N

M :=
(

∂fi

∂Yj

)

i=1,...,q,j=1,...N

and let Δα ⊂ A[Y ] be the ideal generated by the p-minors of the matrix Mα . Let
HB ⊂A[Y ] be an ideal with

HB ⊆
∑

p,α

KαΔα,

where the sum runs over all p ∈ {1, . . . , q} and all indices α associated to p as
above. For an N -tuple a ∈AN consider the ideal

I (a) := {g(a);g ∈ I}⊂A.
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We will write f for the column vector

f := (f1, . . . , fq)
t ∈A[Y ]q .

A solution a ∈ AN of the system of equations f(Y ) = 0 means I (a)= 0. A nearby
solution a ∈AN means I (a)⊂ (πn) for a chosen parameter π and an integer n≥ 1.

Theorem 3.6.10 (Elkik). In the above situation of above let π ∈ A be an element
of A such that A is complete with respect to the (π)-adic topology. Assume that the
πN-torsion of A is killed by πk for some integer k. Let h,n ∈N such that

n >max{2h,h+ k}.
If a= (a1, . . . , aN)

t ∈AN satisfies

HB(a)⊃ (π)h and I (a)⊂ (πn),

then there exists a true solution â= (̂a1, . . . , âN )
t ∈AN with

I (̂a)= 0 and â≡ a mod πn−h.

The condition HB(a)⊃ (π)h means that the localization Bπ is smooth over Aπ .
In the case of an admissible R-algebra A one can replace the polynomial ring A[Y ]
by the R-algebra of restricted power series without changing anything in the follow-
ing proof. The element π is the usual parameter π ∈mR−{0}. The condition on the
ideal HB can be assured by asking B to be rig-smooth over A. Then the condition on
the πN-torsion is automatically fulfilled. We start the proof with a technical lemma.

Lemma 3.6.11. Let α = (α1, . . . , αp) be an index as above and δ a p-minor of Mα .
Consider an element g ∈A[Y ] and a ∈AN with

gI ⊂ Fα + π2nA[Y ] and I (a)⊂ (πn).

Then there exists an N -tuple z ∈AN with

z≡ 0 mod πn and g(a)δ(a)f(a)≡M(a)z mod π2n.

Proof. We may assume α = (1, . . . , p) and that δ is given by

δ = det

(

∂fi

∂Yj

)

i,j=1,...,p
.

Due to the assumption for j = p+ 1, . . . , q there is a relation

gfj ≡
p
∑

i=1

Pijfi mod π2nA[Y ]
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with suitable Pij ∈A[Y ]. Taking derivatives yields

g
∂fj

∂Yl
≡

p
∑

i=1

Pij
∂fi

∂Yl
mod I + π2nA[Y ]

for j = p+ 1, . . . , q and l = 1, . . . ,N because fi, fj ∈ I . Inserting a yields

g(a)fj (a) ≡
p
∑

i=1

Pij (a)fi(a) mod π2n, (3.1)

g(a)
∂fj

∂Yl
(a) ≡

p
∑

i=1

Pij (a)
∂fi

∂Yl
(a) mod πn, (3.2)

because I (a)⊆ (πn). Thus, if b= (b1, . . . , bq)
t ∈M(a)AN , then we have

g(a)bj ≡
p
∑

i=1

Pij (a)bi mod πn (3.3)

for j = p+ 1, . . . , q . If c= (c1, . . . , cN) ∈ πnAN and

b :=M(a) · c, (3.4)

then the congruence (3.3) even holds mod π2n. Now we put

M0 :=
(

∂fi

∂Yj
(a)

)

i,j=1,...,p

and let N0 ∈Ap×p be the adjoint matrix of M0. Thus, we obtain

M0 ·N0 =N0 ·M0 = δ(a) · Ip,

since δ(a) = detM0, where Ip is the (p × p)-unit matrix. Add zero rows to N0 to
get a matrix N ′0 ∈AN×p . Then

M(a) ·N ′0 ·
⎛

⎜

⎝

f1(a)
...

fp(a)

⎞

⎟

⎠
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

δ(a)f1(a)
...

δ(a)fp(a)
up+1
...

uq

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=: b
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with some elements up+1, . . . , uq ∈ A. Thus, b fulfills the condition (3.4) because
of I (a)⊂Aπn, and hence (3.3) implies for j = p+ 1, . . . , q

g(a)uj ≡ δ(a)
p
∑

i=1

Pij (a)fi(a) mod π2n

≡ δ(a)g(a)fj (a) mod π2n;
the last equation follows from (3.1). Thus, we obtain that

M(a) ·N ′0 · g(a)
⎛

⎜

⎝

f1(a)
...

fp(a)

⎞

⎟

⎠
= g(a)b≡ g(a)δ(a)f(a) mod π2n.

Now by putting

z :=N ′0 · g(a)
⎛

⎜

⎝

f1(a)
...

fp(a)

⎞

⎟

⎠

the assertion follows. �

Now we turn to the proof of Theorem 3.6.10.
It suffices to show that there exists a vector y ∈AN with

I (a− y)⊆ (π2n−2h) and y≡ 0 mod πn−h. (3.5)

Because of 2n− 2h > n we can iterate the process. Due to the completeness of A
we obtain a true solution â ∈AN . First, we will show

HB(a− y)⊃ (πh) if y≡ 0 mod πn−h.

The Taylor expansion yields

g(a)= g(a− y+ y) ∈HB(a− y)+ (π)n−h

for every g ∈HB . Since n− h≥ h+ 1,

πh ∈HB(a)⊆HB(a− y)+ (π)h+1.

Thus, there exists an element x ∈ A with πh(1 − πx) ∈ HB(a − y). Since
1− πx ∈A× is a unit, we see that πh ∈HB(a− y).

Next we want to show that there exists a vector y= (y1, . . . , yN)
t ∈AN satisfying

the condition (3.5). The Taylor expansion yields for every y ∈AN

f(a− y)= f(a)−M(a)y+
∑

i,j

Qij (a,y)yiyj
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with q-tuples Qij (a,y) ∈A[a1, . . . , aN , y1, . . . , yN ]q . Thus, it suffices to find a vec-
tor y ∈AN satisfying the conditions

y ≡ 0 mod πn−h,

f(a) ≡M(a)y mod π2n−2h.

Consider a p ∈ {1, . . . q}, an index α = (α1, . . . , αp), a p-minor δ of Mα and an
element g ∈ Kα . For such a triple (α, δ, g) there exists by Lemma 3.6.11 a vector
z ∈AN with

z ≡ 0 mod πn,

g(a)δ(a)f(a) ≡M(a)z mod π2n.

Because of πh ∈ HB(a) the element πh is a sum of suitable g(a)δ(a)’s. Thus, we
see

πhf(a)≡M(a)z′ mod π2n

for a suitable z′ ∈AN with z′ ≡ 0 mod πn. Writing z′ = πhy with y ∈ πn−hAN , we
obtain

πhf(a)− πhM(a)y= π2nx

for some N -tuple x ∈ AN . Then f(a)−M(a)y− π2n−hx is annihilated by πh and
it is a multiple of πn−h, as y ∈ πn−hAN and f(a) ∈ πnAN . Since the πN-torsion is
already killed by πk and k < n− h, it follows

f(a)−M(a)y− π2n−hx= 0.

Thus we see f(a)≡M(a)y mod π2n−h. �

For the proof of Theorem 3.6.7 we need further preparations.

Lemma 3.6.12. LetA be an admissible formalR-algebra. ConsiderA as a subring
of the associated affinoid K-algebra Arig and let f1, . . . , fn ∈Arig be elements with
|fi |sup ≤ 1 for i = 1, . . . , n.

Then B :=A[f1, . . . , fn] is an admissible R-algebra and finite over A.
If r ∈ N is chosen such that πrfi ∈ A for all i, then the canonical morphism

SpfB→ SpfA can be viewed as the blowing-up of the coherent sheaf of the open
ideal generated by πr,πrf1, . . . , π

rfn on SpfA.

Proof. Chose a finite set of variables ξ and an epimorphism R〈ξ 〉 → A. The as-
sociated morphism K〈ξ 〉 → Arig is an epimorphism also. Then we see by Propo-
sition 3.1.1 that B is integral over R〈ξ 〉, and hence finite over A. Thus, B is an
admissible R-algebra with Arig = Brig. Now consider the blowing-up Y ′ → SpecA
of the ideal a := (πr ,πrf1, . . . , π

rfn) on SpecA. Since the pull-back of a to
B is generated by πr , and hence invertible, there is a canonical factorization
SpecB→ Y ′ → SpecA of the morphism SpecB→ SpecA.
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The first map identifies SpecB with the open part V ′ of Y ′, where aOY ′ is gen-
erated by πr . We assert that V ′ = Y ′. To verify this, we have to show that, over each
open part SpecAi ⊂ Y ′, where

Ai =A
[

πr/πrfi,π
r/πrf1, . . . , π

rfn/π
rfi
]

/(π-torsion),

the pull-back aAi is generated by πr . In fact, Ai contains the inverse of fi , and the
extension Ai→Ai[fi] is integral. But then, using an integral equation of fi over Ai

and multiplying with a suitable power of f−1
i , we see that fi ∈ Ai . Thus, the pull-

back of a to Ai , which is generated by πrfi , is also generated by πr . This shows that
the blowing-up Y ′ → SpecA coincides with the morphism SpecB→ SpecA. Then
it follows by π -adic completion, which is trivial in this case, that SpfB→ SpfA is
the formal blowing-up of a on SpfA. This concludes the proof. �

Lemma 3.6.13. Let Z be a quasi-compact admissible formal scheme and let U be
an open subscheme of Z.

(a) Let J ⊂OZ be a coherent ideal and n ∈N with J |U ⊂ πn+1OU . Let Z′ → Z

be the blowing-up of (πn,J ) and let U ′ be the open subscheme of Z′, where J
is contained in πnOZ′ . Then U �Z U

′.
(b) Let J ⊂OZ be a coherent ideal and n ∈N with πn ⊂ πJ over U . Let Z′ → Z

be the blowing-up of (πn,J ) and let U ′ be the open subscheme of Z′, where
πn is contained in JOZ′ . Then U �Z U

′.

Proof. (a) Assume that there is a point x ∈ (Z′ ×Z U)0 − U ′0. Thus, we have
that πnOZ′,x ⊂ JOZ′,x . Then, by topological reasons, there exists also a point
z ∈ (Z′ ×Z U)0 which satisfies πnOZ′,z ⊂ JOZ′,z. Thus, we have that πnOZ′,z ⊂
JOZ′,z ⊂ πn+1OZ′,z. The latter is impossible. Thus, we that (Z′ ×Z U)0 ⊂U ′0.

(b) Assume that there is a point x ∈ (Z′ ×Z U)0 − U ′0. Thus, we have
that JOZ′,x ⊂ πnOZ′,x . Then, by topological reasons, there exists a point z in
(Z′ ×Z U)0 with JOZ′,z ⊂ πnOZ′,z. Thus, we see that

πnOZ′,z ⊂ πJOZ′,z ⊂ πn+1OZ′,z.

The latter is impossible. Thus, we that (Z′ ×Z U)0 ⊂U ′0. �

Now we come to the proof of Theorem 3.6.7.
We start with the special case, where ϕ factorizes through some affine open sub-

space V of X such that ϕ0(U0) is relatively T0-compact in V0. Let ι : V ↪→D
N
T be a

closed immersion. Set λ= λ0+ λ1, where λ1 is as in Proposition 3.6.9 with respect
to V → T ; note the remark just after Proposition 3.6.9. The morphism ϕ composed
with the closed immersion ι yields a morphism

ψ :U ϕ−→ V
ι−→D

N
T .
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Let η1, . . . , ηN be the coordinates of DN
T and set

yi =ψ∗ηi ∈ C :=OZ(U) for i = 1, . . . ,N.

Since O(Zrig) is dense in O(Urig), there exists an yi ∈OZ(Zrig) such that

yi − yi |U ∈ πλ+2C.

In particular, yi |U ∈ C. Since ϕ(U)�T V , the schematic closure of U0 under ϕ0 in
V0 is proper over T0. As V0 is affine over T0, the schematic closure is finite over T0.
Hence, there exists a monic polynomial Fi(ζ ) in OT (T )[ζ ] such that Fi(yi) ∈ πC.
In particular, we obtain Fi(yi |U) ∈ πC. Let r be an integer such that πrFi(yi) lies
in OZ(Z). Then look at

Z′ → Z the formal blowing-up of J = (πrFi(yi),πr
)

i=1,...,N ,

W ′ the open subscheme of Z′,where JOZ′ is generated by πr .

Due to Lemma 3.6.13(a) we obtain U �Z W ′, because πrFi(yi |U) ∈ πr+1C be-
cause of Fi(yi |U) ∈ πC. Thus, we may replace Z by W ′. In particular, yi has sup-
norm ≤ 1 because of |Fi(yi)|W ′

rig
| ≤ 1. By Lemma 3.6.12 we see that there is a

blowing-up Z′ → Z, which is finite over U such that yi is defined on Z′. Thus, we
may assume that yi is defined on Z. Now look at the map

ψ :Z −→D
N
T given by y1, . . . , yN .

Let I be the ideal defining V as a closed subscheme of DN
T . We have

ψ
∗IOU ⊂ πλ+2OU ,

because ψ |U and ψ coincide up to the level πλ+2. Now let

Z′ → Z be the formal blowing-up of J = (πλ+1,ψ
∗I
)

OZ,

U ′ the open subscheme, where JOZ′ is generated by πλ+1.

In particular, U �Z U
′ by Lemma 3.6.13(a). Moreover, U ′rig is affinoid, and hence

U ′ is proper over some affine formal R-scheme, which is an R-model of U ′rig. Thus,
we can perform the Stein-factorization

U ′ −→ Y ′ := SpfΓ
(

U ′,OZ′
)

in the category of admissible formal R-schemes. Then Γ (U ′,OZ′) is an admissible
formal R-algebra. In fact, we may assume that U ′ is obtained by an admissible
formal blowing-up of SpfA′, where A′ is an admissible R-algebra contained in
OZrig(U

′
rig) and hence Γ (U ′,OZ′) is a finitely generated A′-module. The map ψ

factorizes through the Stein factorization. Thus, we obtain a map

˜ψ : Y ′ −→D
N
T .
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Since I|U ′ ⊂ πλ+1OU ′ , we have I|Y ′ ⊂ πλ+1OY ′ . Thus, the map ˜ψ gives rise to a
morphism Y ′λ→ Vλ. By Proposition 3.6.9 this map lifts to a map Y ′ → V up to the
level λ0 = λ− λ1. Composing it with U ′ → Y ′, we obtain a morphism ϕ′ :U ′ → V

we are looking for.
For technical reasons we add the following supplement to our special case, where

Vrig may be induced by some ˜V which is not necessarily affine:
If ψ : ˜U → ˜X is another model of ϕrig, where ˜U is an open subscheme of an

R-model ˜Z of Zrig, then there exist an admissible formal blowing-up ˜Z′ → ˜Z, an
open subscheme ˜U ′ of ˜Z′ with the properties (a) and (b) of Theorem 3.6.7 and a
morphism ψ ′ : ˜U ′ → ˜X such that ψ ′|

˜U coincides with ψ up to the level λ0.
Indeed, consider the model ψ : ˜U → ˜V of ϕrig. We may assume that ˜V → V is

an admissible formal blowing-up of V ; say of an open ideal H such that πn−1 ∈H.
We may assume n ≤ λ0. Thus, we obtain a map τ : ˜U → V . Due to the previous
assertion there exists a blowing-up ˜Z′ → ˜Z and an open subscheme ˜U ′ with the
above asserted properties (a) and (b) as well as a morphism τ ′ : ˜U ′ → V such that
τ ′ and τ coincide on ˜Uλ. Since we may assume that ((τ ′)∗H)O

˜U ′ is invertible, we
obtain a lifting ψ ′ : ˜U ′ → ˜V of τ ′. Now we have

(

τ ′
)∗H|
˜U = (τ )∗H|

˜U ,

because τ ′ and τ coincide mod πλ0 and πn−1 is contained in H. Since ˜V → V is
the blowing-up of H, the restriction of ψ ′ to ˜U and ψ coincide on ˜Uλ0 .

Now we turn to the general case. We have that ϕrig(Urig) ⊂ Vrig, where
Vrig ⊂Xrig is an open affinoid subdomain of Xrig, which is relatively compact Xrig
with respect to Xrig → Trig. Then we obtain by Theorem 3.6.4 that there exists an
open affinoid subspace V ′rig of Xrig such that Vrig �Trig V

′
rig. Now there exists an

admissible formal blowing-up X′ → X such that V ′rig is induced by an open sub-
scheme V ′ ⊂X′ and an admissible blowing-up Z′ →Z such that ϕ is induced by a
morphism ϕ′ :U ×Z Z

′ → V ′. Thus, we are in a situation we considered above.
So we are also done in the general situation. �

Now we want to study how certain properties of the given map ϕrig are transmit-
ted to the approximation.

Corollary 3.6.14. In the situation of Theorem 3.6.7 assume, in addition U �T Z.
Then there exist an admissible formal blowing-up Z′ → Z, an open subscheme U ′
of Z′ with U �T U ′ resp. an admissible formal blowing-up X′ → X and an open
subscheme V ′ of X′ with V �T V ′ and a T -morphism ϕ′ : U ′ → V ′ such that its
restriction to U yields a morphism ϕ′|U : U→ V which coincides with ϕ up to the
level λ with the following properties:

(a) If ϕrig is finite, so is ϕ′rig.
(b) If ϕrig is a closed immersion (resp. an isomorphism), so is ϕ′rig.

Proof. (a) Since a map ϕ : Spf(A) → Spf(B) is finite if and only if the map
B0 → A0 is finite, it is clear that we can arrange the approximation that the re-
striction (ϕ′|U)rig of ϕ′ is finite. Then (a) follows from Lemma 3.6.17 below.
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(b) As in (a) we may assume that (ϕ′|U)rig is a closed immersion or an isomor-
phism. Thus, (b) follows from Lemma 3.6.17 below. �

Remark 3.6.15. The statement of Corollary 3.6.14 is also true for open immersions
without the condition U �T Z.

Proof. It follows from Lemma 3.1.4 that a good approximation ϕ′ of ϕ yields an
open immersion ϕ′|Urig as well. Thus, ϕ′rig is flat on Urig. Since the flat locus is open
due to [52, 3.3], one can choose U ′ so small that ϕ′rig|U ′rig is also flat. Due to The-

orem 3.3.4 there exists an admissible blowing-up X′ → X such that ϕ′ : U ′ → V ′
is flat after replacing U ′ by the strict transform. Since the image of a flat mor-
phism is open, the image W ′ := ϕ′(U ′) is an open subscheme of V ′. It remains
to see that ϕ′ : U ′ → W ′ is an isomorphism. This can be checked after the faith-
fully flat base change W ′′ := U ′ → W ′. Then we have the tautological section
σ : W ′′ → U ′′ := U ′ ×W ′ U ′ which is an isomorphism over ϕ′(U), because it is
an isomorphism on the rigid part. Now σ(W ′′) is a closed subscheme of U ′′ and it
does not meet the rigid part of U ×W U ′. Then look at the exact sequence

0→K→OU ′′
λ−→Oσ(W ′′)→ 0

where K is the kernel of the canonical epimorphism λ. The support of K is disjoint
from U ×W W ′. Then, after a admissible blowing-up and shrinking U ′ we may
assume that K vanishes. Thus, we see that ϕ′ :U ′ →W ′ is an open immersion. �

Lemma 3.6.16. Let ϕ : Z→X be a morphism of quasi-compact admissible formal
schemes and V an open subscheme of X. Let I be a coherent sheaf of open ideals of
OX with vanishing locus V (IOX0)=X0 − V0. Let Xn→X be the admissible for-
mal blowing-up of (π,In) and V n the open subscheme of Xn, where π is contained
in InOXn . Assume that ϕ−1(V )= U ∪W is a disjoint union of open subschemes.
Then there exists an n0 ∈N such that, for n≥ n0, there exists a disjoint union

ϕ−1(V n
)=Un ∪Wn

of open subschemes with Un ∩ ϕ−1(V )=U and Wn ∩ ϕ−1(V )=W .

Proof. Let F and G be open coherent ideals of OZ such that

V (FOZ0)= Z0 −U0 and V (GOZ0)= Z0 −W0.

Let Z(n)→Z be the admissible formal blowing-up of (π,Fn,Gn). Set

Z(n) ⊃U(n) = {z ∈Z(n);π ∈FnOZ(n),z

}⊃U

Z(n) ⊃W(n) = {z ∈Z(n);π ∈ GnOZ(n),z

}⊃W
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Since F and G are topologically nilpotent outside of U0 and W0, respectively, there
exists an n1 ∈N such that U(n) ∩W(n) = ∅ for n≥ n1. Since J := IOZ(n) is nilpo-
tent onZ(n)−(V (n)∪W(n)), there exists an index n0 ≥ n1 such that J n ⊂Fn1+Gn1

on Z(n1) for all n≥ n0. This implies ϕ−1(V n
rig)⊂U

(n1)
rig ∪W(n1)

rig for all n≥ n0.
Then the assertion is evident. �

Lemma 3.6.17. Let ϕ : Z→X be a morphism of quasi-compact separated admis-
sible formal T -schemes. Let U be an open subspace of Z with U �T Z and let V
be an open quasi-compact subspace of X with V �T X. Assume that the restriction
of ϕ to U yields a morphism ϕ|U : U → V and that (ϕ|U)rig : Urig → Vrig satisfies
one of the following conditions:

(a) proper,
(b) finite,
(c) isomorphism,
(d) closed immersion.

Then there exist an admissible formal blowing-up Z′ → Z and an open sub-
scheme U ′ of Z′ with U �T U

′ resp. X′ →X and an open subscheme V ′ of X′ with
V �T V

′ such that (ϕrig|U ′)rig :Urig → Vrig extends to a T -morphism ϕ′ : U ′ → V ′
and satisfies the same condition.

Proof. (a) Let J be a coherent sheaf of open ideals of OX such that the locus of
JOX0 is X0−V0. As in Lemma 3.6.16, we consider the admissible formal blowing-
up Xn→X of the sheaf of ideals (π,J n) for n ∈N on X and the open subscheme
V n := {x ∈Xn;π ∈ J nOXn,x}. For n≥ 2 it is clear that the subscheme V n is also
relatively T -proper in Xn, because V

n

0 → V 0 is proper. Similarly one defines Zn

and Un with respect to (π,J n)OZ . Thus, we obtain a canonical commutative dia-
gram

Un V n

Zn Xn.

Now ϕ|U : U → V is proper, because (ϕ|U)rig is proper; cf. Theorem 3.3.12.
Thus, the inclusion U → ϕ−1(V ) is proper [39, II, 5.4.3]. Then U is a sum
of connectedness components of ϕ−1(V ). If we choose n large enough, then by
Lemma 3.6.16 there is a sum of connectedness components Un of ϕ−1(V n) with
Un∩ϕ−1(V )=U . Such a Un is also relatively T -proper in Z. After replacing Z by
Un0 for some n0, we may assume U = ϕ−1(V ). The upper horizontal map is proper,
because the schematic closure of Un

0 in Zn
0 is proper over U0 and hence proper

over T0. Then ϕ|Un induces a proper morphism Un
rig → V n

rig by Theorem 3.3.12.
(b) Now assume that (ϕ|U)rig is finite. Then it is proper. Due to (a) we may

assume that ϕrig and by Theorem 3.3.12 that ϕ is proper. As in (a) we may assume
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ϕ−1(V )=U . Set

BK :=
{

x ∈Xrig;dimϕ−1(x)≥ 1
}

.

BK is a closed analytic subset of Xrig which is disjoint from Vrig. With the above
notion there exists an integer n ∈N such that BK does not meet V n. We may assume
that X = V n. Thus, ϕrig has finite fibers. Then it follows from Corollary 3.3.8 that
there exists a model of ϕ′rig which is finite. Since such a model can be obtained by an
admissible blowing-up of X and taking strict transforms of Z, the assertion follows.

(c) Due to (b) we may assume that ϕrig is finite and, as explained above, that
ϕ is finite. Moreover, as above we may assume ϕ−1(V ) = U . Then look at the
morphism λ : OXrig −→ ϕ∗OZrig . The support of its kernel resp. of its cokernel is
disjoint from Vrig. Thus, there exists an integer n ∈N such that the support does not
meet V n. We may replace X by V n. Then ϕ is an isomorphism.

(d) Again we may assume that ϕ is finite. Then we replace X by the schematic
image of ϕ and reduce to (c). �

Finally, let us rewrite a special case of Corollary 3.6.14 in a more down-to-earth
formulation which will be used later.

Corollary 3.6.18. Let ϕ : Dd
K(1) ↪→ XK be an open immersion of the d-dimen-

sional unit polydisc into a separated smooth rigid space. Assume that the image of ϕ
is relatively compact in XK . Then there exists an approximation ϕ′ :Dd

K(c) ↪→XK

with c > 1 of ϕ over a strictly larger polydisc Dd
K(c) with D

d
K(1)�D

d
K(c) such that

ϕ′ is an open immersion.
In particular, one can choose the approximation in such a way that the images of

ϕ and ϕ′|
D
d
K(1)

coincide.

Proof. We may assume that XK is quasi-compact. Due to Theorem 3.3.4 the map ϕ
is induced by a formal model. Then the assertion follows from Corollary 3.6.14. �

3.7 Compactification of Smooth Curve Fibrations

There are several types of compactification results. Let us begin with the absolute
case, where the base is a non-Archimedean field.

Proposition 3.7.1. Let R be a complete valuation ring of height 1 with perfect
residue field k. Let X→ S := SpfR be a quasi-compact flat relative formal R-curve
with reduced geometric fibers.

If there exists an effective relative Cartier divisor Δ of X which meets every
connected component of the smooth part of X/R, then there exists a flat projective
formal R-curve ̂P → S such that X can be embedded into ̂P with R-dense image.
Moreover, ̂P is the completion of a projective flat R-curve P with respect to its
special fiber and one can choose P to be smooth at infinity; i.e., P is smooth over
R at all points in P0 −X0.
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Proof. Consider the reduction Xk :=X⊗R k which is a reduced curve. Then there
exists a projective closure Pk of Xk ; i.e., a projective curve which contains Xk as an
open dense subscheme and Pk is normal at all points in Pk −Xk . Since k is perfect,
Pk is smooth over k at infinity.

Thus, for each point z ∈ Pk − Xk there exists an affine neighborhood Zk ⊂ Pk
of z such that the locus Zk = V (f 2, . . . , f n) in A

n
k is defined by (n− 1) functions

and (f 2, . . . , f n) satisfies the Jacobian criterion of smoothness. Now choose liftings
f2, . . . , fn ∈ R[ξ1, . . . , ξn] and let Z be their locus V (f2, . . . , fn) in A

n
R . After an

eventual shrinking, Z is a smooth affine R-curve and Zk intersects Xk in an affine
open subset.

Since the schemes are of finite presentation, one can choose the parameter
π ∈ mR such that the intersection Vk := Zk ∩ Xk is defined over R/Rπ ; i.e., it is
induced from an open affine subscheme VZ of Z and VX of X such that the gluing
datum is defined over R/Rπ . Due to the lifting property of smoothness the gluing
lifts to an isomorphism

Z ⊃ VZ ˜−→VX ⊂X.

Thus, by a gluing process around every point at infinity we obtain a formal proper
R-curve ̂P . A multiple N ·Δ of the effective Cartier divisor Δ gives rise to a relative
very ample divisor on ̂P/R. Then it follows from Grothendieck’s existence theorem
[39, III1, 5.4.5] that ̂P is induced from a flat projective R-curve P and P0 is smooth
at all points in P0 −X0. �

The next goal is to finish the proof of the Relative Reduced Fiber Theorem. It
remained to prove Lemma 3.4.27. Let us fix the situation for the following: Let Z =
SpfC→ T = SpfB be a smooth morphism of formal R-schemes with irreducible
geometric fibers of dimension 1. First we will look at a similar algebraic situation.

Lemma 3.7.2. Let k be a field and T be a reduced affine k-scheme of finite type
over a field k. Let Z→ T be a smooth morphism of affine k-schemes with irre-
ducible geometric fibers of dimension 1.

Then there exists a finite stratification by closed reduced subschemes

T = T 0 ⊃ T 1 ⊃ · · · ⊃ T m+1 = ∅

with the following property for i = 0, . . . ,m: Over V i := T i − T i+1 there exists a
V i -compactification of Zi := Z×T V

i

Zi P i

V i



3.7 Compactification of Smooth Curve Fibrations 171

where P i→ V i is flat projective with irreducible and generically reduced geometric
fibers. There exists an effective V i -ample relative Cartier divisor on P i with support
(P i −Zi).

Proof. Consider a generic point t of T . Then let P(t) be a normal projective closure
of Z(t). Since Z(t) is affine, the complement P(t)− Z(t) is supported by an am-
ple Cartier divisor. Since only finitely many coefficients are involved, P(t) and the
embedding Z(t)→ P(t) are defined over an open neighborhood V of t . Since we
have this for every generic point of T , we may assume that V is dense open in T .
Since the geometric fibers of Z/T are irreducible and reduced, we obtain a pro-
jective scheme PV → V as desired. Then set T 0 := V and proceed similarly with
T − T 0. Thus, one succeeds by induction, because the space T is Noetherian. �

Lemma 3.7.3. In the situation of Lemma 3.7.2 put V = V 0.

(a) There exists a blowing-up T ′ → T with center in T − V and a T ′-dense open
subscheme U ′ of Z′ := Z ×T T

′ such that, étale locally on T ′, there exists a
T ′-flat projective compactification Q′ of U ′ with irreducible and generically
reduced geometric fibers which extends PV → V .

(b) With the notations of (a) there exists an étale cover ˜T → T ′ such that there
exists a finite morphism ˜Q′ :=Q′ ×T ′ ˜T → ˜Q, where ˜Q is a relatively planar
˜T -curve with irreducible and reduced geometric fibers such that ˜Q′ → ˜Q is
˜T -birational. In particular, after shrinking ˜U ′ := U ′ ×T

˜T to a ˜T -dense open
subscheme, ˜Q is a ˜T -compactification of ˜U ′.

Proof. (a) Keep the result of Lemma 3.7.2. Because of the ample divisor, there
exists a closed immersion

fV := (f1, . . . , fn) :ZV −→A
n
V .

After chasing denominators, we may assume that fV extends to a morphism

f :Z −→A
n
T ⊂ P

n
T ,

which is a closed immersion over V . Then let P ⊂ P
n
T be the schematic image of f .

Thus, we have a morphism f : Z→ P of Z to a projective T -scheme P such
that ZV → PV := P ×T V is an open immersion. By the algebraic version of the
flattening [82, 5.2.2] there exists a blowing-up P ′ → P with center in P − PV
such that the strict transform Z′ → P ′ is flat and, hence an open immersion. After
replacing T by a suitable blowing-up T ′ → T with center in T −V we may assume
that P ′ → T and Z′ → T are flat. Next, consider the morphism Z′ → Z between
T -flat schemes of finite type. Since the fibers of Z/T are geometrically irreducible
and reduced, there exists a T -dense open subscheme U of Z such that Z′ → Z is
an isomorphism by similar arguments as in the proof of Lemma 3.4.16.

In the following we replace Z by U and P by P ′. Since Z→ T is smooth and
surjective, there exists an étale cover T ′ → T and a section σ : T ′ →Z×T T

′. Now
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we replace T ′ by T . A multiple of σ gives rise to an effective relative Cartier divisor
Δ of P such that OP (Δ) is generated by global sections.

These sections induce a morphism ϕ : P → P
N
T such that it contracts all irre-

ducible components of the fibers of P/T , which do not meet Z, and induces an
open immersion Z into the schematic closure Q of ϕ. Thus, Q is a projective T -
scheme with irreducible and generically reduced geometric fibers, because Z is T -
dense in Q. Again by the flattening technique [82, 5.2.2] we can arrange Q to be flat
over T . Here we have used the minor argument that étale base change and blowing-
up commute which easily follows by the flattening technique; cf. [14, IV, 5.7].

(b) Let t be a point of T ′. Now we work étale locally around t . In our notation
we do not make the base change explicit and retain the old symbols. Étale locally
around t there exists an embedding of Q′ into some P

n
T and there exists a projec-

tion

p :Q′ −→ P
2
T ,

which is finite and T -birational onto its schematic image. Now consider the
coherent sheaf p∗OQ′ . Due to [39, III1, 22.1] there exists a short exact se-
quence

0→K α−→ E→ p∗OQ′ → 0

of coherent sheaves on P
2
T with a vector bundle E of a certain rank r . The kernel is

T -flat, because p∗OQ′ and E are T -flat. Since the depth of every fiber Q′(t) is 1,
the depth of K⊗T k(t) is 2. Since K⊗T k(t) is a coherent sheaf on a non-singular
scheme of dimension two, K⊗T k(t) has projective dimension 0. Thus, K⊗T k(t)

is a vector bundle of rank r equal to the rank of E . Since K is T -flat, it is P
2
T -flat;

cf. [17, III, §5, no. 4, Prop. 3] and hence K is a vector bundle of rank r . Therefore,
the determinant

det(α) := ∧rα ∈ Γ (P2
T ,

r
∧

E ⊗
r
∧

K−1)= Γ
(

P
2
T ,OP

2
T
(m)
)

is a homogeneous polynomial of a certain degree m if T is connected. Then let
Q= V (detα)⊂ P

2
T be the locus of detα, which is a planar curve. Due to the con-

struction p factorizes through Q. Since p is T -birational, the polynomial detα has
no multiple irreducible components on every fiber P2

t and hence the geometric fibers
of Q/T are irreducible and reduced. �

Lemma 3.7.4. Let Z→ T be a smooth morphism of affine formal R-schemes with
irreducible geometric fibers of dimension 1. Let V0 be a dense open subscheme of
T0 such that Z ×T V0 admits a flat projective V0-compactification PV0 → V0 with
irreducible and generically reduced geometric fibers. Assume that PV0 − ZV0 is
supported by an effective V0-ample relative Cartier divisor. Set A0 := T0 − V0.

Then there exists an admissible formal blowing-up T ′ → T with center in
A0 such that T ′ is a union of open subschemes T 1 and T 2 with the following
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properties:

(i) There exists an étale cover ˜T 1 → T 1 and a ˜T 1-dense open subscheme ˜U1 of
˜Z1 := Z ×T

˜T 1 which admits a flat projective compactification by a relatively
planar ˜T 1-curve ˜Q1 with irreducible and reduced geometric fibers.

(ii) T 2
0 lies over A0.

Proof. The assumption means that we start with a situation as established by
Lemma 3.7.3(a). Let Tk := (T0)red be the maximal reduced subscheme of T0. This
is a k-scheme of finite type. Now we can apply the results of Lemma 3.7.3. There
we had the base extensions

˜Tk −→ T ′k→ Tk,

where T ′k → Tk is blowing-up with center in A0 and ˜Tk→ T ′k is an étale cover. Let
J0 ⊂OT0 be a coherent sheaf of ideals which induce the blowing-up T ′k → Tk and
let J := ker(OT →OT0/J0). Let T ′ → T be the blowing-up of J on T .

In particular, there is a canonical morphism T ′k → T ′0. The special fiber of T ′ is
a union of two closed subschemes A1 ∪A2, where A1 is T ′k and A2 is the union of
all the irreducible components which are not contained in T ′k . In particular A1 ∩A2

is rare in T 1
0 and T 2

0 . Thus, there exists an admissible blowing-up T ′′ → T ′ with
center in A1 ∩A2 such that T ′′ is a union of open subschemes T 1 ∪ T 2, where T i

0
factorizes through Ai for i = 1,2. In particular, T 2

0 lies above A0. Note that the
composition T ′′ → T ′ → T is an admissible blowing-up as well.

Next we want to verify that T 1 satisfies the assertion (i). The étale cover ˜Tk→ T ′k
uniquely lifts to an étale cover ˜T → T 1. The T ′k -dense open subscheme U ′k of Z1

k :=
Z×T T

1
k lifts to a T 1-dense open subscheme U1 of Z1 := Z×T T

1. Eventually one
has to replace π by a bigger π ′ ∈mR in order to have the algebraic situation defined
over T ⊗R R/Rπ

′, but then it follows by the étale lifting property.
The relatively planar projective ˜Tk-curve ˜Qk lifts to a relatively planar projective

T 1-curve ˜Q1. In fact, we can lift the homogeneous polynomial in O
˜Tk
[ξ0, ξ1, ξ2]

which defines ˜Qk as a subscheme of P
2
˜T

to a homogeneous polynomial in
O
˜T 1 [ξ0, ξ1, ξ2]. Finally, the open embedding

˜U1
k =U1 ×T 1 ˜Tk ↪→ ˜Q1

k

lifts to an open immersion ˜U1 ↪→ ˜Q1, which satisfies our assertion. �

Proposition 3.7.5. Let Z→ T be a smooth morphism of quasi-compact formal R-
schemes with irreducible geometric fibers of dimension 1. Then, after a suitable base
change by a rig-étale cover of T and replacing Z by a T -dense open subscheme,
there exists an open immersion Z ↪→ ̂Q into a flat projective formal T -scheme ̂Q
with the following properties:

(i) ̂Q is the π -adic completion of a flat projective T -scheme Q.
(ii) The geometric fibers of ϕ :Q→ T are irreducible and reduced.
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(iii) There exists an effective relative Cartier divisor Δ of Q/T with support in Z

such that Δ→ T is finite and étale.
(iv) ϕ∗OQ(Q−Δ) admits a geometrically reduced multiplicative filtration.

In particular, the compactification Q→ T can be chosen relatively planar.

Proof. (i) and (ii): Consider the induced smooth relative curve

Zk := Z×T Tk −→ Tk := (T0)red.

By Lemma 3.7.2 there exists a stratification

Tk = T 0
k ⊃ T 1

k ⊃ · · · ⊃ T m+1
k = ∅

by closed subscheme such that Zk × V i admits a V i -compactification as in
Lemma 3.7.2, where V i := T i

K − T i+1
k for i = 0, . . . ,m. Then we proceed by in-

duction on m. For m = 0 the assertion follows from Lemma 3.7.3. If m ≥ 1, the
assertion can be reduced to the case m− 1 by Lemmas 3.7.4 and 3.7.3.

(iii) and (iv) follow from Example 3.4.26, because Z→ T admits a section after
an étale surjective base change. �

Corollary 3.7.6. Consider a situation as in Notation 3.4.18; i.e., Z→ T is as in
Proposition 3.7.5 and g :X→ Z is a rig-étale finite flat morphism such that g∗OX

is generated by a function f over OZ .
Then, after replacing T by a suitable rig-étale cover T ′ → T and by replacing

Z and X by T -dense open subscheme, there exists a commutative diagram of flat
formal T -schemes

X

g

̂P

Z

h

̂Q

ϕ

T,

where the horizontal maps are open immersions with T -dense image, ̂P and ̂Q
are the π -adic completion of P and Q, respectively. Here Q is a flat projective
T -scheme as in Proposition 3.7.5 and P → Q is finite. There is a global section
on P − g∗Δ generating g∗OX over OZ , where Δ ⊂ Q is Cartier divisor as in
Proposition 3.7.5.

Proof. First, after shrinking Z, one constructs Z ↪→ ̂Q after a rig-étale base change
as in Proposition 3.7.5, where Q/T is relatively planar curve with irreducible
and reduced geometric fibers. We may assume that X = SpfA, Z = SpfC and
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T = SpfB are affine. Moreover, we may assume that the complement Q0 − Z0
is the supported by a hyperplane section H0 on Q0. We can lift H0 to a hyperplane
H ⊂Q with Z0 =Q0 −H0 by lifting the coefficients of the equation defining H0.
Now look at the characteristic polynomial

F(η)= ηN + c1η
N−1 + · · · + cN ∈ C[η]

of f . The ring C is the π -adic completion of C :=OQ(Q−H).
Since X→ Z is rig-étale, X→ T is rig-smooth. Then there exists an integer

λ1 which satisfies the assumption of Proposition 3.6.9. One can approximate the
coefficients cν by functions γν in C such that there is an isomorphism

σ ∗λ :A/πλA ˜−→A/πλA

for some λ≥ λ1, where

A := C[η]/(Φ) with Φ(η) := ηN + γ1η
N−1 + · · · + γN ∈ C[η].

By Proposition 3.6.9 the morphism σ ∗λ lifts to an isomorphism σ ∗ : ̂A ˜−→A to
the π -adic completion of A. We may assume that each γν is a global section of the
invertible sheaf OQ(H). If L→Q is the total space of OQ(H), then V (Φ) gives
rise to a closed subscheme P ⊂ L which is finite flat over Q.

Let α be the image of the residue class of η in A. Then α generates A over C.
There exists a global function γ on Q −Δ which is generically invertible on the
fibers of Q/T such that γ · α satisfies an integral equation over Q−Δ. Moreover,
γ · α generates g∗OX as OZ-algebra over a T -dense open subscheme of Z. This
settles the assertion. �



Chapter 4
Rigid Analytic Curves

The main objective of this chapter is the Stable Reduction Theorem 4.5.3 for smooth
projective K-curves XK . Its proof is split into two problems. In a first step, dealt
with in Sect. 3.4, we provide a projective R-model X of XK such that its special
fiber X ⊗R k is reduced. In a second step we will now analyze the singularities of
X⊗R k. This part is related to the resolution of singularities in dimension 2.

For each point x̃ of the special fiber X ⊗R k we have the formal fiber X+(x̃);
cf. Definition 3.1.6(d). A cornerstone towards the Stable Reduction Theorem is the
presentation of the periphery of X+(x̃) in Proposition 4.1.11. This is a precise iden-
tification how the interior of the formal fiber is connected to the remainder of the
curve. Noteworthy, we do not make use of a desingularization result [59] as the
usual proofs do in [5] or [21], see also [83, Chap. 5].

In Sect. 4.2 the result on the periphery is used to constitute a genus formula
in Proposition 4.2.6 which relates the genus of a projective rigid analytic curve
to geometric data of the reduction. The formula allows us to define the genus of
a formal fiber which serves as a measure for the quality of the singularity in the
reduction. From these results we deduce the Stable Reduction Theorem in Sect. 4.4
for smooth projective curves by studying the behavior of meromorphic functions in
Sect. 4.3. Blowing-up and blowing-down of components in the reduction can easily
be handled by changing formal analytic structures.

Finally, the Stable Reduction Theorem leads in Sect. 4.6 to a construction of
a universal covering of a curve. In the case of a split rational reduction the uni-
versal covering can be embedded into the projective line and its deck transforma-
tion group is a subgroup of PGL(2,K), which actually is a Schottky group. Finally
we obtain a characterization of Mumford curves by conditions on its stable reduc-
tion.

We want to mention that there is also a rigid-analytic proof of the Stable Reduc-
tion Theorem by van der Put [96].

In the sections Sect. 4.1 till Sect. 4.3 we assume that our non-Archimedean field
K is algebraically closed.
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4.1 Formal Fibers

In this section we prefer the notion of reduction which was introduced in Defini-
tion 3.1.6. In the following let X be a formal analytic space over K which is re-
duced. Note that we omit the subindex “K”. A reduction is a map ρ :X→ ˜X in the
sense of Definition 3.1.6(c). We will analyze the formal fibers of points x̃ ∈ ˜X; cf.
Definition 3.1.6(d). This was first studied by Bosch in [7]. In the case of curves, we
give here a simplified proof and a concrete approach to the result [11, 2.4].

If X = SpAK is a reduced affinoid space, then we put

A := {f ∈AK ;
∣

∣f (x)
∣

∣≤ 1 for all x ∈X}.
Let ˜A be the reduction of AK , cf. Definition 1.4.4. There is a canonical surjective
map

ρ :X := SpAK −→ ˜X := Spec ˜A, x �−→ ρ(x) := x̃.

Definition 4.1.1. The pre-image of a point x̃ under ρ is called the formal fiber of x̃.
An open formal affinoid variety U ⊂X with ρ−1(x̃)⊂ U is called a formal neigh-
borhood of the formal fiber.

In the following let X be an affinoid space which is reduced of pure dimension 1
with canonical reduction ˜X. Due to Corollary 1.2.6 there is a finite map

ϕ :X −→D

from X to the unit disc D such that its reduction ϕ̃ : ˜X→ ˜D = A
1
k is finite and

generically étale.
Let TK :=K〈ζ 〉 be the Tate algebra in one variable ζ . So TK coincides with the

ring of holomorphic functions on D. Set

T :=R〈ζ 〉 = {f ∈ TK ; |f | ≤ 1
}

and let

˜T := T/mRT = k[ζ̃ ]
be its canonical reduction, where mR ⊂ R is the maximal ideal of R and ζ̃ the
reduction of ζ . The essential tool for our proof is the so-called Gradgleichung of
Theorem 3.1.16

n := [A : T ] = [˜A : ˜T ],
where the brackets indicate the degree of the associated extension of their total fields
of fractions. Since ˜A is a finite ˜T -module via ϕ̃∗ and free of ˜T -torsion, ˜A is a free
˜T -module. Then it follows from Theorem 3.1.17 that there is a T -basis a1, . . . , an
such that

A= T · a1 ⊥ . . .⊥ T · an, (4.1)
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where ⊥ indicates that the sum is orthonormal; i.e., for the sup-norm holds

|t1a1 + · · · + tnan|X =max
{|t1|D, . . . , |tn|D

}

.

In particular, for every open admissible U ⊂D and every f ∈OX(ϕ
−1(U)) there is

a unique representation

f = t1a1 + · · · + tn · an with ti ∈OD(U).

We remind the reader that such a decomposition is in general no longer orthonormal
if U is not formal open. However, we will show that the orthonormal decomposition
(4.1) remains valid for formal fibers. Set

D+ :=
{

z ∈D; ∣∣ζ(z)∣∣< 1
}

,

X+ := ϕ−1(D+)=
{

x ∈X; ∣∣ϕ(x)∣∣< 1
}

.

Let us go back to f ∈OX(ϕ
−1(U)) from above. We can consider the characteristic

polynomial

χf (η)= (−1)nηn + χ1 · ηn−1 + · · · + χn ∈OD(U)[η]
of the multiplication by f on OX(ϕ

−1(U)). The sup-norm of f over ϕ−1(U) is
given by

|f |U =max
{

ν
√|χν |U ;ν = 1, . . . , n

}

(4.2)

by Lemma 1.4.1. In the following, for ρ ∈ |K×| with 0< ρ ≤ 1, set

Dρ :=
{

z ∈D; ∣∣ζ(z)∣∣≤ ρ
}

,

Xρ :=
{

x ∈X; ∣∣ϕ(x)∣∣≤ ρ
}= ϕ−1(Dρ).

(4.3)

For f ∈OX(X) the behavior of the sup-norm |f |ρ := |f |Xρ |Xρ on Xρ can be de-
scribed by a Newton polygon. This is a piecewise log-linear, continuous function
which is monotone increasing; i.e., there are finitely many breaks

ci ∈
∣

∣K×
∣

∣ with 0< c1 < · · ·< cr+1 = 1,

exponents νi ∈Q with 0≤ ν1 ≤ · · · ≤ νr and bi ∈ |K×| such that

|f |ρ := |f |Xρ = bi · ρνi for ci ≤ ρ ≤ ci+1 for i = 1, . . . , r.

Indeed, this follows from (4.2), because the coefficients χν 
= 0 have only finitely
many zeros and the spectral norm of an invertible function on an annulusA(ci, ci+1)

behaves like a power of ρ, as follows from Proposition 1.3.4.
On ˜T = k[ζ̃ ]we have the (additively written) valuation given by the ideal (ζ̃ ). We

denote this valuation by o(t̃) for t̃ ∈ ˜T − {0}, in particular we have that o(0̃)=∞.
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This gives rise to the spectral norm

o : ˜A−→Q, f̃ �−→ o(f̃ ) :=min

{

o(χ̃ν)

ν
;ν = 1, . . . , n

}

,

on ˜A, where (χ̃1, . . . , χ̃n) are the coefficients of the characteristic polynomial of f̃ ,
which is obviously the reduction of the characteristic polynomial of f ∈ A as A is
a free T -module and ˜A=A⊗R k =A⊗T

˜T .
Now we are prepared to verify the following result.

Lemma 4.1.2. Let t1, . . . , tn be elements of TK and set

f = t1 · a1 + · · · + tn · an.
(a) Then there exists a constant c(f ) ∈ |K×| with c(f ) < 1 and an exponent

σ(f ) ∈Q such that

|f |ρ = s(f ) · ρσ(f ) for all ρ ∈R with c(f )≤ ρ ≤ 1,

where s(f ) :=max{|t1|1, . . . , |tn|1}.
(b) If s(f )= 1, then σ(f )= o(f̃ ).

Proof. (a) We may assume s(f ) = 1. The Newton polygon of f shows that there
exist c(f ) and σ(f ) such that |f |ρ = s(f ) · ρσ(f ) for all ρ with c(f )≤ ρ ≤ 1 and
a constant s(f ). It remains to show that s(f )= 1. The latter follows from the fact
that ã1, . . . , ãn are linearly independent over ˜T .

(b) This follows from the fact that the reduction of the characteristic polynomial
of f is the characteristic polynomial of the reduction f̃ . �

In the following we will modify the basis a1, . . . , an in such a way that their
reductions are part of an orthonormal basis with respect to the order function o. We
will build such an orthonormal basis of the k-vector space ˜A in a constructive way.

Notation 4.1.3. Consider the normalization ˜A′ of ˜A over the ideal ζ̃ ˜A. Then we
introduce the following notations:

d number of points x̃j in ˜X = Spec ˜A above the origin 0̃ ∈˜D,
d ′ number of points x̃′i in ˜X′ = Spec ˜A′ above the origin 0̃ ∈˜D,
ei ramification index of ζ̃ in ˜A′ at x̃′i ,

ζ̃i uniformizer of ˜A′ at x̃′i such that ζ̃ ≡ ζ̃
ei
i mod (x̃′i˜A′)ei+1,

ε̃i idempotent to single out the localization of ˜A′ at x̃′i mod ˜A′ · ζ̃
for i = 1, . . . , d ′ and

b̃i,ν := ε̃i · ζ̃ νi for ν = 0, . . . , ei − 1.
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In particular, we have that

n= e1 + · · · + ed ′ .

There exists a power ζ̃ N such that ζN · ˜A′ ⊂ ˜A. Then

˜A/˜A′ζ̃ N = k · �1 ⊕ · · · ⊕ k · �r
is a finite dimensional vector space over k. The basis (�1, . . . , �r ) is induced by a
system �̃1, . . . , �̃r in ˜A which is chosen to be orthonormal with respect to the order
function o; i.e.

o

(

r
∑

j=1

c̃j �̃j

)

=min
{

o(c̃1�̃1), . . . ,o(c̃r �̃r )
}

.

Such a system can be constructed by stepwise choosing liftings of linearly indepen-
dent systems of ascending order. In particular, each �̃j has order o(�̃j ) < N . The
completion of ˜A′ with respect to the ideal ˜A′ζ̃ can be presented in the form

̂
˜A′ =

d ′
⊕

i=1

k[[ζ̃i]] =
d ′
⊕

i=1

(

k[[ζ̃ ]]ε̃i ζ̃ 0
i ⊕ · · · ⊕ k[[ζ̃ ]]ε̃i ζ̃ ei−1

i

)

.

Thus, the system
(

ζ̃ μ+N b̃i,ν;μ ∈N, ν = 0, . . . , ei − 1, i = 1, . . . , d ′
)

is a Schauder basis of ζ̃ N̂˜A′. Since ̂˜A′/ζ̃N̂˜A′ has an orthogonal basis with respect
to our order function o, the same is true for the subspace ̂˜A/ζ̃N̂˜A′. Hereby, we see
that the basis of ζ̃ N̂˜A′ can be extended to an orthogonal basis of ̂˜A by adding the
elements �̃1, . . . , �̃r which can be chosen in ˜A. Then the system

(h̃λ)λ∈Λ := (�̃1, . . . , �̃r )∪
⋃

μ∈N

(

ζ̃ μ · ζ̃ N b̃i,ν; ν = 0, . . . , ei − 1
i = 1, . . . , d ′

)

indexed by a set Λ is a topological k-basis of the completion ̂˜A; i.e., every f̃ ∈ ̂˜A
can be represented in a unique way as a convergent series

f̃ =
∑

λ∈Λ
c̃λh̃λ with c̃λ ∈ k.

Let hλ ∈ A be a lifting of h̃λ for λ ∈Λ; they are chosen in such a way that we
first choose liftings �j ∈A of the �̃j and ai,ν ∈A of the ζ̃ N b̃i,ν and multiply the ai,ν
with the monomials ζμ. Thus, we obtain the system

(hλ;λ ∈Λ)= (�1, . . . , �r )∪
⋃

μ∈N

(

ζμ · ai,ν; ν = 0, . . . , ei − 1
i = 1, . . . , d ′

)

⊂A.

We have ãi,ν = ζ̃ N b̃i,ν for the reduction of ai,ν .
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Lemma 4.1.4. There exists an element �0 ∈ |K×| with 0 < �0 < 1 with the prop-
erty: If Λ′ ⊂Λ is a finite subset and cλ ∈K for λ ∈Λ′, then

∣

∣

∣

∣

∑

λ∈Λ′
cλ · hλ
∣

∣

∣

∣

ρ

=max
λ∈Λ′
{|cλ| · ρo(h̃λ)

}

for �0 ≤ ρ ≤ 1.

Proof. In our system (hλ;λ ∈Λ) there are only finitely many elements �j , ai,ν in-
volved which do not belong to T . For these elements there exists a common �0 such
that their Newton polygon over [�0,1] is log-linear. Then it is log-linear for all hλ
over [�0,1], since every product ζμ · ai,ν is also log-linear over [�0,1]. Thus, the
inequality “≤” follows from Lemma 4.1.2.

For the converse inequality, set f := ∑λ∈Λ′ cλ · hλ. Let us first consider
the case where o(hλ) = α for all λ ∈ Λ′. Obviously, we may assume that
max{|cλ|;λ ∈Λ′} = 1. Then look at the characteristic polynomial of f

χf (η)= (−1)nηn + χ1 · ηn−1 + · · · + χn ∈ T [η].

Its reduction is the characteristic polynomial of f̃ . Then the spectral norm of f |Xρ

is given by

|f |ρ =max
{

ν
√|χν |ρ;ν = 1, . . . , n

}

.

For g ∈ T with |g|1 = 1 we have that |g|ρ ≥ ρo(g̃). Thus, we see that

|f |ρ ≥ n
max
ν=1

ν
√|χν |ρ ≥ ρminnν=1 o(χ̃ν )/ν ≥ ρo(f̃ ).

Since the system (h̃λ;λ ∈Λ) is orthogonal with respect to o, we have that o(f )= α.
Thus, the assertion is true in our special case.

In the general case, we arrange the sum with respect to o. Let

V := {α ⊂Q;α = o(hλ) for some λ ∈Λ′ with cλ 
= 0
}

be the set of all possible orders. Thus, we obtain a decomposition

f =
∑

α∈V
fα with fα :=

∑

o(λ)=α
cλhλ,

where o(λ) := o(h̃λ). From our special case we know that

|fα|ρ = sα · ρα with sα := max
o(λ)=α

|cλ|

for all ρ ∈ |K×| with �0 ≤ ρ ≤ 1. The set

S := {ρ ∈ [�0, �1]; sαρα = sβρ
β for some α,β ∈ V with α 
= β

}
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is finite. Thus, using the ultrametric inequality, we see

|f |ρ =max
λ∈Λ′
{|cλ| · ρo(h̃λ)

}

for all ρ ∈ [�0,1] − S. Since |f |ρ is a continuous function on ρ, the assertion fol-
lows. �

Corollary 4.1.5. Let
∑

λ∈Λ cλhλ be a convergent series in OX(X+), then
∣

∣

∣

∣

∑

λ∈Λ
cλhλ

∣

∣

∣

∣

= sup
λ∈Λ

|cλ|.

Proposition 4.1.6. In the above situation let π ∈R with 0< |π |< 1. Set

T+ :=
{

t ∈OD(D+);
∣

∣t (z)
∣

∣≤ 1 for all z ∈D+
}

,

A+ :=
{

f ∈OX(X+);
∣

∣f (z)
∣

∣≤ 1 for all z ∈X+
}

.

Then we have the following results:

(a) A+ is complete with respect to the (πA+ + ζA+)-adic topology.
(b) Every holomorphic function f on X+ has a unique representation in the form

f =∑λ∈Λ cλ · hλ which converges on Xρ for all ρ ∈ |K×| with ρ < 1.

Moreover, |f | ≤ 1 if and only if cλ ∈R for all λ ∈Λ.

(c) The canonical morphism A→A+ yields an isomorphism from the (πA+ ζA)-
adic completion of A to A+. In particular, A+ =A⊗T T+.

Proof. (a) If (fn)n∈N is a Cauchy sequence in A+, then the restriction (fn|Xρ )n∈N
is a Cauchy sequence in OX(Xρ) for every ρ ∈ |K×| with ρ < 1, and converges to
a unique element in OX(Xρ). Thus, we see that A+ is complete.

(b) Since A is a finitely generated T -module, the T/ζmT -module A/ζmA is also
finitely generated, and hence A/ζmA is a finitely generated R-module. Then there
exists a finite subset Λm ⊂Λ such that the residue classes {hλ;λ ∈Λm} is k-basis of
the vector space A/ζmA⊗R k = ˜A/ζ̃m˜A. By the lemma of Nakayama we see that
A/ζmA is generated by the set of the residue classes {hλ;λ ∈ Λm} over R. Thus,
we have that

A=Aζm ⊕
⊕

λ∈Λm

Rhλ. (∗)

Now consider the K-vector space

BK :=
{

∑

λ∈Λ
cλhλ; lim

λ∈Λ |cλ| · ρ
o(hλ) = 0 for all ρ < 1

}

.

It is evident that BK is a subspace of OX(X+), and that BK is complete and hence
closed in the Frechet space OX(X+).
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Put B := BK ∩ O̊X(X+) = B ∩ A+, which is an R-submodule of A+. This R-
module is complete and hence closed in A+. Then the canonical map A→ A+
factorizes through B . In fact, if f ∈ A, then by (∗) for every m ∈ N there exists an
element bm ∈⊕λ∈Λm

Rhλ such that f − bm = ζmfm ∈ ζmA. Then (bm)m∈N is a
Cauchy sequence in B . Since B is complete, we see that f ∈ B .

Thus, we see that the canonical map AK → OX(X+) factorizes through BK .
Since AK has dense image in OX(X+), the K-vector space BK is a dense closed
subset of OX(X+), and hence BK =OX(X+). This verifies our assertion. The ad-
ditional assertion follows from Corollary 4.1.5.

(c) As in the proof of (b) we see that the canonical isomorphism

A/
(

πnA+ ζmA
) ˜−→A+/

(

πnA+ + ζmA+
)

for all m,n ∈N

is bijective. This implies the assertion by (a). �

One can introduce the notion of the order of a function f ∈A+ as well. For such
an f there is also a Newton polygon, but it can have infinitely many breaks; i.e.,
there exist real numbers 0< c1 < c2 < · · ·< 1 such that

|f |ρ = bi(f ) · ρσi(f ) for ci ≤ ρ ≤ ci+1.

The polygon is strictly increasing and thus σi(f ) < σi+1(f ) if it is not constant. We
set o(f )=∞ if |f |1 < 1 or σi(f )→∞.

Proposition 4.1.7. In the above situation we have the following:

(a) There is a canonical map ρ : A+ → ̂˜A from A+ to the completion of ˜A with
respect to the ideal ˜Aζ̃ . Its kernel is

kerρ =mR[[ζ ]] · a1 ⊕ · · · ⊕mR[[ζ ]] · an,
where mR is the maximal ideal of R. Moreover, kerρ is just the set of those
f ∈A+ with o(f )=∞.

(b) The map ρ is a surjective homomorphism of rings. In particular, ̂˜A is the sepa-
rated completion of A+ with respect to the order function o.

Proof. (a) Due to Proposition 4.1.6 the canonical residue maps

A/(Aπ +Aζ)j −→ ˜A/˜Aζ̃ j for j ∈N

imply a surjective morphism A+ →̂˜A. If A= T , then the map is given by

T+ ˜−→R[[ζ ]] −→ k[[ζ̃ ]] =̂˜T .
The kernel of ρ is as stated, since (a1, . . . , an) is a T -basis of A. Thus, the descrip-
tion of kerρ by o(f ) follows as well.
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(b) The ideal am := {f ∈ A+;o(f ) ≥ m} is equal to A+mR + A+ζm. So
A+/am ˜−→˜A/˜Aζ̃m is an isomorphism for all m ∈N. �

Our next goal is to show that the completion of ˜A depends intrinsically on the
analytic structure of X+ and is independent of the ambient space.

Proposition 4.1.8. Let ˜X = Spec ˜A and x̃ ∈ ˜X be a closed point. Then we have the
following results:

(a) The restriction ρ : ◦OX(X+(x̃))→ ̂˜Ax̃ is surjective, where
◦
OX is the sheaf of

functions bounded by 1 and ̂˜Ax̃ is the completion of ˜A at x̃.

(b) The ring
◦
OX(X+(x̃)) is local and its maximal ideal is

mx̃ =
{

f ∈ ◦
OX

(

X+(x̃)
); ∣∣f (x)∣∣< 1 for all x ∈X+(x̃)

}

.

(c) The separated mx̃ -adic completion of
◦
OX(X+(x̃)) equals ̂˜Ax̃ .

(d) The completion ̂˜Ax̃ depends on X+(x̃) but not on the ambient space.
(e) X+(x̃) is connected.

Proof. There exists a finite homomorphism ϕ̃ : ˜A→ ˜T such that x̃ lies above the
origin 0̃ ∈ Spec˜T . Let x̃1 := x̃, x̃2, . . . , x̃d be all the points above 0̃. Due to Propo-
sition 4.1.7 the restriction map induces a surjective morphism

◦̂
OX

(

X+(x̃1)
)× · · · × ◦̂

OX

(

X+(x̃d )
)−→̂˜A=̂˜Ax̃1 × · · · ×̂˜Ax̃d ,

where the decomposition corresponds to the canonically given idempotents. Then
all the assertions follow from Proposition 4.1.7. For assertion (c) note that |K×| is
divisible. Thus, mR =m2

R and hence mm
x̃

coincides with the set of functions of order
≥m at x̃ for all m ∈N. �

The statements of Propositions 4.1.6, 4.1.7 and 4.1.8 are also true in higher di-
mensions but their proofs are more involved; cf. [7].

Lemma 4.1.9. Let ϕ : Y := SpB→X := SpA be a morphism of reduced affinoid
spaces. Let ỹ ∈ ˜Y and x̃ := ϕ̃(ỹ) ∈ ˜X be points in the reduction. Assume that the
map ϕ̃ : ˜Y → ˜X is étale at ỹ, then the induced morphism

ϕ : Y+(ỹ) ˜−→X+(x̃)

of the formal fibers is an isomorphism.

Proof. The statement is local with respect to the formal topology. We may assume
that ˜A→ ˜B is standard étale; cf. [15, 2.3/3]. There is an open immersion ˜Y ↪→ ˜Z =
V (˜P) ⊂ A

1
˜X

, where ˜P ∈ ˜A[ζ̃ ] is a monic polynomial and its derivative ˜P ′ has no
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zeros on ˜Y . Moreover, ˜Y is mapped isomorphically to ˜Z
˜Q, where ˜Q ∈ ˜A[ζ̃ ]. We can

lift the polynomial ˜P to a monic polynomial P ∈A[ζ ], and hence Z = V (P )⊂DX

is a closed subvariety of the relative disc DX . In particular, V (P )→X is formally
étale at ỹ. We also lift ˜Q to a polynomial Q ∈A[ζ ].

By Remark 3.2.5 the formal analytic structures gives rise to formal R-models.
Note that the isomorphism ˜Y ˜−→˜Z

˜Q can be defined at a level modulo π , where we
eventually have to replace π some π ′ with |π | < π ′| < 1. Thus, we can apply the
lifting property of étale maps. So, the isomorphism ˜Y ˜−→˜Z

˜Q lifts to an isomorphism
Y ˜−→Z|Q|=1 to the open part Z|Q|=1 of Z, where Q takes absolute value 1. Thus,
we can replace Y by Z. Since the residue field extension k(x̃) ↪→ k(ỹ) is trivial,
we can consider ỹ as a simple zero of ˜P(x̃)(ζ̃ ). Then Z ∩ Y+(ỹ)→ X+(x̃) is an
isomorphism. �

Corollary 4.1.10. Let X = SpA be a reduced affinoid space with reduction ˜X =
Spec ˜A. If x̃ is a smooth point of ˜X of dimension n and if the residue field exten-
sion k = k(x̃) is trivial, then the formal fiber X+(x̃) is isomorphic to the open unit
ball Dn+.

Proof. Since ˜X is smooth at x̃ of dimension n, there exists functions f1, . . . , fn van-
ishing at x̃ such that their differentials df1, . . . , dfn generate the module differential
forms. Then the map f := (f1, . . . , fn) : X→ D

n is formally étale at x̃ and hence
the assertion follows from Lemma 4.1.9. �

Proposition 4.1.11. Let X = SpAK be smooth of dimension 1. Let A be the set
of all f ∈ AK with |f |X ≤ 1 and ˜A= A⊗R k the canonical reduction of AK . Let
x̃ be a point in the reduction ˜X = Spec ˜A. Let f be a function in A such that x̃
is an isolated zero of f̃ ∈ ˜A. Let x̃′1, . . . , x̃′d ′ be all the points in the normalization
˜X′ = Spec ˜A′ of ˜X lying over x̃.

If now ρ ∈ |K×| with ρ < 1 is close to 1, then the rigid analytic variety
{x ∈ X+(x̃); |f (x)| ≥ ρ} decomposes into d ′ connected components R1, . . . ,Rd ′
which are semi-open annuli.

More precisely, let ξ be a coordinate function on a disc D, and denote by ei =
ordx̃′i (f̃ ) the vanishing order of f̃ in ˜A′ at x̃′i , for i = 1, . . . , d ′. Then there are
isomorphisms

ϕi :Ri ˜−→
{

z ∈D;ρ1/ei ≤ ∣∣ξ(z)∣∣< 1
}

such that f |Ri coincides with ϕ∗i (ξ ei ), up to a unit in O̊X(Ri).

Furthermore, if the image h̃ ∈ ̂O
˜X,x̃ of an element h ∈ ◦

OX(X+(x̃)) has order
τi0 <∞ at x̃′i0 for some index i0, and if ρ is close to 1, then h|Ri0 coincides with

ϕ∗i0(ξ
τi0 ), up to a unit in

◦
OX(Ri0).

Proof. First assume that f gives rise to a finite map ϕ̃ : ˜X→ ˜D = A
1
k such that

ϕ̃∗(ζ̃ ) = f̃ . In this case we are in a situation as already discussed in the whole



4.1 Formal Fibers 187

section. Recall the notations from Notation 4.1.3. We introduced idempotents ε̃i
and uniformizers ζ̃i of the local ring ˜A′

x̃′i
for i = 1, . . . , d ′. Therefore, ε̃i · ζ̃i ∈ ˜A′

is a uniformizer of ˜A′
x̃′i

which vanishes at the points x̃′j of order greater than ej for

j 
= i. For i = 1, . . . , d ′ set

εi := ai,0/ζ
N and ξi := ai,1/ζ

N .

The functions ε1, . . . , εd ′ behave like liftings of the idempotents ε̃1, . . . , ε̃d ′ and
ξ1, . . . , ξd ′ behave like liftings of the uniformizers ζ̃1, . . . , ζ̃d ′ . By our choice in No-
tation 4.1.3 we have that

ordx̃′i ε̃i = 0 and ordx̃′j ε̃i > ej for j 
= i

ordx̃′i ξ̃i = 1 and ordx̃′j ξ̃i > ej for j 
= i

ordx̃′j (ξ̃
ei
i − ζ̃ ε̃i ) > ej for all j = 1, . . . , d ′.

(4.4)

Although εi and ξi eventually do not belong to A, they are defined as holomor-
phic functions on X − V (ζ ), so they have Newton polygons. Let �0 < 1 be chosen
as in Lemma 4.1.4, then we see

|εi |ρ = 1 for all ρ ∈ [�0,1],
|ξi |ρ = ρ1/ei for all ρ ∈ [�0,1], (4.5)

because o(ãi,0)=N and o(ãi,1)=N + 1/ei . Furthermore, we have

|εi · εj |ρ < 1 for all i, j with i 
= j,ρ ∈ [�0,1)
∣

∣ε1(x)+ · · · + εd ′(x)
∣

∣= 1 for all x ∈A(ρ,β), (4.6)

where, for �0 ≤ ρ < β < 1, we put

A(ρ,β) := {z ∈D;ρ ≤ ∣∣ζ(z)∣∣≤ β
}

,

R(ρ,β) := ϕ−1
(

A(ρ,β)
)

.

Moreover, for i = 1, . . . , d ′ set

Ri(ρ,β) :=
{

x ∈R(ρ,β); εi(x)= 1
}

.

By (4.5) and (4.6) we see that, for ρ,β ∈ [ρ0,1) with ρ < β < 1,

R(ρ,β)=R1(ρ,β)∪̇ · · · ∪̇Rd ′(ρ,β)
is a disjoint union of d ′ connected components. One can also write

Ri(ρ,β) :=
{

x ∈ ϕ−1
i

(

A(ρ,β)
);ρ1/ei ≤ ∣∣ξi(x)

∣

∣≤ β1/ei
}

.
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For the slope of bi := ξ
ei
i − ζεi we see by (4.4) that

|bi |ρ < ρei for ρ ∈ [�0,1]. (4.7)

Now consider the finite extensions

K〈ζ/β,ρ/ζ 〉 ⊂K
〈

ζ/β,ρ/ζ, ξi/β
1/ei , ρ1/ei /ξi

〉⊂OX

(

Ri(ρ,β)
)

.

The degree of the first extension is at least ei , as seen by considering the slope
of |ξi |, and the extension from the first to the last is at most ei , since the morphism
ϕ : R(ρ,β)→ A(ρ,β) is finite of degree n and n = e1 + · · · + ed ′ . So ξi satisfies
an integral equation K〈ζ/β,ρ/ζ 〉 over of degree ei . Then we can represent every
f ∈K〈ζ/β,ρ/ζ, ξi/β1/ei , ρ1/ei /ξi〉 as convergent series

f =
∑

μ∈Z

ei−1
∑

ν=0

cμ,νζ
μξνi

Due to Lemma 4.1.4 the slope of |f |ρ is given by

|f |ρ =max
{|cμ,ν |ρμρν/ei

}=max
{|cμ,ν |ρμ�ν

}

So we have |f |ρ ≤ 1 if and only if |cμ,ν |ρμ�ν ≤ 1 for all μ,ν. This implies

R〈ζ/ρ,ρ/ζ, ξi/�,�/ξi〉 = O̊X

(

Ri(ρ,ρ)
)∩K〈ζ/ρ,ρ/ζ, ξi/�,�/ξi〉.

Then we see by Lemma 3.1.4 that the relation (4.7) yields

R〈ζ/ρ,ρ/ζ, ξi/�,�/ξi〉 =R〈ξi/�,�/ξi〉.
Thus, the degree of the finite extension K〈ξi/�,�/ξi〉 ⊂OX(Ri(ρ,β)) is equal to 1,
and hence both rings coincide, because the first one is normal.

This settles all the assertions in the case, when f̃ gives rise to a finite morphism
ϕ̃ : ˜X′ →˜D with ϕ̃−1(0̃)= {x̃′1, . . . , x̃′d ′ }.

In the general case we can choose a g ∈AK with |g| ≤ 1 such that x̃ is an isolated
zero of g̃ and g̃ gives rise to a finite morphism ϕ̃ : ˜X→ ˜D as above. Then we can
apply the result for g̃. For each i = 1, . . . , d ′ there exists a τi ∈N such that the order
of f̃ at x̃′i is τi . Then f |Ri(ρ,β) behaves like ξτii . Here τi corresponds to the number
ei of the assertion.

The assertion on h follows in a similar way, because due to Proposition 4.1.7 one
can approximate h by an element g ∈ A modulo a (τi0 + 1)-power of x̃′i0 . Then h

and g have the same behavior on Ri0 up to a unit in
◦
OX(Ri0). �

In simple cases one can determine the structure of the whole formal fiber.

Proposition 4.1.12. Let X be a smooth affinoid space of pure dimension 1. Let
x̃ ∈ ˜X = Spec ˜A be a closed point.
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(a) x̃ is a smooth point on ˜X if and only if X+(x̃)∼=D+.
(b) x̃ is an ordinary double point on ˜X if and only if X+(x̃)∼=A(ε,1) is isomorphic

to an open annulus of a height ε ∈ |K×| with 0< ε < 1.

Proof. (a) If X+(x̃)∼= D+, then ̂˜A is a formal power series ring in one variable by
Proposition 4.1.8, and hence ˜X is smooth at x̃.

Now assume that ˜X is smooth at x̃. Let ξ̃ be a uniformizer of ˜A at x̃ and ξ ∈A a
lifting of ξ̃ . Then, the map ξ :X→D is formally étale. Thus, the assertion follows
from Corollary 4.1.10.

(b) Let x̃ be a double point, then ˜A = k ⊕ m̃, where m̃ ⊂ ˜A is the maximal
ideal associated to x̃. Since x̃ is a double point, m̃= ˜Af̃ + ˜Ag̃ is generated by two
elements after replacing ˜X by a formal neighborhood of x̃. Assume first that x̃ lies
on different components. Then we may assume that f̃ · g̃ = 0̃. There exist liftings
f ∈ A and g ∈ A of f̃ and g̃. Then one shows A = R ⊥ Af ⊥ Ag. Moreover,
f̃ · g̃ = 0̃ implies f · g = h0 with γ := |h0|< 1. Using A= R ⊥Af ⊥Ag, we can
write

h0 := f · g = c1 + g1f + f1g with c1 ∈R,f1, g1 ∈A
satisfying |c1|, |f1|, |g1| ≤ γ . By induction there are elements ci ∈ R and
fi, gi, hi ∈A with

(

f −
n
∑

i=1

fi

)

·
(

g −
n
∑

i=1

gi

)

=
n
∑

i=1

ci + hn

satisfying |ci |, |fi |, |gi | ≤ γ i and |hi | ≤ γ i+1 for i ∈N. In fact, decompose

hn = cn+1 + gn+1f + fn+1g

with cn+1 ∈ R,fn+1, gn+1 ∈ A and |cn+1|, |fn+1|, |gn+1| ≤ γ n+1. Then we obtain
hn+1 ∈A with |hn+1| ≤ γ n+2. Therefore, the series

f ′ := f −
∞
∑

i=1

fi, g′ := g −
∞
∑

i=1

gi and c :=
∞
∑

i=1

ci

converge and satisfies f ′ · g′ = c′ ∈ R with |c′| < 1. The case c′ = 0 is excluded,
sinceA is a domain. The reduction of f ′ and g′ coincides with f̃ and g̃, respectively.
Thus, we may assume that f,g ∈A satisfy fg = c ∈ R − {0}. We have the map ϕ :
K〈ζ, c/ζ 〉→AK,ζ �→ f . If ρ ∈K× with |c|< |ρ|< 1, then consider the mapping

ϕρ :K〈ζ/ρ, c/ρζ 〉 −→AK〈f/ρ,g/ρ〉 =OX

(

Xρ(x̃)
)

,

where

Xρ(x̃) :=
{

x ∈X; |c/ρ| ≤ ∣∣f (x)∣∣≤ ρ
}

.

By reason of dimensions it suffices to show that ϕρ is surjective. Moreover, it suf-
fices to show that the restriction of every element of a ∈ A to Xρ lies in the image
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of ϕρ , since a generating system of the affinoid algebra AK〈f/ρ,g/ρ〉 is given by
elements of A and the functions f/ρ and g/ρ. Indeed, by repeated application of
the decomposition A= R ⊥Af ⊥Ag and using f · g = c ∈ R, for every a ∈A we
can construct a series

a = α0 +
∞
∑

n=1

αnf
n +

∞
∑

n=1

βng
n

with αn,βn ∈ R which converges on the domain Xρ(x̃), as long as |ρ|< 1. There-
fore, ϕρ is surjective and hence bijective.

If the point x̃ lies only on one component, there exists a pointed étale morphism
(˜Y , ỹ)→ (˜X, x̃) from some affine scheme ˜Y such that the point ỹ lies on two dif-
ferent components; cf. [78, Cor. 1, p. 99]. Now one can lift the morphism ˜Y → ˜X to
a formal étale morphism Y →X. Then by Lemma 4.1.9 the assertion follows from
the special case discussed above.

The converse implication follows from Proposition 4.1.8(c), because the m-adic

completion of
◦
OX(X+(x̃)) is isomorphic to k[[ζ, η]]/(ζη) if X+(x̃) is an open an-

nulus. Thus, the completion of O
˜X,x̃ is isomorphic to k[[ζ, η]]/(ζη), and hence x̃ is

an ordinary double point. �

4.2 Genus Formula

Proposition 4.1.11 enables us to define the genus of the formal fiber of a closed point
of ˜X, where ρ : X→ ˜X is a reduction of a connected smooth projective curve X.
As a preparation we show the following

Proposition 4.2.1. Let B1, . . . ,Bn be pairwise disjoint closed affinoid discs in X.
Let Bν,+ be a formal fiber of Bν , and set

B0 :=X− (B1,+ ∪ · · · ∪Bn,+).
Then B := {B0, . . . ,Bn} is a formal covering of X. Its associated reduction XB

consists of n rational curves ˜X1, . . . ,˜Xn which meet at a common point q . The
canonical reductions ˜Bν are open subsets of ˜Xν for each ν = 1, . . . , n. In particular,

˜XB = {q}∪̇˜B1∪̇ · · · ∪̇˜Bn.
The point q is smooth on ˜XB if and only if g(X)= 0 and n= 1.

Proof. B := {B0,B1, . . . ,Bn} is a formal covering of X by Proposition 3.1.10. The
reduction ˜XB contains the canonical reduction ˜Bν of Bν as an open subset for
ν = 1, . . . , n. So ˜XB is a union of rational curves which meet in a single point q .
Obviously, q is smooth at ˜XB if and only if ˜XB is isomorphic to the projective line.
This is equivalent to n= 1 and g(˜XB)= 0. �
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Definition 4.2.2. Let X be a connected smooth projective curve equipped with a
formal analytic structure covering ρ : X→ ˜X in the sense of Definition 3.1.6. Let
˜X1, . . . ,˜Xn be the irreducible components of ˜X and let p : ˜X′ → ˜X be the normal-
ization of ˜X and ˜X′ν ⊂ ˜X′ be the normalization of ˜Xν . For a point q ∈ ˜X we put

N(q) := {ν ∈ {1, . . . , n};q ∈ ˜Xν

}

and n(q) := cardN(q).

For ν ∈N(q) we put

M(q, ν) := {q ′ ∈ ˜X′ν;p
(

q ′
)= q
}

and m(q, ν) := cardM(q, ν).

The cyclomatic number of the reduction ˜X is defined by

z(˜X) :=
∑

q∈˜X

∑

ν∈N(q)

(

m(q, ν)− 1
)+
∑

q∈˜X

(

n(q)− 1
)− n+ 1.

Remark 4.2.3. The cyclomatic number z(˜X) can be interpreted as the cyclomatic
number of a geometric graph G in the sense of Definition A.1.1. The vertices of
G are the irreducible components ˜X1, . . . ,˜Xn of ˜X and the singular points de-
fine edges. For each singular point q ∈ ˜X attach (m(q, ν) − 1) loops to the ver-
tex ˜Xν , then make a choice and connect the n(q) components passing through q by
(n(q)− 1) the edges. The resulting geometric graph is connected.

If the singularities of ˜X are at most ordinary double points, G = G(˜X) is
uniquely determined by ˜X, because each double point lies on at most two irreducible
components.

If z(˜X)= 0, then m(q, ν) = 1 for all q and ν. The configuration of the compo-
nents of ˜X is tree-like; i.e., the associated graph G(˜X) is a tree, and ˜X−{q} consists
of n(q) components. �

Definition 4.2.4. In the situation of Definition 4.2.2 let q ∈ ˜X be a closed point.
Let U ⊂ X be an open formal neighborhood of q . Let f ∈ OX(U) with |f |U ≤ 1
and assume that its reduction f̃ has a single zero at q . Consider constants ρ,ρμ,ν
with 0< ρ,ρμ,ν < 1 such that

X+(q)∩
{

x ∈X;ρ ≤ ∣∣f (x)∣∣}=
⋃

ν∈N(q)

⋃

μ∈M(q,ν)

Aμ,ν

is a disjoint union and such that there are isomorphisms

ϕμ,ν :Aμ,ν ˜−→{z ∈D;ρμ,ν ≤ |z|< 1
}

.

These data identify the periphery of the formal fiber of q as in Proposition 4.1.11.
Note that

∑

ν∈N(q) m(q, ν) = d ′, where d ′ is the number introduced in Nota-
tion 4.1.3. Then we define a smooth proper curve X(q) by pasting X+(q) with
affinoid discs Dμ,ν via ϕμ,ν ; i.e.,

X(q) :=X+(q)∪
⋃

μ,ν

Dμ,ν,
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where Dμ,ν = {z ∈ P
1
K ;ρμ,ν ≤ |z|}. Then X(q) is a smooth projective curve by

Theorem 1.8.1. Its genus is called the genus of the formal fiber X+(q).

In X(q) there are pairwise disjoint affinoid subdomains

Bμ,ν :=
{

z ∈Dμ,ν;1≤ |z|
}�D,

which are isomorphic to the unit disc. Furthermore,

B−μ,ν =
{

z ∈Dμ,ν;1< |z|
}

is a formal fiber of Bμ,ν . These discs give rise to a formal covering B of X(q) by
Proposition 3.1.10. By Proposition 4.2.1 the reduction ˜X(q) of X(q) with respect to
B has a unique singular point; also denoted by q . The formal fibers of q on X with
respect to ρ : X→ ˜X and of the one of X(q) with respect to ˜XB are isomorphic;
i.e., X+(q) and X(q)+(q) are isomorphic as rigid analytic spaces.

Lemma 4.2.5. In the above situation let α : ˜X′ → ˜X and β : ˜X(q)′ → ˜X(q) be the
normalization of ˜X and ˜X(q), respectively. Then there exists a canonical isomor-
phism

(α∗O˜X′/O˜X)q ˜−→(β∗O˜X(q)′/O˜X(q))q .

Proof. The modules in question are of finite length, so it is enough to show the
isomorphism for their q-adic completions. From Proposition 4.1.8 we can con-
clude ̂O

˜X,q � ̂O˜X(q),q as X+(q)�X(q)+(q). Since normalization and completion
processes are compatible in the case of affine algebras, the q-adic completion of
(α∗O˜X′)q and (β∗O˜X(q)′)q are the normalization of ̂O

˜X,q and ̂O
˜X(q),q , respectively.

This implies the assertion. �

Proposition 4.2.6. In the situation of Definition 4.2.2 we have the following for-
mula

g(X)=
n
∑

ν=1

g(˜Xν)+
∑

q∈˜X
g
(

X(q)
)+ z(˜X),

where g(˜Xν) is the genus of ˜Xν . In particular, if the singularities of ˜X are at most
ordinary double points, then

g(XK)= z(˜X)+
n
∑

ν=1

g(˜Xν).

Proof. By Remark 3.2.5 there is a formal R-model with special fiber ˜X. Since the
Euler-Poincaré characteristic is constant in a flat family, the genus of X can be
computed on the special fiber ˜X. We have the exact sequence

0→ H 0(˜X,O
˜X)→H 0

(

˜X′,O
˜X′
)→H 0(˜X,p∗O˜X′/O˜X)

→ H 1(˜X,O
˜X)→H 1

(

˜X′,O
˜X′
)→ 0,
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where p : ˜X′ → ˜X is the normalization of ˜X. Thus, we obtain that

g(X)= dimH 1(
˜X′,O
˜X′
)+
[

∑

q∈˜X
dim(p∗O˜X′/O˜X)q

]

− n+ 1.

By applying this formula to the curve X(q), we obtain that

g
(

X(q)
)= dim

(

p∗(O˜X(q)′)/O˜X(q)
)

q
−
[

∑

ν∈N(q)
m(q, ν)

]

+ 1 (∗)

because H 1(˜X(q)′,O
˜X(q)′)= 0, as ˜X(q)′ is rational. By Lemma 4.2.5 we have that

dim(p∗O˜X′/O˜X)q = dim(p∗O˜X(q)′/O˜X(q))q

= g
(

X(q)
)+
[

∑

ν∈N(q)

(

m(q, ν)− 1
)

]

+ n(q)− 1.

Since dimH 1(˜X′,O
˜X′)=
∑n

ν=1 g(
˜Xν), we see that

g(X)=
n
∑

ν=1

g(˜Xν)+
∑

q∈˜X
g
(

X(q)
)+ b,

where

b :=
∑

q∈˜X

[

∑

ν∈N(q)

(

m(q, ν)− 1
)+ (n(q)− 1

)

]

− n+ 1= z(˜X).

If the singularities of ˜X are at most ordinary double points, then g(X(q))= 0 by
Proposition 4.1.12 for all q ∈ ˜X. Thus, the asserted formulas are true. �

Corollary 4.2.7. If there exists a point q ∈ ˜X with g(X(q))= g(X), then

X−X+(q)= B1∪̇ · · · ∪̇Bn(q)
is a union of pairwise disjoint closed affinoid discs B1, . . . ,Bn(q).

Proof. If g(X(q)) = g(X), then all irreducible components ˜Xν are rational, the
curves X(p) have genus g(X(p))= 0 for all p ∈ ˜X− {q}, and its cyclomatic num-
ber z(˜X) is zero, as seen by the genus formula in Proposition 4.2.6. Then ˜X − {q}
decomposes into n(q) connected components

˜X− {q} = ˜B1∪̇ · · · ∪̇˜Bn(q);
cf. Remark 4.2.3. Let Bν ⊂ X be the formal open part which induces ˜Bν . Using
Proposition 4.1.11 we can add an open disc D−ν to Bν in order to compactify Bν to
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a proper smooth curve Yν with a formal structure ˜Yν such that ˜Yν = {q} ∪ ˜Bν . Then
q is a smooth point on ˜Yν . The genus formula in Proposition 4.2.6 yields g(Yν)= 0.
Thus, each Bν is isomorphic to a closed affinoid disc. �

The other extreme case g(X(q))= 0 can be characterized by our method as well.
A point q on a reduced algebraic curve ˜X is called an ordinary n-fold point if the
q-adic completion of O

˜X,q is isomorphic to k[[ζ1, . . . , ζn]]/(ζiζj ;1≤ i < j ≤ n).

Corollary 4.2.8. For a point q ∈ ˜X the following conditions are equivalent:

(a) g(X(q))= 0 and ˜X(q) has n components.
(b) q is an ordinary n-fold point on ˜X.
(c) X+(q) � P

1
K − (B1∪̇ · · · ∪̇Bn), where B1, . . . ,Bn are pairwise disjoint closed

affinoid discs in the projective line.
(d) For every subdomain D ⊂X+(q) the ring OX(D) is factorial and ˜X(q) has n

components.

Proof. (a)↔ (b): Let α : ˜X′ → ˜X and β : ˜X(q)′ → ˜X(q) be the normalization. Put

A := (α∗O˜X′/O˜X)q and B := (β∗O˜X(q)′/O˜X(q))q .

The formula (∗) in the proof of Proposition 4.2.6 shows g(X(q))= dimB − n+ 1,
where n is the number of components of ˜X(q). Thus, (a) is equivalent to dimB =
n− 1. The condition (b) is equivalent to dimA = n− 1. Since dimA = dimB by
Lemma 4.2.5, the equivalence of (a) and (b) is clear.

(a)→ (c): This is obvious as X+(q)�X(q)+(q) and X(q)� P
1
K .

(c)→ (b): This follows by a direct computation; cf. Example 3.1.11.
(c)→ (d): This is clear, because the polynomial ring is factorial.
(d)→ (a): It suffices to show g(X(q))= 0. Let B= (B0, . . . ,Bn) be the formal

covering which defines the formal structure of X(q); cf. Definition 4.2.4, where
B1, . . . ,Bn are pairwise disjoint closed discs and B0 is the complement of the union
of the open discs B−1 , . . . ,B−n , as in Proposition 3.1.10.

Next we make use of some facts we will show below. Due to Lemma 4.2.9 we
can enlarge the discs B1, . . . ,Bn so that we can assume by (d) that OX(B0) is fac-
torial. Since the meromorphic functions on X(q) are dense in OX(B0), the module
Γ (B0,OX(q)(D)) can be generated by meromorphic functions on X(q) for every
divisor D on B0.

Thus, we obtain that every divisor D is linearly equivalent to a divisor E with
support in B1∪· · ·∪Bn. Then Lemma 4.2.10 implies that the subgroup of the Picard
group Pic(X(q)) consisting of isomorphism classes of invertible sheaves of finite
order prime to chark is finitely generated. So we see that g(X(q))= 0, because this
subgroup would not be of finite type if the genus of X(q) would be positive. �

To verify the last implication we needed some preparations, which are also used
in later contexts. In the following let X be a connected smooth projective curve over
an algebraically closed field K .



4.2 Genus Formula 195

Lemma 4.2.9. Let B1, . . . ,Bn ⊂ X be pairwise disjoint closed discs in X.
Then there are pairwise disjoint closed discs B ′1, . . . ,B ′n ⊂ X and formal fibers
B ′1,+, . . . ,B ′n,+ of B ′1, . . . ,B ′n such that Bi ⊂ B ′i,+ for i = 1, . . . , n.

Proof. First we enlarge every Bi to a subdomain B ′i with Bi ⊂ B ′i,+. By
Lemma 3.1.9, there exists a meromorphic function ζi on X which serves as a co-
ordinate function on Bi . Then, for all c ∈ K× with |c| > 1 and small enough, the
subset {x ∈X; |ζi(x)| ≤ c} decomposes again in a disjoint union V (c)∪̇Bi(c) with
Bi ⊂ Bi(c) such that ζi/c is a coordinate function on Bi(c) as well. For c ∈ K×
with |c|> 1 and close to 1, the subsets B1(c), . . . ,Bn(c) satisfy the claim. �

Lemma 4.2.10. Let B1, . . . ,Bn ⊂X be pairwise disjoint closed discs in X and let
� be an integer prime to the residue characteristic char(k). If E is a divisor on X

such that

(i) Supp(E)⊂ B1 ∪ · · · ∪Bn,
(ii) deg(E|Bi )= 0 for i = 1, . . . , n,

(iii) � ·E = div(f ) for some f ∈M(X),

then E is principal.

Proof. By Lemma 4.2.9 we may assume that Supp(E|Bi ) ⊂ Bi,+ for i = 1, . . . , n.
Then we denote by B := (B0,B1, . . . ,Bn) the formal covering of X as defined in
Proposition 3.1.10. We view f as a function on B0 and adjust its supremum norm
to 1. Then we have that |f |Bi := |f |Bi−Bi,+| ≤ 1 for i = 1, . . . , n.

Since deg(f |Bi )= 0, we see that f induces a constant function on the reduction
˜Bi for i = 1, . . . , n. In particular, there exists an index j in {1, . . . , n} such that
|f |Bj = 1, and hence f̃ (q) 
= 0 for the singular point q ∈ ˜XB and so |f |Bi = 1 for
all i = 1, . . . , n. Therefore, f reduces to a constant function on ˜XB.

Using the binomial series for �-th roots, f has an �-th root g0 over B0, because
� is prime to char(k). Since OX(Bi) is factorial for i = 1, . . . , n, there are elements
gi ∈M(Bi) with div(gi) = E|Bi . Thus, we have that g�i f

−1|Bi =: hi ∈ OX(Bi)
×

for i = 1, . . . , n. Since Bi is a disc, there exist elements ki ∈OX(Bi)
× with hi = k�i .

So we can assume that f |Bi = g�i and that g0g
−1
i |B0∩Bi = ci is constant. Then g0 ex-

tends to a meromorphic function on C satisfying f = g�0, and hence E = div(g0). �

Proposition 4.2.11. Let g(X) be the genus of X. Then we have the following:

(a) Let B1,B2 ⊂ X be closed discs with B1 ∩ B2 
= ∅. If g(X) ≥ 1, then B1 ⊂ B2
or B2 ⊂ B1.

(b) Let A⊂X be an annulus of height 1 and let B ⊂X be a disc with A ∩ B 
= ∅.
If g(X)≥ 1, then B ⊂A or A⊂ B .

(c) If X is a union of finitely many subsets B ′1, . . . ,B ′n which are unions of increas-
ing sequences of discs, then g(X)= 0.

Proof. (a) If B1∪B2 =X, every divisor on X is linearly equivalent to a divisor with
support in B1 as easily follows from Lemma 3.1.9. Then it would follow g(X)= 0
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by Lemma 4.2.10 in contradiction to the assumption. Thus, there exists a point a in
X − (B1 ∪ B2). Let b ∈ B1 ∩ B2. Due to Lemma 3.1.9 there exists a meromorphic
function ζ which serves as a coordinate function on B1 with |ζ |B1 = 1, ζ(b) = 0
and Pol(ζ )= {a}. If |ζ |B2 ≤ 1, then B2 ⊂ B1, because B1 is a connected component
of {x ∈ X; |ζ(x)| ≤ 1}. If c := |ζ |B2 ≥ 1, then B1 ⊂ B2, since B2 is a connected
component of {x ∈X; |ζ(x)| ≤ c}.

(b) At first, it is clear that A ∪ B 
= X. In fact, assume the contrary; i.e.,
A ∪ B = X. If A is not contained in B and B not contained in A, then A ∩ B is
formal open in A and B with respect to their canonical reductions. Indeed, by (a)
the intersection is a union of formal fibers. Therefore, the covering (A,B) gives rise
to a formal analytic structure ρ :X→ ˜X. One easily shows g(˜X)= 0. Thus, we ar-
rive at a contradiction as g(X)= g(˜X). Therefore, we may assume that there exists
points b in B −A and a in X− (A∪B).

By Lemma 3.1.9 there exists a meromorphic function ζ which serves as a coor-
dinate function on B with |ζ |B = 1, ζ(b) = 0 and Pol(ζ ) = {a}. We may assume
B 
⊂ A; otherwise we are done. Since A ∩ B 
= ∅, the set B contains a dense open
formal part of A as before. Thus, it follows |ζ |A ≤ 1 and hence A ⊂ B as ζ is
coordinate function on B .

(c) For a divisor D ∈ Div(X) on X set di(D) := deg(D|B ′i ) and then put
d(D) := (d1(D), . . . , dn(D)) ∈ Z

n. Then consider the subgroup

T := {[D] ∈ PicX; [D] is of finite order prime to chark and d(D)= 0
}

of the Picard group PicX := PicX/K(K); cf. Proposition 5.1.1. Since g(X) ≥ 1,
the prime to chark torsion of PicX is not finitely generated, and hence T is not
finitely generated. Using the assertion (a), one easily deduces from Lemma 4.2.10
that T = 0. Thus, we arrive at a contradiction, and hence g(X)= 0. �

4.3 Meromorphic Functions

Let X be a reduced rigid analytic variety. If one associates with each open affi-
noid subvariety U ⊂X the total ring of fractions Q(OX(U)) of the ring OX(U) of
holomorphic functions on U , one obtains a sheaf on the family of all open affinoid
subdomains of X. This extends canonically to all admissible open subsets of X.
The resulting sheaf M is called the sheaf of meromorphic functions on X. If X is
the analytification of a projective algebraic variety, one knows from the rigid ana-
lytic GAGA theorems that M(X) equals the field of rational functions K(X); cf.
Theorem 1.8.1.

In the following we assume that X is the analytification of a connected smooth
projective curve over an algebraically closed field K . Then each non-constant func-
tion f ∈M(X) gives rise to a finite morphism X→ P

1
K . All the subsets of type

U0
α :=
{

x ∈X; ∣∣f (x)∣∣≤ α
}

and U∞α := {x ∈X; ∣∣f (x)∣∣≥ α
}
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are affinoid for each α ∈ |K×|. If U ⊂X is an affinoid subdomain of X, then each
m ∈M(U),m 
= 0, has a well-defined divisor div(m).

Furthermore, if the canonical reduction ˜U of U is irreducible, the sup-norm is
multiplicative on OX(U) due to Remark 1.4.6. Thus the sup-norm extends to a
valuation on the field M(U)=Q(OX(U)). One has |m| = |f | · |g|−1 if m= f/g

with f,g ∈OX(U). It is clear that a restriction M(U)→M(U ′), where U ′ ⊂U is
a non-empty formal subdomain of U , leaves such norms of meromorphic functions
invariant.

Now let us fix a formal affinoid covering U of X and consider the associated
reduction ˜X := ˜XU. Let ˜X1, . . . ,˜Xn be the irreducible components of ˜X and choose
open dense affine subsets ˜Uν ⊂ ˜Xν , ν = 1, . . . , n, which are open in ˜X. Then let
Uν ⊂X be the associated open affinoid subdomain. Thus, for each m ∈M(X)−{0}
we can define the sup-norm of m at the component ˜Xν by

|m|ν := |m|Uν |.
Assuming m 
= 0, there are constants cν ∈ K× such that |m|ν = |cν |. Then m/cν

has sup-norm 1 on Uν and, hence, reduces to a rational function m̃/cν on ˜Xν . Its
divisor on the normalization ˜X′ of ˜X depends only on m but not on the choice of
the constant cν . Therefore, we can define the order of m at a point ỹ ∈ ˜X′ν of the
normalization ˜X′ν by

ordỹ (m) := ordỹ (m̃/cν).

Proposition 4.3.1. Let m 
= 0 be a meromorphic function on X, let x̃ be a point of
˜X and denote by ỹ1, . . . , ỹr the points in the normalization ˜X′ of ˜X lying over x̃. If
x̃ is smooth or a double point, then the divisor of m has the degree

deg
(

div(m|X+(x̃))
)=

r
∑

i=1

ordỹi (m)

on the formal fiber X+(x̃).

Remark 4.3.2. Actually, the assumption on the type of singularity of x̃ is superflu-
ous. However, in order to verify this, one needs the existence of semi-stable reduc-
tions for X; cf. Theorem 4.4.3.

Proof of Proposition 4.3.1. At first, let us consider the case, where x̃ is smooth.
Then X+(x̃) is an open disc by Proposition 4.1.12. Let ξ be a coordinate function
on X+(x̃). Since m is a quotient of analytic functions, we may assume that m has
no poles in X+(x̃). Then m is a power series on X+(x̃), say

m=
∞
∑

ν=0

dνξ
ν ∈R[[ξ ]],
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up to a multiplicative scalar. The term of degree ν = ordx̃ (m) in this expansion is
dominant at the periphery of X+(x̃). Hence, by the Weierstraß preparation theorem,
m has precisely ordx̃ (m) zeros in X+(x̃).

Next we consider the case, where x̃ is an ordinary double point. Then X+(x̃) is
an open annulus, say of height ε; cf. Proposition 4.1.12, and there are two points
ỹ1, ỹ2 in the normalization ˜X′ lying over x̃. For i = 1,2, let ˜Xi be the component
of ˜X′ whose normalization ˜Xi contains ỹi ; in particular, ˜X1 = ˜X2 if and only if
x̃ belongs to a single component of ˜X. Similarly as before, let ξ ∈ OX(X+(x̃))
be a coordinate function on X+(x̃) with ordỹ1(ξ̃ ) = 1. If c ∈ K× satisfies |c| = ε,
then η := c/ξ ∈ O̊X(X+(x̃)) is a coordinate function on X+(x̃) with ordỹ2(η̃)= 1.
We may assume that m has no poles on X+(x̃). Then m admits a Laurent series
expansion

m=
∞
∑

ν=−∞
dνξ

ν =
∞
∑

ν=−∞
d−νc−νην ∈R

[[

ξ, ξ−1]]

on X+(x̃). By Proposition 1.3.4 the term dνξ
ν of degree ν1 := ordỹ1(m) satisfies

|dν1 | = |m|1 and is dominant on the component of the periphery of X+(x̃) corre-
sponding to ỹ1. Likewise, the term d−ν2c

−ν2ην2 of degree ν2 := ordỹ2(m) satisfies
|d−ν2c

−ν2 | = |m|2 and is dominant on the component of the periphery of X+(x̃)
corresponding to ỹ2. Similarly as in the power series case, one concludes that m has
ν1 + ν2 zeros on X+(x̃). �

If m has neither zeros nor poles on the formal fiber X+(x̃) over the double
point x̃, then ν1 + ν2 = 0 and hence |m|2 = |dν1c

ν1 | = |c|ν1 |m|1. Thus we verified
the following result.

Corollary 4.3.3. Let m 
= 0 be a meromorphic function on X without zeros and
poles on the formal fiber X+(x̃) above an ordinary double point x̃ ∈ ˜X. Let ỹ1, ỹ2
be the points in the normalization of ˜X lying over x̃. Let ˜X1,˜X2 be the components
of ˜X passing through x̃, where ˜X1 = ˜X2 if x̃ lies on a single component. Assume
ỹi ∈ ˜Xi for i = 1,2. Then

|m|2 = εν1 |m|1,
where ε is the height of the annulus X+(x̃) and ν1 := ordỹ1(m).

Corollary 4.3.4. Let X be a connected smooth projective curve equipped with
a formal structure ρ : X → ˜X, which is semi-stable; cf. Definition 4.4.1. Let
˜X1, . . . ,˜Xn be the irreducible components of ˜X and let ˜X′1, . . . ,˜X′n be their cor-
responding normalizations. Put Xν := ρ−1(˜Xν − Sing(˜X)).

If m is a meromorphic function on X without zeros and poles in the singular
formal fibers, then the following conditions are equivalent:

(a) deg(div(m|Xν ))= 0 for ν = 1, . . . , n.
(b) |m|μ = |m|ν for all μ,ν = 1, . . . , n.
(c) ordỹ (m)= 0 for all points ỹ ∈ ˜X′ lying over singular points of ˜X.
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Proof. Let cν ∈K× be an element with |cν | = |m|ν for ν = 1, . . . , n.
(a)→ (b): If |m|μ 
= |m|ν for some pair (μ, ν), then there exists a point ỹ1 ∈ ˜X′,

say ỹ1 ∈ ˜X′ν1
lying over x̃1 ∈ ˜Xν1 ∩ Sing(˜X) such that ordỹ1(m) > 0. From the as-

sumption (a) we know by Proposition 4.3.1 that

deg
(

div(m̃/cν |˜Xν1
)
)= 0.

Since the degree of a principal divisor is 0, there exists a point ỹ′2 ∈ ˜X′ν2
lying over a

point x̃2 ∈ ˜Xν1 ∩ Sing(˜X) such that ordỹ′2(m) < 0. Let ỹ2 ∈ ˜X′ν2
be the second point

in ˜X′ lying over x̃2. Since m has no zeros and no poles in X+(x̃2), we obtain from
Proposition 4.3.1 and Corollary 4.3.3

ordỹ2(m)=−ordỹ′2(m) and |cν2 |> |cν1 |.
Continuing this way, we obtain an infinite ascending chain |cν1 |< |cν2 |< · · · . This
is not possible, because ˜X has only finitely many components.

(b)→ (c): This follows from Corollary 4.3.3.
(c)→ (a): The assumption (c) yields deg(div(m̃/cν |˜Xν

)) = 0 for ν = 1, . . . , n.
By Corollary 4.3.3 this is equivalent to (a). �

Proposition 4.3.5. Let X be a connected smooth projective curve equipped with a
formal structure ρ :X→ ˜X. Let ˜Q⊂ ˜X be a non-empty finite set of smooth closed
points and let ˜A⊂ ˜X be the union of all components ˜Xν of ˜X with ˜Xν ∩ ˜Q= ∅. De-
note by X

˜Q ⊂X the open subset ρ−1(˜X− ˜Q). Then we have the following results:

(a) X
˜Q is an affinoid subdomain of X.

(b) The rational functions M(X) are dense in OX(X˜Q).
(c) If ˜Xν is a component of ˜X with ˜Xν ∩ ˜Q 
= ∅, then there exists a non-empty open

subset ˜U of ˜X − ˜Q, contained in ˜Xν such that U := ρ−1(˜U) is a formal open
subdomain of X

˜Q with canonical reduction ˜U .
(d) Let x̃ be a point in ˜X − ˜Q. The formal fiber X

˜Q,+(x̃) of X
˜Q containing x

with respect to the canonical reduction ˜X
˜Q of the affinoid space X

˜Q is the

open subset ρ−1(˜Zx̃), where ˜Zx̃ is the connected component of ˜A ∪ {x̃} which
contains x̃.

(e) If ˜Q meets every component of ˜X, the canonical reduction˜X
˜Q of X

˜Q is canon-

ically isomorphic to ˜X− ˜Q.

Proof. Let ˜Q := {q̃1, . . . , q̃r} and denote by ˜Xν(i) the component of ˜X contain-
ing q̃i . Moreover, choose a finite set ˜P = {p̃1, . . . , p̃n} of smooth points of ˜X which
is disjoint from ˜Q such that ˜P meets every irreducible component of ˜X. For each
q̃ ∈ ˜Q and p̃ ∈ ˜P choose a lifting q ∈X of q̃ and p ∈X of p̃ ∈ ˜P , respectively.

By the Riemann-Roch Theorem 1.7.6 there exist meromorphic functions fi for
i = 1, . . . , r with Pol(fi)= {qi} and |fi |ν(i) = 1 such that fi vanishes at all points
of P . Then we obtain that |fi(x)| ≤ 1 for all points x ∈ X − X+(q̃i), and hence
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by Corollary 4.3.3 that |fi(x)| < 1 for all x, which reduce to points x̃ lying in
⋃

ν 
=ν(i) ˜Xν . In particular, we have f1, . . . , fr ∈ O̊X(X˜Q).

Now put f := f1 + · · · + fr ∈ OX(X˜Q). Then f̃ has poles at the points
q̃1, . . . , q̃r . The proof of Lemma 3.1.9 shows that X

˜Q is a connected component
of {x ∈X; |f (x)| ≤ 1}. Thus, the assertions (a) and (b) are clear.

(c) Put ˜Ui := {x̃ ∈ ˜X−{q̃i}; f̃i (x̃) 
= 0}. Then ˜Ui ⊂ ˜Xν(i) is affine open in ˜X− ˜Q
because of the pole of f̃i at q̃i and the zeros on all other components. Moreover,
Ui := ρ−1(˜Ui) is an affinoid formal open subdomain of X

˜Q with the canonical
reduction ˜Ui .

(d) Consider the natural map σ : ˜X − ˜Q −→˜X
˜Q. Since˜X

˜Q is affine, σ maps

each ρ−1(˜Zx̃) onto a point in˜X
˜Q for x̃ ∈ ˜X− ˜Q. Since formal fibers are connected

by Proposition 4.1.8(e), we have σ−1(σ (x̃))= ˜Zx̃ for all x̃ ∈ ˜X − ˜Q. This verifies
the assertion (d).

(e) In this case ˜X
˜Q and ˜X − ˜Q are affine and, due to (d), the morphism

σ : ˜X− ˜Q−→˜X
˜Q is bijective. Then σ is an isomorphism. �

As a first application of the proposition we show:

Corollary 4.3.6. Let X be a connected smooth projective curve with semi-stable
reduction ˜X and let ˜X1, . . . ,˜Xn be the irreducible components of ˜X. If m̃1, . . . , m̃n

are rational functions on ˜X1, . . . ,˜Xn such that each m̃ν is regular at every singular
point of ˜X which lies on ˜Xν and such that

m̃μ(x̃)= m̃ν(x̃) for all x̃ ∈ ˜Xμ ∩ ˜Xν,

then there exists a meromorphic function m on X with poles only in smooth formal
fibers which induces a rational function m̃ on ˜X with

m̃|
˜Xν
= m̃ν for ν = 1, . . . , n.

Proof. Let ˜Q⊂ ˜X be a finite set of smooth points such that ˜Q meets every compo-
nent ˜Xν and contains the set of poles of every m̃ν . Since ˜X is semi-stable, the n-tuple

(m̃1, . . . , m̃n) yields a regular function on ˜X − ˜Q. Since ÕX(X˜Q)=O
˜X(
˜X − ˜Q),

there exists a function h ∈ O̊X(X˜Q) inducing m̃1, . . . , m̃n. Due Proposition 4.3.5(b)
we can assume that h=m is meromorphic on X. �

As a second application of Proposition 4.3.5 we have the technique of blowing-
down components of the reduction ˜X of a formal analytic structure ρ :X→ ˜X.

Corollary 4.3.7. Let X be a connected smooth projective curve equipped with a
formal analytic structure ρ :X→ ˜X. Let ˜A⊂ ˜X be a union of irreducible compo-
nents of ˜X and let ˜Q, ˜Q′ ⊂ ˜X − ˜A be non-empty finite sets of smooth points such
that each component of ˜X, which is not contained in ˜A, meets ˜Q and ˜Q′. Assume
that ˜Q and ˜Q′ are disjoint.
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Then V := {X
˜Q,X˜Q′ } is a formal analytic covering of X by affinoid subsets. The

canonical map ˜X→ ˜XV is surjective by Proposition 4.3.5 and injective on ˜X− ˜A.
It maps the connected components of ˜A to points in ˜XV.

Definition 4.3.8. In the above situation we say that XV is constructed from the
formal structure ρ :X→ ˜X by blowing down ˜A⊂ ˜X.

Moreover, we obtain a criterion to compare formal analytic structures.

Corollary 4.3.9. Let X be a smooth connected projective curve equipped with two
formal analytic structures ρ : X→ ˜X and ρ′ : X→ ˜X′. Let ˜X1, . . . ,˜Xn be the ir-
reducible components of ˜X and let p1, . . . , pn be points of X such that ρ(pi) is a
smooth point of ˜X and belongs to ˜Xi for i = 1, . . . , n. If the formal fiber X+(ρ(pi))
of each pi is also a formal fiber X′(ρ′(pi)) with respect to ρ′, then the identity
morphism (X,ρ′)→ (X,ρ) is formal analytic.

Proof. Put ˜P := {ρ(p1), . . . , ρ(pn)} and ˜P ′ := {ρ′(p1), . . . , ρ
′(pn)}. By Proposi-

tion 4.3.5 we know that X
˜P is affinoid with canonical reduction ˜X − ˜P . From the

assumption we have X
˜P =X

˜P ′ , where the last one is defined with the respect to ρ′.
Also by Proposition 4.3.5 we have that the identity map idX gives rise to a surjective
morphism ˜X′ → ˜X which contracts the irreducible components of ˜X′, which are not
met by ˜P ′, to points of ˜X. �

It is useful to know that the formal analytic structure of ρ :X→ ˜X depends only
on the formal fibers.

Corollary 4.3.10. Let ρ : X→ ˜X and ρ′ : X→ ˜X′ be reductions. Assume that
they have the same formal fibers. Then ρ and ρ′ are equivalent; i.e., the identity
map (X,ρ′)→ (X,ρ) is a formal analytic isomorphism.

4.4 Formal Stable Reduction

Definition 4.4.1. Let S be a scheme. A semi-stable curve over S is a quasi-
compact, separated flat morphism X→ S such that its fibers Xs over geometric
points s of S are reduced, connected, 1-dimensional and its singularities are at most
ordinary double points.

A semi-stable curve is called stable if for every geometric fiber Xs the following
conditions are satisfied:

(i) every smooth rational component of Xs meets the remaining components in at
least 3 points,

(ii) every singular rational component of Xs has a least 2 singular point or it has 1
singular point and meets at least one remaining component.
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Usually one also asks X→ S to be proper, but for technical reasons we consider
the more general definition. One can also introduce n-marked stable curves.

Definition 4.4.2. An n-marked stable curve over a base scheme S is a semi-stable
curve X→ S as above together with S-sections σ1, . . . , σn, which are pairwise dis-
joint and factorize through the smooth locus of X/S, such that the following is
satisfied. If C is a rational component of a geometric fiber Xs of X/S, then

(i) m(C)+ r(C)≥ 2 if m(C)≥ 1, or
(ii) r(C)≥ 3.

Here the integer m(C) is the number of singular points of C and the integer r(C)
the sum of the number of points among σ1(s), . . . , σn(s), which meet C, and of the
number of points, where C meets the rest of Xs .

The genus of C is the genus of the normalization of its projective closure. In the
absence of marked points a 0-marked stable curve is a stable curve. If, in addition,
X→ S is proper and 2g− 2+ n≥ 1, then the condition (i) and (ii) can be replaced
by asking dimH 1(Xs,OXs

)= g and r(C)≥ 3 for every smooth rational component
of Xs .

The main subject in this section is the proof of the following theorem.

Theorem 4.4.3. Let K be a non-Archimedean field and let XK be the analytifi-
cation of a smooth geometrically connected projective curve with pairwise distinct
K-rational points x1, . . . , xn. Then there exists a finite separable field extension
K ′/K such that XK ⊗K K ′ admits an admissible formal R′-model X′ with a pro-
jective semi-stable special fiber ˜X′, where R′ is the valuation ring of K ′. Moreover,
the points x1, . . . , xn specialize to pairwise distinct smooth points x̃1, . . . , x̃n on ˜X′.

If 2g(X)+n≥ 3, then X can be chosen to be n-marked stable. An n-marked sta-
ble formal R-model of XK is uniquely determined up to a canonical isomorphism.

We remind the reader that a rigid analytic curve XK is proper if and only if
the reduction is proper; cf. Theorem 3.3.12. In the case of curves the equivalence
is easy to show; cf. Remark 3.3.13. Moreover, a proper rigid analytic curve is an
analytification of a projective curve, cf. Theorem 1.8.1.

In the preceding sections we always worked in the context of canonical reduc-
tions of affinoid K-algebras over an algebraic closed field K . They have automati-
cally formal R-models by Remark 3.2.5, because the R-algebras ÅK are of topolog-
ically finite presentation due to Theorems 3.1.17 and 3.2.1. Likewise formal analytic
spaces have a canonical formal R-model. Thus, to verify Theorem 4.4.3 it suffices
to show that XK admits a formal analytic structure whose reduction is semi-stable
or stable, respectively.

IfK is not necessarily algebraically closed, then we will perform a base change to
a complete algebraic closure K of K . By Corollary 3.4.3 we can descend the result
of Theorem 4.4.3 for algebraically closed fields to a finite separable field extension
K ′/K .
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In the following we assume that K is algebraically closed and we write X instead
of XK . We start with some preparations for the proof.

Lemma 4.4.4. Assume that the genus of X satisfies g(X) ≥ 1. Let � ≥ 2 be an
integer prime to chark and let E be a divisor on X such that � · E = div(f ) is a
principal divisor, whereas E is not principal.

Then there exists an element α ∈ |K×| such that, with the notations of Defini-
tion 4.2.4, we have that g(Xα(q)) < g(X) for all q ∈ ˜Xα , where Xα is the formal
analytic curve with respect to the covering

Vα :=
{

x ∈X; ∣∣f (x)∣∣≤ α
}

, Wα :=
{

x ∈X; ∣∣f (x)∣∣≥ α
}

.

Proof. For α ∈ |K×| we define the following property:

A(α) : there exists a point qα ∈ ˜Xα such that g
(

Xα(qα)
)= g(X).

Since g(X)≥ 1, the point qα ∈ ˜Xα is uniquely determined due to Proposition 4.2.6.
Furthermore, we introduce the following sets

A := {α ∈ ∣∣K×∣∣;A(α) is true
}

,

A0 :=
{

α ∈A;Xα,+(qα)⊂
{

x ∈X; ∣∣f (x)∣∣> α
}}

,

A∞ :=
{

α ∈A;Xα,+(qα)⊂
{

x ∈X; ∣∣f (x)∣∣< α
}}

.

Then the following assertions are true:

(a) A=A0 ∪A∞.
(b) There exist subsets B0

1 , . . . ,B
0
n,B

∞
1 , . . . ,B∞n of X which are unions of increas-

ing sequences of discs such that

⋃

α∈A0

Vα = B0
1 ∪ · · · ∪B0

n;
⋃

α∈A∞
Wα = B∞1 ∪ · · · ∪B∞n .

(a) If α ∈A, then we obtain by Corollary 4.2.7 a decomposition

X−Xα,+(qα)= B1∪̇ · · · ∪̇Bmα

with pairwise disjoint closed discs Bi in X. If we define the reduction P
1
α of P1

K

with respect to the formal covering {{|z| ≤ α}, {|z| ≥ α}}, then f induces a finite
morphism f̃α : ˜Xα→ P

1
α . Thus, we obtain a decomposition

X−Xα,+
(

f̃−1
α

(

f̃α(qα)
))=U1∪̇ · · · ∪̇Unα

with pairwise disjoint U1, . . . ,Unα , where each Ui ⊂ Bj(i) with some j (i) in
{1, . . . ,mα} for i = 1, . . . , nα . Furthermore, f induces finite morphisms

f :Ui −→D := P
1
K − P

1
K,+
(

f̃α(qα)
)

for i = 1, . . . , nα.
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If Xα,+(qα) ⊂ {x ∈ X; |f (x)| = α}, then D contains 0 and ∞. Since D is con-
nected, we see that the divisors f ∗(0) and f ∗(∞) have the same degree on
each Ui . Thus, we obtain that deg(E|Bi ) = 0 for i = 1, . . . , n, and hence E ∼ 0
by Lemma 4.2.10. However, this is a contradiction to our assumption. Thus, we see
that α ∈A0 ∪A∞.

(b) Let div(f ) =∑n
i=1(xi − yi) and α ∈ A0. From Corollary 4.2.7 we obtain a

decomposition

Vα =X−Xα,+(qα)= Bα
1 ∪̇ · · · ∪̇Bα

nα

with closed discs Bα
i in X, and hence a decomposition

Vα = V α
1 ∪̇ · · · ∪̇V α

nα
,

where V α
i := Vα ∩Bα

i . Since f gives rise to a rational function on ˜Xα which is not
constant on each component of ˜Xα , we see that each V α

i is not empty. In particular,
f induces finite surjective maps

V α
i −→
{

z ∈ P
1
K ; |z| ≤ α

}

and each V α
i must contain a zero of f . Thus, allowing repetitions, we may assume

nα = n and xi ∈ Bα
i . For α,β ∈ A0 with α < β we have that Bα

i ⊂ B
β
i by Proposi-

tion 4.2.11(a). Thus, writing

B0
i :=
⋃

α∈A0

Bα
i for i = 1, . . . , n,

it follows
⋃

α∈A0
Vα ⊂ B0

1 ∪ · · · ∪B0
n as asserted. The case A∞ is treated similarly.

By (a) we haveA=A0∪A∞. Furthermore,A0∪A∞ 
= |K×| by (b) and Proposi-
tion 4.2.11(c) because g(X)≥ 1. Thus, A 
= |K×| due to (a), and hence the assertion
follows. �

Lemma 4.4.5. Let B1, . . . ,Bn be pairwise disjoint closed discs in X. Then every
divisor D on X is linearly equivalent to a divisor E on X with Supp(E) ∩ Bi = ∅
for i = 1, . . . , n.

Proof. It suffices to show that, for each x ∈ Bj , there exists a meromorphic func-
tion m on X with zero x and no other zeros or poles in B1, . . . ,Bn. We see
by Lemma 4.2.9 that it is enough to verify this for B1,+, . . . ,Bn,+ instead of
B1, . . . ,Bn, where each Bj,+ is a maximal open disc contained in Bj .

Let B be the formal covering of X introduced in Proposition 3.1.10, and let
b̃1, . . . , b̃n be the points in ˜XB which correspond to the formal fibersB1,+,. . . ,Bn,+.
Let ˜Q⊂ ˜XB be a finite subset of smooth points which meet each component of ˜XB

and which do not contain any of the points b̃1, . . . , b̃n. Then there exists a rational
function m̃ on ˜XB which has a simple zero in b̃j and does not vanish at b̃i for i with
i 
= j . Due to Proposition 4.3.5 the function m̃ is induced by a meromorphic function
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m ∈M(X) ∩ O̊X(X˜Q), where X
˜Q is the affinoid subdomain induced by ˜XB − ˜Q.

Then m restricts to a coordinate function on Bj,+ which satisfies |m(y)|< 1 for all
y ∈ Bj,+ and |m(y)| = 1 for all y ∈ Bi,+. Thus, the function m−m(x) is a desired
one. �

Lemma 4.4.6. Let X be a smooth projective curve of genus g over an algebraically
closed field K . Then there exists a reduction ρ : X→ ˜X in the sense of Defini-
tion 3.1.6 such that ˜X is semi-stable.

Proof. Let us start with some reduction ρ : X→ ˜X, which is given by a mero-
morphic function as in Example 3.1.7(b). Using the notation of Definition 4.2.4,
consider

γ (˜X) :=
∑

q∈˜X
g
(

X(q)
)

.

Due to Proposition 4.2.6 one knows γ (˜X) ≤ g(X). At first we assert that one can
refine the reduction in order to achieve γ (˜X)= 0. Thus, assume that the given reduc-
tion has γ (˜X)≥ 1. Then we pick a point q ∈ ˜X with g(X(q))≥ 1. Then it suffices
to refine the formal structure on the formal fiber X+(q). We choose an affine formal
open neighborhood U of q in X. After shrinking U , we may assume that there is a
function h ∈ O̊X(U) such that q is the only zero of h̃. By Proposition 4.1.11 we have
a representation of the periphery of the formal fiber of X+(q) as in Definition 4.2.4

{

x ∈U ; ε ≤ ∣∣h(x)∣∣< 1
}= ˙⋃

μ,ν
Aμ,ν,

ϕμ,ν :Aμ,ν ˜−→{z ∈DK ; εμ,ν ≤ |z|< 1
}

.

Then put

U1 :=
{

x ∈U ; ∣∣h(x)∣∣= 1
}

,

U2 :=
{

x ∈U ; ∣∣h(x)∣∣≥ ε
}

,

U3 :=
{

x ∈U ; ∣∣h(x)∣∣≤ ε
}

.

Denote by X(q) the curve constructed by pasting the periphery of X+(q) with discs
Bμ,ν via the isomorphisms ϕμ,ν . Since g(X(q)) ≥ 1, there exists a non-trivial di-
visor E on X(q) of order � ≥ 2, prime to chark, with � · E = div(f ) for some
meromorphic function f ∈M(X(q)). Due to Lemma 4.4.5 we can assume

Supp(E)⊂U3,+ :=
{

x ∈U3;
∣

∣h(x)
∣

∣< ε
}

and we have the following disjoint decomposition of X(q)

X(q)=U3,+∪̇ ˙⋃
μ,νBμ,ν,

ϕμ,ν : Bμ,ν ˜−→{z ∈ P
1
K ; εμ,ν ≤ |z|

}

.
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Now apply Lemma 4.4.4 to the curve X(q) and the divisor E. Thus, there exists
an element α ∈ |K×| such that g(X(q)α(p)) < g(X(q)) for all p ∈ ˜X(q)α . Then
we introduce a new reduction ρ′ : X→ ˜X′ as a refinement of the old reduction
ρ :X→ ˜X above the point q by the formal covering

U|h|≥ε :=
{

x ∈U ; ∣∣h(x)∣∣≥ ε
}

,

U|h|≤ε :=
{

x ∈U ; ∣∣h(x)∣∣≤ ε
}

,

U ′f,α :=
{

x ∈U|h|≤ε;
∣

∣f (x)
∣

∣≥ α
}

,

U ′′f,α :=
{

x ∈U|h|≤ε;
∣

∣f (x)
∣

∣≤ α
}

.

One easily verifies that ρ′ : X→ ˜X′ satisfies γ (˜X′) < γ (˜X), since every formal
fiber contained in U|h|≤ε with respect to ρ′ is part of a formal fiber of the reduction
with respect to ˜X(q)α .

Next we show that one can refine the reduction ρ :X→ ˜X such that ˜X is semi-
stable. By first step we may assume that g(X(q))= 0 for all points q ∈ ˜X. Due to
Corollary 4.2.8 we have an explicit representation

X(q)= P
1
K − (B1∪̇ · · · ∪̇Bn(q))

for every q ∈ ˜X. We can proceed as in the first step.
We have to construct a formal covering of the affinoid subdomain U3 such that

the corresponding reduction of U3 has only ordinary double points as singularities.
Since U3 is isomorphic to an affinoid subdomain of P1

K , this problem was solved in
Proposition 2.4.6 and Lemma 2.4.5. �

Lemma 4.4.7. Let X be given with points as in Theorem 4.4.3 and let ρ :X→ ˜X
be a semi-stable reduction. Then there exists a refinement X

ρ′−→ ˜X′ → ˜X by a semi-
stable curve ˜X′ such that x1, . . . , xn specialize to distinct points ρ′(x1), . . . , ρ

′(xn)
of the smooth locus of ˜X′.

Proof. We have only to treat the cases, where two points ρ(xi)= ρ(xj ) are reduced
to the same point or where ρ(xi) is mapped to a singular point of ˜X. The addressed
formal fibers are open discs or open annuli; cf. Proposition 4.1.12. Then the asser-
tion follows by a similar construction as in the proof of Lemma 2.4.5. �

Lemma 4.4.8. LetX be a smooth rigid analytic curve which is quasi-compact, sep-
arated and geometrically connected. Assume that X admits a reduction ρ :X→ ˜X
in the formal analytic sense, where ˜X is smooth. Consider an (arbitrary) reduction
ρ′ :X→ ˜X′ with geometrically reduced special fiber.

If ˜X is not proper, then there exists a non-empty admissible open subdomain U

of X which is formally open with respect to ρ and ρ′. Moreover, there exists a com-
ponent C′ of ˜X′ which is birational to ˜X and all the other irreducible components
of ˜X′ are smooth and rational.
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If ˜X′ has more than 1 component, then the configuration of the irreducible com-
ponents of ˜X′ is tree-like and there is at least one proper smooth rational component
C′′ of ˜X′ which meets the remaining components in a single point.

Proof. Since X̃ is not proper, ˜X is affine and hence X is affinoid. By Proposi-
tion 3.1.12 we see that there exists an open subdomain U ⊂ X, which is formal
open with respect to ρ, such that U is contained in an affine formal open subset U ′
with respect to ρ′. Since X is affinoid and ˜X is affine and irreducible, there exists
an f ∈OX(X) with |f |X = 1 such that ˜X

f̃
⊂ ˜U . Since U ′(1/f ) is formal open in

U ′ with respect to ρ′, we see that there is an irreducible component C′ of ˜X′ which
is birational to ˜X.

We can glue X along an open formal part with a smooth formal curve in or-
der to complete it to a formal proper curve Y ; cf. Proposition 3.7.1. Note that the
complement X − Y consists of finitely many open discs which correspond to the

missing points ˜X − ˜X, where ˜X is the normal projective closure of ˜X. Obviously,
the reductions ρ and ρ′ extend to Y . Thus, we may assume X = Y . Then the genus
formula in Proposition 4.2.6 implies that all the other irreducible components of ˜X′
are smooth rational curves and that there is no circuit in the configuration of the
irreducible components.

If all these irreducible components meet the remaining components in at least
two points, we obtain a contradiction. In fact, let x̃1 ∈ C′ ∩ ˜X′1 where ˜X′1 is an irre-
ducible component of ˜X′ different from C′. Then there exists a further irreducible
component ˜X′2 and an intersection point x̃2 ∈ ˜X′1 ∩ ˜X′2. Continuing this way, one
can construct an infinite sequence of distinct irreducible components of ˜X′, because
there are no circuits. �

Corollary 4.4.9. Let ρ : X→ ˜X be a reduction of a smooth quasi-compact sepa-
rated rigid analytic curve X. Then the following conditions are equivalent:

(a) X is isomorphic to a closed disc.
(b.1) All irreducible components of ˜X are smooth and rational.
(b.2) The singularities are at most ordinary multiple points; cf. Corollary 4.2.8.
(b.3) ˜X is connected and can be completed by adding exactly one smooth point.
(b.4) The configuration of the irreducible components of ˜X is tree-like.

If ˜X has more than 1 component, there exists at least one proper smooth rational
component of ˜X which meets the remaining components in at most one point.

Proof. (b)→ (a): Let C be the component of ˜X which is not complete. Then we can
glue X over a formal open part which reduces to an open subset of C with a formal
open part of a disc to obtain a new smooth proper curve Y with a reduction Y → ˜Y ,
which extends the given reduction ρ; cf. Proposition 3.7.1. The genus formula in
Proposition 4.2.6 tells us that Y has genus 0, because g(X(q))= 0 for every point
q ∈ ˜X by Corollary 4.2.8. Thus, Y is the projective line. Removing the formal fiber
of the inserted smooth point shows that X is isomorphic to P

1
K minus an open disc.

Thus, X is a closed disc by Example 3.1.11.
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(a)→ (b): Due to Lemma 4.4.8 there exists a formal open subdomain V with re-
spect to ρ which is formally dense open in X with respect to the canonical reduction.
We can glue the disc X with a formal open part of a disc to obtain a smooth proper
rigid analytic curve of genus 0 with a reduction extending ρ. Then the assertion
follows from the genus formula in Proposition 4.2.6 and Corollary 4.2.8.

The additional assertion follows from Lemma 4.4.8. �

Corollary 4.4.10. In the situation of Corollary 4.4.9 the following conditions are
equivalent:

(a) X is isomorphic to a closed annulus.
(b.1) All irreducible components are smooth and rational.
(b.2) The singularities are at most ordinary multiple points; cf. Corollary 4.2.8.
(b.3) ˜X is connected and can be completed by adding exactly two smooth points.
(b.4) The configuration of the irreducible components of ˜X is tree-like.

In particular, there exists at least one proper smooth rational component which
meets the remaining components in at most one point or ˜X is a chain of smooth
rational components.

Proof. (b)→ (a): follows as in the proof of Corollary 4.4.9, except for the fact that
one has to remove two disjoint open discs from P

1
K . Thus, X isomorphic to a closed

annulus due to Example 3.1.11.
(a)→ (b): Obviously, a boundary component of the annulus cannot be contained

in a formal fiber of ρ as follows from Lemma 4.4.8. Thus, there are precisely two
points missing on ˜X in a compactification of ˜X to a proper curve. We can glue X
by two formal open parts of a disc in order to complete X to a smooth proper rigid
analytic curve of genus 0 with a reduction extending ρ. Then the assertion follows
from Proposition 4.2.6 and Corollary 4.2.8.

The additional assertion follows by a similar reasoning as in the proof of
Lemma 4.4.8. Due to the maximum principal the reduction of both boundary com-
ponents of the annulus have to show up in every reduction in the birational sense.
Then one can compactify both components as in the proof of Corollary 4.4.10 and
proceed as in the proof of Lemma 4.4.8. �

Lemma 4.4.11. Let ρ : X→ ˜X be a reduction of a smooth projective curve X.
Let X be equipped with K-rational points x1, . . . , xn as in Theorem 4.4.3 which
specialize to pairwise distinct smooth points on ˜X. Assume that ρ : X→ ˜X is n-
marked stable with respect to these points.

(a) If B is a closed disc contained in X and contains at most one of the marked
points, then ρ(B) reduces to one point of ˜X.

(b) If A is a closed annulus contained in X which does not contain any of the
marked points, then ρ(A) reduces to one point of ˜X.

Proof. (a) Let a ∈ X − B be a closed point which reduces to a smooth point
ρ(a) of ˜X. We may assume X+(a) ∩ B = ∅. Let b ∈ B be a closed point. Due
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to Lemma 3.1.9 there exists a meromorphic function on X which gives rise to a
coordinate function ζ of B with ζ(b)= 0 and Pol(ζ )= {a}. Thus, B is a connected
component of the subset {x ∈ X; |ζ(x)| ≤ 1}. Assume that B is not contained in a
formal fiber with respect to ρ. By subdividing the annuli which correspond to the
double points of ˜X at {|ζ | = 1} we obtain a refinement ρ′ :X→ ˜X′ of ρ such that B
is formal open with respect to ρ′. The induced map ˜X′ → ˜X is just the contraction
of the smooth rational components corresponding to the subdivision. Due to Corol-
lary 4.4.9 there exists a proper smooth rational component C′ of ˜X′ which meets the
remaining components in at most one point such that the lifting of its smooth part
of C′ is contained in B . This component cannot coincide with the newly introduced
components, since they are connected to two irreducible components. Thus, we see
that C′ appears already in ˜X and meets the other irreducible components of ˜X in at
most one point. Since r(C)≥ 3 for an n-marked stable curve in Definition 4.4.2, we
arrive at a contradiction.

(b) Assume first that A is of height 1. Thus, the formal fibers of A with respect
to the canonical reduction are open discs. Due to (a) every formal fiber of A with
respect to its canonical reduction is contained in a formal fiber of X with respect
to ρ. If there exists a point p ∈A with A+(p) 
=X+(p), then A⊂X+(p) as follows
from the maximum principle. So we may assume that A is a formal open part of X
with respect to ρ. Since the reduction ˜A is isomorphic to the projective line minus
two points, there is a rational component C of ˜X which has at most two points
in common with the remaining components. If C is singular, then m(C) = 1 and
r(C)= 0, we arrive at a contradiction. If C is smooth, then m(C)= 0 and r(C)≤ 2
and we obtain a contradiction as well. Thus, we see that A is contained in a formal
fiber of X with respect to ρ.

Now consider the case of an annulus of height ε < 1. By what we have shown
already every concentric subannulus of height 1 is contained in a formal fiber of ρ.
Then it is clear that A is contained in a formal fiber. �

Proof of Theorem 4.4.3. Due to Lemma 4.4.6 there exists a formal covering U of X
such thatXU has a semi-stable reduction. Due to Lemma 4.4.7 we can refine the cov-
ering to separate the given points x1, . . . , xn. Thus, we may assume that there exists a
reduction ρ :X→ ˜X such that ˜X is semi-stable and the points ρ(x1), . . . , ρ(xn) are
smooth on ˜X and pairwise distinct. Thus, it remains to blow down superfluous com-
ponents. This can be done by using Corollary 4.3.7. Indeed, if C is an irreducible
component which is a smooth rational line with r(C) ≤ 2, then we contract this
component by the method of Corollary 4.3.7. Hereby we obtain a map ϕ : ˜X→ ˜X′
which yields a new reduction ϕ ◦ ρ. The component C collapses to a point x̃′ ∈ ˜X′.
The formal fiber of x̃′ is an open disc or an open annulus. Then x̃′ is a smooth
point or a double point of ˜X′ due to Proposition 4.1.12. If one of the marked points
meets C, the point x̃′ is smooth. The condition r(C)≤ 2 means that C is connected
to the remaining components by one or two intersection points. If it is connected
by two points, then none of the points ρ(x1), . . . , ρ(xn) meets C. If it is connected
by one point, then at most one of the points meets C. In particular, x̃′ is a smooth
point of ˜X′ and the marked point specializes to x̃′. By repeating this process finitely
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many times, we get rid of all smooth rational components C with r(C) ≤ 2. Then
the reduction ρ :X→ ˜X is n-marked stable.

It remains to show the uniqueness of n-marked stable reductions. Let ρi :X→ ˜Xi

for i = 1,2 be n-marked stable reductions. It follows from Lemma 4.4.11 and
Corollary 4.3.10 that the identity map extends to a formal analytic isomorphism
(X,ρ1)→ (X,ρ2). Therefore, the formal structures given by ρ1 and ρ2 are equal.

As mentioned just after the statement in Theorem 4.4.3 the formal analytic struc-
tures are induced by proper formal R-models. Any morphism between formal ana-
lytic R-spaces is a morphism of their formal R-models. �

4.5 Stable Reduction

The stable reduction theorem for algebraic curves can be deduced from Theo-
rem 4.4.3 in the formal case. We have to see that a formal semi-stable R-model
of a curve is induced by a flat projective R-curve. In order to distinguish between
the curve over K and its R-model, we will write “XK” for the curve over K and
“X” for an R-model of XK .

Proposition 4.5.1. Let XK be a smooth rigid space over a non-Archimedean
field K . Let K be an complete algebraic closure and Ksep ⊂K be a separable al-
gebraic closure of K . Then the set of Ksep-valued points of XK is dense in XK(K)

with respect to its canonical topology given by the absolute value.

Proof. Let UK ⊂ XK be a non-empty open affinoid subset. Since XK is smooth
over K , there exists a non-empty open subdomain VK ⊂ UK such that VK admits
an étale morphism VK → B

n
K of VK to an n-dimensional polydisc B

n. Thus, it suf-
fices to see that one can approximate an element α ∈K , which is algebraic over K ,
by an element β ∈ Ksep. Consider the minimal polynomial p ∈ K[T ] of α. Then
every approximation of p (with respect to the Gauss norm) by a monic polynomial
q ∈K[T ] has a zero β ∈K which is close to α. Since there are separable polyno-
mials which approximate p, the zero β lies in Ksep. �

Corollary 4.5.2. Let K be a field equipped with a non-Archimedean absolute
value, not necessarily complete, and let ̂K be its completion. Consider a smooth
K-scheme XK of finite type. Let Xan

̂K
be the associated rigid analytic space over ̂K .

Then the Ksep-valued points of XK are dense in Xan
̂K

with respect to its canonical
topology given by the absolute value.

Theorem 4.5.3 (Stable reduction theorem). Let K be a field equipped with a non-
Archimedean absolute value, not necessarily complete, and R its valuation ring. Let
XK be a geometrically connected smooth projective curve over K of genus g and
x1, . . . , xn be pairwise distinct K-valued points.
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Then there exists a finite separable field extension L of K and a flat projective
RL-model X of X ⊗K L with semi-stable fibers such that the points x1, . . . , xn ex-
tend to pairwise disjoint RL-valued points of the smooth locus of X/RL.

If 2g + n ≥ 3, the curve X can be chosen to be n-marked stable. An n-marked
stable R-model of XK is uniquely determined up to a canonical isomorphism.

This is the famous Stable Reduction Theorem usually presented for discrete val-
uation rings; cf. [5] or [21]. If R is not Noetherian, the classical proofs fail, since
they essentially make use of the fact that R is Noetherian as they use the resolu-
tion of singularities in dimension 2. However, the result in the Noetherian case is
sufficient for the construction of the moduli space Mg,n of n-marked stable curves
and to show that Mg,n is proper. Then the case of a general valuation ring follows
from the properness of Mg,n; cf. Theorem 7.5.2. By our concept we can deduce
Theorem 4.5.3 from Theorem 4.4.3.

Proof. Let ̂K be the completion of K . Let ̂K ′/̂K be a finite separable extension
such that XK ⊗K

̂K ′ admits an admissible formal ̂R′-model X′ with semi-stable
reduction; cf. Theorem 4.4.3. Let ˜X′1, . . . ,˜X′n be the irreducible components of the
special fiber ˜X′ := X′ ⊗

̂R′ k
′. Due to the lemma of Krasner [10, 3.4.2/5] the field

̂K ′ is the completion of a finite separable field extension K ′ of K . Due to Corol-
lary 4.5.2 there exists a finite Galois field extension K ′′/K such that there exist
K ′′-valued points z1, . . . , zn of XK such that zi specializes into the smooth part of
˜X′ meeting ˜X′i for i = 1, . . . , n. Then consider the divisor

DK :=N · z1 + · · · +N · zn
on XK ′′ := XK ⊗K K ′′ with an integer N ≥ 2g + 1. Let ̂R′′/̂R′ be the completion
of a valuation ring R′′v of K ′′. The K ′′-valued points zi extend to ̂R′′-valued points
zi of X′ with reduction in the smooth part of ˜X′ meeting ˜X′i . They give rise to a
relative Cartier divisor

D :=N · z1 + · · · +N · zn
on X′′ :=X′ ⊗

̂R′ ̂R
′′ which is relatively very ample. Now consider an ̂R′′-basis

Γ
(

X′′,OX′′(D)
)= ̂R′′f0 ⊕ · · · ⊕ ̂R′′f�.

The system (f0, . . . , f�) gives rise to a closed embedding

f := (f0, . . . , f�) :X′′λ −→ P
�
̂R′′λ

of X′′λ = X′ ⊗
̂R′ ̂R

′′
λ over ̂R′′λ := ̂R′′/̂R′′πλ+1 for all λ ∈ N. The algebraization the-

orem of Grothendieck [39, III, 5.18] in the Noetherian case and [1, 2.13.9] in the
general case, shows that X′′ is associated to a flat projective ̂R′′-curve X ′′ with
special fiber X′′ ⊗

̂R′′ k. Thus, X ′′ is a semi-stable model of XK over ̂R′′.
The sheaf OXK ′′ (DK) is defined over the finite Galois extension K ′′ of K . There-

fore, one can choose a basis (g0, . . . , g�) of Γ (XK ′′,OXK ′′ (DK)). Thus, one can
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approximate the basis (f0, . . . , f�) by a basis (h0, . . . , h�) of Γ (XK ′′,OXK ′′ (DK)).
Then, one can replace f by the morphism

h := (h0, . . . , h�) :X′′λ −→ P
�
R′′λ
.

Thus we obtain a semi-stable R′′v -model of XK ′′ for the valuation v on K ′′ which
is extended by ̂R′′. Since the Galois group of K ′′/K acts transitively on the valua-
tions of K ′′/K , by gluing along the generic fiber we obtain a semi-stable R′′-model
of XK ′′ . Since the valuations of K ′′/K are inequivalent [10, 3.3.2] one can choose
a basis (h0, . . . , h�) of Γ (XK ′′ ,OXK ′′ (DK)) such that h gives rise to an embedding
of the model into P

�
R′′ .

Uniqueness: Let X1,X2 be n-stable R-models and

ϕK :X1 ⊗R K ˜−→X2 ⊗R K

the isomorphism of their generic fibers. Now consider the schematic closure
Γ ⊂ X1 ×R X2 of the graph of ϕK . Then it suffices to show that the projections
pi : Γ → Xi are isomorphisms for i = 1,2. The latter can be checked after the
π -adic completion. Thus, the assertion follows from the uniqueness in the formal
case. �

4.6 Universal Covering of a Curve

By means of the formal semi-stable reduction theorem we can generalize the notion
of a skeleton which we introduced in Definition 2.4.3.

In the following let K be a non-Archimedean field, not necessarily algebraically
closed.

Definition 4.6.1. Let X be a smooth rigid-analytic curve over K .
A semi-stable skeleton of X is a surjective map ρ :X→ S from X to a geometric

graph S with the following properties:

(i) The inverse image ρ−1(v) of a vertex v ∈ V (S) is a geometrically connected
admissible subvariety of X which admits a smooth model over the valuation
ring.

(ii) The inverse image ρ−1(e) of an edge e ∈E(S) is isomorphic to an open annu-
lus A(ε(e),1)− with ε(e) ∈ |K×| and ε(e) < 1.

(iii) ρ is continuous; i.e., the inverse image ρ−1({v1, e, v2}) of an edge e with its
two extremities v1, v2 is an admissible subvariety of X.

A semi-stable skeleton of X is said to separate the points a1, . . . , an ∈ X if the
points are mapped to vertices such that for all i, j ∈ {1, . . . , n} with i 
= j either the
points ai, aj are mapped to different vertices of S, or, if mapped to the same vertex
v ∈ V (S), the points ai, aj have different reduction under the canonical reduction
map of ρ−1(v).
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A semi-stable skeleton of X is called stable if, for every v ∈ V (S) such that
ρ−1(v) has rational reduction, one of the following properties holds

(i) v has 2 neighboring edges, where at least one is a loop of Definition A.1.4,
(ii) v has at least 3 neighbors; i.e., has index ≥ 3; cf. Definition A.1.7.

The existence of semi-stable skeletons follows from Theorem 4.4.3 immediately.

Proposition 4.6.2. Let X be a geometrically connected smooth projective curve of
genus g over a non-Archimedean field K . Then, after a suitable finite separable field
extension of K , there exists a semi-stable skeleton of X. If the genus satisfies g ≥ 2,
there exists a unique stable one.

Proposition 4.6.3. Let X be a geometrically connected smooth projective curve
over a non-Archimedean field K which admits a semi-stable reduction. Let
ρ : X→ S be a associated semi-stable skeleton. Then there exists a rigid ana-
lytic morphism pX : ̂X→ X over K from a smooth rigid analytic curve ̂X and a
semi-stable skeleton ρ̂ : ̂X→̂S, where pX : ̂X→X is a covering in the topological
sense and pS : ̂S→ S is the universal covering in the sense of graphs, such that
pS ◦ ρ̂ = ρ ◦ pX .

Proof. Let pS : ̂S → S be the universal covering of the graph S; cf. Proposi-
tion A.1.11. We remind the reader that ̂S is a tree. Let e1, . . . , er be edges of S
such that S′ := S − {e1, . . . , er} is a subtree of S, where r is the rank of H1(S,Z).

Choose an orientation on S. Let v+i and v−i be the origin of ei and the target
of ei , respectively, for i = 1, . . . , r . Then let X(0) be the result of the pasting of
X′ := ρ−1(S′) with ρ−1(v+i ∪ ei) along v+i and with ρ−1(v−i ∪ ei) along v−i . Thus,
we obtain a 1-dimensional rigid analytic curve with 2r open ends which are the
open annuli associated to the ei ; note that we do not identify the ei in the pasting
process.

Now we use the universal covering ̂S as a recipe to glue copies of X(0)
along the open ends; again and again as in Proposition A.1.11. Thus, we obtain
a 1-dimensional rigid analytic curve together with a skeleton ρ̂ : ̂X→ ̂S which is
compatible with the projections pX : ̂X→X and pS :̂S→ S. �

Definition 4.6.4. The rigid analytic curve ̂X is called the universal covering of X.

Proposition 4.6.5. Let ̂X be the universal covering of a geometrically connected
smooth projective curve X with a semi-stale reduction. Then every bounded holo-
morphic function on ̂X is constant.

Proof. In order to keep notations simple, put Z := ̂X with reduction ˜Z. We may
assume that K is algebraically closed. Let z0 ∈ Z be a closed point which reduces
to a smooth point. Then we can replace f by g := f −f (z0). Thus, it remains to see
that g vanishes identically. Let (˜Zj ; j ∈ J ) be the family of irreducible components
of ˜Z and let Zj be the pre-image of ˜Zj − Sing(˜Z). Let j0 ∈ J with z̃0 ∈ ˜Zj0 .
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Assume now that g does not vanish identically. Then, there exist values
cj ∈ |K×| such that |g|Zj | = |cj | for j ∈ J . Then the function gj := g/cj has sup-
norm 1 on Zj and its reduction has a zero at z0 ∈ Zj0 , and hence a zero at z̃0 ∈ ˜Zj0 .
Since the number of poles equals the number of zeros on a complete curve, there
exists a point z̃1 ∈ ˜Zj0 , where g̃j0 has a pole. Since g is holomorphic, the pole must
be a singular point z̃j1 ∈ ˜Zj0 ∩ Sing(˜Z). By Proposition 4.3.1 now z̃j1 is a zero of
g̃j1 and |cj0 | = εν · |cj1 |. Here ε is the height of the annulus associated to the double
point z̃j1 , and ν is the sum of the pole order of g̃j0 at z̃j0 and of the number of zeros
of g on the formal fiber of z̃j1 . Thus we see

|cj0 | · α−1 ≤ |cj1 |,
where α < 1 is the maximum of all heights of annuli appearing in the skeleton of the
curve X. Continuing this way, we obtain an infinite chain of indices j0, j1, j2, . . .

such that

|cj0 | · α−n ≤ |cjn |
for all n ∈N. This contradicts the boundedness of the function g. Thus, we see that
g is identically 0. �

Proposition 4.6.6. Let X be a geometrically connected smooth projective curve X
with a semi-stable reduction. Assume that X has at least three K-rational points
x0, x1, x∞ ∈X and that the reduction has only rational components. Then we have
the following results:

(i) The universal covering ̂X can be embedded into P
1
K .

(ii) The embedding ̂X→ P
1
K that maps the points (x0, x1, x∞) to (0,1,∞) is uni-

quely determined.
(iii) Any automorphism of ̂X extends to a projective linear automorphism of P1

K .
In particular, the deck transformation group Γ of ̂X/X can be regarded as a
subgroup of PGL(2,K).

Proof. (i) Let ̂S→ S be the universal covering of the skeleton S of X of Proposi-
tion 4.6.3 and assume that ρ̂(xi) ∈ vert(̂S) for i = 0,1,∞. For n ∈ N let ̂S(n) be
the complete subtree which contains all vertices that have distance ≤ n from ρ̂(x0)

and ̂X(n) := ρ̂−1(̂S(n)). There exists an index N ∈ N such that x0, x1, x∞ ∈ ̂X(n)
for all n ≥ N . Then, as exercised in Proposition 3.7.1, we can paste all the holes
of ̂X(n) by discs to obtain a smooth proper curve X(n). By the genus formula in
Proposition 4.2.6 we see that the genus of X(n) is zero. Since X(n) is projective
algebraic due to Theorem 1.8.1, the curve X(n) is isomorphic to the projective line.
Thus, there exists an open immersion

σn : ̂X(n) ˜−→Ωn ⊂ P
1
K

onto a subdomain of P1
K sending the points (x0, x1, x∞) to (0,1,∞).
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Next we assert that the sequence (σm;n ∈N) converges to an open immersion

σ := lim
n→∞σn : ̂X −→ P

1
K.

It suffices to show that the sequence (σn|̂X(N);n ∈N) converges to an open immer-
sion for every N ∈ N. For showing this, consider m,n ∈ N with n≥m≥N . Since
σn has no zeros or poles outside ̂X(N), the absolute value function associated to
σn is constant due on X(n)− ̂X(N) due to Corollary 4.3.3. Thus, the meromorphic
function

σn

σm
: ̂X(m)−→Gm,K

has neither zeros nor poles and hence it has a constant absolute value function by
Corollary 4.3.4. Therefore, it can be written in the form 1 + hn,m, where hn,m is
holomorphic on ̂X(m) with |hn,m|< 1 and has a zero at the point x1. Therefore, it
holds

|hn,m|̂X(N)|< εm−N

for all n≥m≥N , where ε < 1 is the largest height of an annulus associated to an
edge of the skeleton S, cf. Corollary 4.3.3. This shows that the sequence (σn;n ∈N)

converges to an immersion of ̂X into P
1
K .

(ii) If σ1 and σ2 are such immersions, the function σ1/σ2 is holomorphic and
bounded on ̂X. Then it follows from Proposition 4.6.5 that σ1/σ2 is constant. From
the equality σ1(x1)= 1= σ2(x1) it follows σ1 = σ2.

(iii) Consider ̂X as an admissible open subvariety Ω ⊂ P
1
K and assume that

0,1,∞ ∈ Ω . Let σ ∈ Γ be a deck transformation of ̂X/X. We may view σ as a
morphism σ : Ω → P

1
K . Since a projective linear transformation τ in PGL(2,K)

is equivalent to a mapping of the three points 0,1,∞ to three distinct K-rational
points in P

1
K , there exists a transformation τ ∈ PGL(2,K) such that the mor-

phism τ−1 ◦ σ : Ω → P
1
K fixes the points 0,1,∞ ∈ Ω . Then we have to show

that ϕ := τ−1 ◦ σ is the identity. Thus, consider the function

f := ϕ

ζ
:Ω −→ P

1
K,

where ζ is the coordinate on P
1
K with ζ(0) = 0, ζ(1) = 1 and ζ(∞) =∞. Thus,

f has no zeros and poles, and hence f is bounded, because it is bounded on an
open neighborhood of 0,∞. Thus, we see by Proposition 4.6.5 that f is constant.
As f (1)= 1, the function f is equal to 1. �

4.7 Characterization of Mumford Curves

Mumford curves were introduced in Theorem 2.3.1 via Schottky groups. Due to the
Stable Reduction Theorem it is possible to characterize them by their reduction type.
Moreover, due to the genus formula they can be determined by the first homology
group.
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Definition 4.7.1. A smooth projective curve XK over K has a split rational re-
duction if there exists a projective semi-stable relative curve X over R such that its
generic fiber XK :=X⊗RK is isomorphic to XK and its special fiber Xs :=X⊗R k

is a configuration of rational curves with rational double points as singularities.

Theorem 4.7.2. Let K be a non-Archimedean field and XK a geometrically con-
nected smooth projective smooth curve of genus g ≥ 2. Assume that XK admits a
semi-stable reduction over K . Then the following conditions are equivalent:

(a) XK is a Mumford curve.
(b) XK has a split rational reduction.
(c) rk(H 1(XK,Z))= g(XK).

Proof. (a)→ (b): Due to Proposition 2.4.11 there exists a semi-stable skeleton in the
sense of Definition 2.4.2. The reduction of a rational disc minus finitely many max-
imal open discs is isomorphic to an affine line minus finitely many closed points.
Thus, every semi-stable reduction of XK has only rational components. The double
points are rational, because the associated annuli are rational. Thus, we see that XK

has split rational reduction.
(b)→ (c): This follows from the genus formula of Proposition 4.2.6.
(c) → (a): By the genus formula in Proposition 4.2.6 we see that the irre-

ducible components of the semi-stable reduction of XK are rational. Due to Propo-
sition 4.6.6 the universal covering ̂XK of XK can be embedded into the projective
line. Moreover, the deck transformation group Γ :=Deck(̂XK/XK) can be viewed
as a subgroup of PGL(2,K) in a canonical way with respect to an embedding of
̂XK ↪→ P

1
K . Thus, Γ acts on P

1
K discontinuously and the quotient ̂XK/Γ is iso-

morphic to XK . Since the action of Γ is related to the action of Γ on the universal
covering of the skeleton, the action of Γ is free and Γ is finitely generated; cf.
Proposition A.1.11. Thus, we see that Γ is a Schottky group; cf. Definition 2.2.2.
Since XK is proper, it is clear that ̂XK ⊂ P

1
K is the set of ordinary points of Γ .

Therefore, XK is a Mumford curve; cf. Theorem 2.3.1. �



Chapter 5
Jacobian Varieties

The main objective of this chapter is the uniformization of the Jacobian of a smooth
projective curve XK over a non-Archimedean field K and its relationship to a semi-
stable reduction ˜X of XK .

We assume that the reader is familiar with the notion of the Jacobian variety of a
smooth projective curve over a field; see for instance the article [68] or [15, Chap. 9].
For our purpose it is necessary to have analyzed the generalized Jacobian of a semi-
stable curve ˜X, especially its representation as a torus extension of the Jacobian of
its normalization ˜X′. In Sects. 5.1 and 5.2 we reassemble the main results we need
in the sequel.

In Sect. 5.3 it is shown that the generalized Jacobian ˜J := Jac˜X has a lifting
JK as an open rigid analytic subgroup of JK := JacXK and that JK has a smooth
formal R-model J with semi-abelian reduction. J is a formal torus extension of a
formal abelian R-scheme B with reduction ˜B = Jac˜X′.

The generic fiber JK of J is the largest connected open subgroup of JK which
admits a smooth formal R-model; this is discussed in Sect. 5.4 in a more gen-
eral context. The relationship between the maximal formal torus T of J and the
group H 1(XK,Z) shows that the inclusion map T K ↪→ JK from the generic fiber
T K of the formal torus T to JK extends to a rigid analytic group homomorphism
TK → JK , where TK is the affine torus which contains T K as the torus of units.

The push-out ̂JK := TK �T JK is a rigid analytic group which contains JK as
an open rigid analytic subgroup and the inclusion JK ↪→ JK extends to a surjective
homomorphism ̂JK → JK of rigid analytic groups. The kernel of the latter map is
a lattice M in ̂JK and makes JK = ̂JK/M into a quotient of the “universal cov-
ering” ̂JK . The representation JK = ̂JK/M is called the Raynaud representation
of JK .

Since every abelian variety is isogenous to a subvariety of a product of Jacobians,
one can transfer the results to abelian varieties. This implies Grothendieck’s semi-
abelian reduction theorem for abelian varieties; cf. [42].

We want to mention that there are also contributions by Fresnel, Reversat and
van der Put [30] and [84].
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5.1 Jacobian of a Smooth Projective Curve

In a first section we will give a short survey on results concerning the Jacobian
variety of a smooth projective curve, which will be used in this chapter. Details can
be found in [68] and [15, Chap. 9].

In the following let k be any field and let X/k be a connected smooth projec-
tive curve of genus g with a k-rational point x0. If S is a k-scheme, then we de-
note by xS : S→ XS := X ×k S the induced S-valued point xS := (x0, idS) of the
S-scheme XS . The Picard functor

Pic0
X/k : (k-schemes)−→ (Sets),

associates to a k-scheme S the set of isomorphism classes (L, r), where L is an
invertible sheaf on XS of degree 0 and where r :OS→ x∗SL is an isomorphism. The
latter is called a rigidificator of L. Isomorphisms of such pairs are isomorphisms of
invertible sheaves respecting the rigidificators.

Theorem 5.1.1. The functor Pic0
X/k is representable by a connected smooth pro-

jective k-group scheme JacX. More precisely, there exists a universal object (D, �)
on X× JacX with the following property:

For every k-scheme S and every (L, r) ∈ Pic0
X/k(S) there exists a unique mor-

phism ϕ : S→ JacX such that there is a unique isomorphism λ : L→ (idX×ϕ)∗D
with x∗Sλ ◦ r = ϕ∗�.

Definition 5.1.2. Let X be a connected smooth projective k-curve over k with a
rational point. The projective k-variety JacX is called the Jacobian variety of X.

If k =K is a non-Archimedean field, then due to the results on GAGA in The-
orem 1.6.11 the analytification of JacX represents Pic0

X/K on the category of rigid
analytic spaces as well.

Depending on the chosen k-rational point x0 ∈X we have the morphism

ι :X −→ JacX, x �−→ [x − x0],
where [x − x0] is the class of the invertible sheaf OX(x − x0) for k-rational points
x ∈X. The map ι is a closed immersion and gives rise to a morphism

ι(n) :X(n) −→ JacX, x1 + · · · + xn �−→ [x1 − x0] ⊗ · · · ⊗ [xn − x0],
from the n-fold symmetric product X(n) to JacX for each n ∈N.

If n = g is equal to the genus of X, then the map ι(g) is surjective and bira-
tional. The fiber of a point ι(g)(D) is isomorphic to the projective linear system
|D| := P(H 0(X,OX(D))) associated to the divisor D ∈X(g).

Definition 5.1.3. The image Wg−1 of ι(g−1) is a Weil divisor on JacX and is called
the theta divisor Θ of JacX.
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A connected smooth proper k-group variety A is called an abelian variety. For
example, JacX is an abelian variety of dimension g, where g is the genus of X.
A translation by an S-valued point a of A is the mapping

τa :AS −→AS, x �−→ τa(x) := x + a,

where AS := A× S for a k-scheme S. An invertible sheaf L on A is called trans-
lation invariant if for every k-rational point a of A the translate τ ∗aL is isomorphic
to L, where k is an algebraic closure of k. The latter is equivalent to require that

m∗L⊗ p∗1L−1 ⊗ p∗2L−1 ∼=OA×A

is trivial, where m : A× A→ A is the group law and pi : A× A→ A is the i-th
projection. For an abelian variety A one has the functor

PicτA/k : (k-schemes)−→ (Sets),

which associates to a k-scheme S the set of isomorphism classes (L, r), where L is
a translation invariant invertible sheaf and where r is a rigidificator along the unit
section 0 of A. The functor PicτA/k is representable; cf. [74, §13, p. 125].

Theorem 5.1.4. Let A be an abelian variety over k. The functor PicτA/k is repre-
sentable by an abelian variety A′. More precisely, there exists a universal object
(PA×A′ , �) on A×A′ with the following property:

For every k-scheme S and every couple (L, r) ∈ PicτA/k(S) there exists a
unique morphism ϕ : S→ A′ of schemes such that there is a unique isomorphism
λ : L→ (idA×ϕ)∗PA×A′ which respects the rigidificators.

Definition 5.1.5. Let A be an abelian variety over k. The projective abelian variety
A′ is called the dual abelian variety of A.

If k =K is a non-Archimedean field, then due to the GAGA Theorem 1.6.11 the
analytification of A′ represents PicτA/K on the category of rigid analytic spaces as
well. If L is an invertible sheaf on A, then by the universal property one obtains a
morphism

ϕL :A−→A′, a �−→ τ ∗aL⊗L−1,

which is in fact a group homomorphism. If L is ample, then ϕL is an isogeny; i.e.,
a finite surjective morphism. Furthermore, we want to mention the bi-duality of
abelian varieties that A is the dual of A′; cf. [74, p. 132].

Now consider J := JacX as an abelian variety and let J ′ be its dual. The theta
divisor Θ of Definition 5.1.3 gives rise to a group homomorphism

ϕΘ : J −→ J ′, x �−→ τ ∗xOJ (Θ)⊗OJ (Θ)
−1 = [OJ

(

τ−x(Θ)−Θ
)]

.

This homomorphism is an isomorphism and does not depend on the base point x0;
it is called the theta polarization of J . There is an interesting relation between the
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universal sheaf D and the Poincaré sheaf PJ×J ′ which is important for us in the
following section. Details can be found in [68, §6].

Theorem 5.1.6. Let X/k be a connected smooth projective curve of genus g with
a k-rational point x0. Let

ι :X −→ J := Jac(X), x �−→ ι(x) := [x − x0],
be the canonical map which sends x to the class of the invertible sheaf OX(x− x0).
Let Θ := ι(g−1)(X(g−1))⊂ J be the theta divisor. Let D be the universal invertible
sheaf on X×J of Theorem 5.1.1 and PJ×J ′ the universal invertible sheaf on J ×J ′
of Theorem 5.1.4. Then we have the following results:

(a) If D ∈X(g) with a := ι(g)(D) ∈ J and Θ−a := τa([−1]J (Θ)), then

ι∗OJ

(

Θ−a
)∼=OX(D)

are isomorphic, where [−1]J : J → J, x �→ −x, is the inverse map on J .
(b) There exists a canonical isomorphism

(ι×−ϕΘ)∗PJ×J ′ ˜−→D,

of rigidified invertible sheaves on X× J .
(c) There exists an isomorphism

OJ×J
(

m−1Θ −Θ × J − J ×Θ
) ˜−→(idJ ×ϕΘ)∗PJ×J ′,

of invertible sheaves on J × J .
(d) The invertible sheaf (ι× idJ ′)∗PJ×J ′ on X× J ′ gives rise to a canonical mor-

phism ϕ′ : J ′ → J, b′ �→ [ι∗PJ×b′ ], and a canonical isomorphism

(ι× idJ ′)
∗PJ×J ′ ˜−→

(

idX×ϕ′
)∗D

of rigidified invertible sheaves on X× J ′.
(e) The morphisms ϕ′ : J ′ → J and −ϕΘ : J → J ′ are inverse to each other.

ϕ′ is called the autoduality map.

Proof. (a) See [68, Lemma 6.8(a)].
(b) Due to [68, Lemma 6.8(b)] there exists an isomorphism

(

ι× [−1]J
)∗OJ×J

(

m−1(Θ−
)−Θ− × J − J ×Θ−

) ˜−→D

of invertible sheaves on X × J with Θ− = [−1]J (Θ). Then the assertion follows
from (c), since we may assume that Θ is symmetric; cf. Lemma 2.9.14.

(c) See [68, Theorem 6.6].
(d) This follows from (e) and (b).
(e) See [68, Lemma 6.9]. �

For later application let us state some specializations.
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Corollary 5.1.7. In the situation of Theorem 5.1.6 we have the following results.
If L is a rigidified invertible sheaf on X of degree 0, then

(a) ϕ∗ΘP[L]×J ′ =PJ×ϕΘ([L]).
(b) L= ι∗ϕ∗ΘP−[L]×J ′ .

If N is a rigidified translation invariant invertible sheaf on J , then

(c) ι∗ϕ∗ΘP−[ι∗N ]×J ′ = ι∗N .
(d) N =PJ×[N ] = ϕ∗ΘP−[ι∗N ]×J ′ .

Here “=” is a canonical isomorphism of rigidified invertible sheaves.

Proof. (a) This is true, because (idJ ×ϕΘ)∗PJ×J ′ is symmetric by Theo-
rem 5.1.6(c).

(b) Let � ∈ J be the isomorphism class [L] of L. Since D is the universal sheaf,
we have that L∼=D|X×�. Thus, Theorem 5.1.6(b) and assertion (a) imply

L=D|X×� = (ι×−ϕΘ)∗PJ×J ′ |X×� = ι∗PJ×−ϕΘ(�) = ι∗ϕ∗ΘP−�×J ′ .

(c) This follows from (b), because ι∗N has degree 0.
(d) This follows from (c), because for every invertible sheaf L on X of degree

0 there is a unique class of an invertible sheaf N on J with L = ι∗N due to the
autoduality in Theorem 5.1.6(e). �

5.2 Generalized Jacobian of a Semi-Stable Curve

In the following we will represent the generalized Jacobian of a semi-stable curve
over a field k as a torus extension. This will be used in the sequel to understand
Pic0
˜X/k

of a semi-stable reduction ˜X of a curve XK over a non-Archimedean fieldK .

In the following let X be a projective semi-stable curve over a field k which is
geometrically connected. We recall some facts about the functor

Pic0
X/k : (k-schemes)−→ (Sets),

which associates to a k-scheme S the set of isomorphism classes of invertible
sheaves L on X× S such that the degree of the pull back of L to every component
Xν of X×S s is zero for all points s ∈ S. It is known that Pic0

X/k is representable by
a smooth k-variety JK which is also called the generalized Jacobian of X/k; cf. [15,
9.2/8]. Actually, it is the 1-component of the representable functor PicX/k which is
defined without the condition on the degrees. In particular, its representable space is
smooth over k. In the sequel we will also write Pic0

X/k for J if we have to indicate
the curve.

Proposition 5.2.1. Under the above conditions, Pic0
X/k is an extension of an

abelian variety by a torus.
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More precisely, let X1, . . . ,Xn be the irreducible components of X and assume
that all the singular points of X are k-rational. Let pi :X′i→Xi be the normaliza-
tion of Xi for i = 1, . . . , n. Then the torus extension associated to Pic0

X/k is given
by the strict exact sequence

1 T J := Pic0
X/k

q n
∏

i=1

Pic0
X′i /k

1, (†)

where q is induced via functoriality by the morphisms pi for i = 1, . . . , n, and where
T is an affine split torus. The rank of the torus is equal to the rank of the homology
group H1(X ⊗k k,Z), where k is an algebraic closure of k; cf. Definition 5.2.2
below.

As explained in Sect. A.2 the torus extension (†) is given by translation invari-
ant line bundles on the abelian variety

∏n
i=1 Pic0

X′i /k
. More precisely, it is given

by a group homomorphism from the character group of the torus T to the dual of
∏n

i=1 Pic0
X′i /k

by Theorem A.2.8. The torus is related to the combinatorial configu-

ration of the irreducible components of X. This is recorded by its graph Γ (X⊗k k)

of coincidence of its irreducible components.

Definition 5.2.2. If X is a semi-stable curve over a field k, then one associates a ge-
ometric graph Γ = Γ (X) to X, which we call graph of coincidence of its irreducible
components. The vertices of Γ are the irreducible components, say X1, . . . ,Xn, and
the edges are given by the singular points of X. Each singular point lying on Xi and
on Xj defines an edge joining the vertices Xi and Xj . Note that Xi =Xj is allowed.

Note that this graph is equal to the graph of the skeleton associated to a semi-
stable reduction which was introduced in Definition 4.6.1.

We denote by H1(X,Z) the first homology group H1(real(Γ (X)),Z) of the re-
alization of the graph Γ (X), cf. Definition A.1.2.

The torus extension of J is made explicit by the following proposition; see
also [97].

Proposition 5.2.3. In the situation of Proposition 5.2.1 assume, in addition, that
the irreducible components X1, . . . ,Xn of X are smooth. Let x0

i be a k-rational
point of Xi which does not belong to the singular locus of X for i = 1, . . . , n. Let
X′ →X be the normalization of X.

A cycle c ∈H1(X,Z) can be represented by a closed path as in Definition A.1.3,
which we write as a formal sum of singular points,

c= z1 + · · · + zN .

If z ∈X is a singular point, then there are two points z′, z′′ ∈X′ over z. Accord-
ing to the orientation of c let z′ be the point of the origin and z′′ the one of the target
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of the associated edge. As c is closed, there are on each vertex Xi as many origins
as targets of the edges associated to z1, . . . , zN .

Let Bi := Pic0
Xi/k

be the Jacobian of Xi and B ′i the dual of Bi . Put

B := B1 × · · · ×Bn and B ′ := B ′1 × · · · ×B ′n.

Then B ′ is the dual of B and there is a canonical isomorphism

ϕΘ := (ϕΘ1 , . . . , ϕΘn) : B1 × · · · ×Bn −→ B ′1 × · · · ×B ′n,

where each ϕΘi
is induced by the theta divisor Θi of Bi . Put

φ′ :H1(X,Z)−→ B −→ B ′, c �→ [c] �→ c′ := −ϕΘ
([c]).

Here [c] ∈ B is the class of the invertible sheaf

(

N
⊗

j=1

[

z′′j − z′j
]∣

∣

X1
, . . . ,

N
⊗

j=1

[

z′′j − z′j
]∣

∣

Xn

)

∈
n
∏

i=1

JacX′i .

Then the torus extension J := Pic0
X/k is given by φ′ in the sense of Theorem A.2.8.

Thus, the group H1(X,Z) is canonically identified with the group of characters
of the torus T of J by sending c to the tautological map τc : J → PB×c′ .

Proof. The normalization X′ decomposes into a disjoint union

X′ =X1∪̇ · · · ∪̇Xn

of the irreducible components of X, which are assumed to be smooth. Let

ιi :Xi −→ Bi := JacXi, x �−→
[

x − x0
i

]

,

be the canonical mapping of Xi to its Jacobian with respect to the chosen base
point x0

i . Then let

ι := ι1 � · · · � ιn :X′ −→ B, Xi ! x �−→
(

0, . . . , ιi(x), . . . ,0
)

,

be the induced map. The cycle c = z1 + · · · + zN induces the class of an invert-
ible sheaf [c] ∈ Pic0

X′/k(k) on X′. In terms of divisors the invertible sheaf on X′
associated to c is defined by

[c] :=
N
⊗

j=1

[

z′′j − u0
j

]⊗
N
⊗

j=1

[−z′j + v0
j

] ∈ B,

where u0
j is the unique point in {x0

1 , . . . , x
0
n} ∩ Xμ(j) if z′′j ∈ Xμ(j) and v0

j is the

unique point in {x0
1 , . . . , x

0
n} ∩Xν(j) if z′j ∈Xν(j). Obviously, each backtracking on

the path is canceled automatically.
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In the following we prefer to work with line bundles instead of invertible sheaves,
since the notations are easier to handle; cf. Definition 1.7.1. Since there are k-
rational points x0

i ∈ Xi − SingX, we view Pic0
X′/k as the functor which associates

to a k-scheme S the set of isomorphism classes of line bundles on X′ × S which
are rigidified along the points x0

i and have degree 0 on the irreducible components
Xi for i = 1, . . . , n. Let D′i be the universal line bundle on Xi ×Bi of degree zero,
which is rigidified along x0

i . Without changing the notations, we denote by D′i the
pull-back of D′i to X×B under the projection Xi ×B→Xi ×Bi as well. Then

DX′×B :=
(

D′1, . . . ,D′n
)

is the universal line bundle on X′ ×B of degree zero on each Xi .
Next we define the pasting of theD′i over the double points in a universal way. Let

PBi×B ′i be the Poincaré bundle on Bi ×B ′i ; cf. Theorem 5.1.4. We have a canonical
isomorphism

D′i ˜−→(ιi ×−ϕΘi
)∗PBi×B ′i ˜−→

(

idBi ×ι′i
)∗
P−1
Bi×B ′i , (∗)

where

ι′i := ϕΘi
◦ ιi :Xi −→ B ′i

for i = 1, . . . , n. Indeed, the first isomorphism is due to Theorem 5.1.6(b). Since the
line bundle (idBi ×ϕΘi

)∗PBi×B ′i is symmetric due to Theorem 5.1.6(c), we obtain a
canonical isomorphism

ξ : (idBi ×ϕΘi
)∗PBi×B ′i ˜−→τ ∗(idBi ×ϕΘi

)∗PBi×B ′i
of symmetry, where τ : Bi ×Bi→ Bi ×Bi is the flipping of factors. This yields the
second isomorphism.

The Poincaré bundle on B ×B ′ is given by

PB×B ′ = p∗1PB1×B ′1 ⊗ · · · ⊗ p∗nPBn×B ′n ,

where pi : B ×B ′ → Bi ×B ′i are the projections for i = 1, . . . , n.
Now we define the torus extension

T →E
q−→ B =̂ φ′ :H1(X,Z)→ B ′

by the homomorphism φ′ of the assertion. Thus it remains to define a universal line
bundle on X×E.

First assume that X is a tree-like configuration of smooth irreducible curves, then
we have B = JacX due to Proposition 5.2.1 and H1(X,Z)= 0. The universal line
bundle is given in the following way:

Let y2, . . . , yn be the singular points of X and let y′i ∈ Xi and y′′i ∈ Xj for
some j 
= i be the points in X′ above yi . Now we alter the universal line bundles
D′2, . . . ,D′n on X × B by line bundles induced from line bundles on the base B;



5.2 Generalized Jacobian of a Semi-Stable Curve 225

so they do not change the class of the line bundle on the fiber X. We proceed by
induction:

For n= 1 set D1 :=D′1.
For n = 2 assume that the orientation is directed from X1 to X2 and hence

y′2 ∈X1 and y′′2 ∈X2; otherwise one interchanges the primes. Set

D2 :=D′2 ⊗ p∗P+1
B×ι′(y′′2 ) ⊗ p∗P−1

B×ι′(y′2),

where p :X×B −→ B is the projection. There is a canonical isomorphism

D1|y′2×B = P−1
B×ι′(y′2) ˜−→P−1

B×ι′(y′′2 ) ⊗ P+1
B×ι′(y′′2 ) ⊗ P−1

B×ι′(y′2) =D2|y′′2×B,

by the canonical identification (∗).
For n ≥ 3 one considers the unique path from X1 to Xn; say the path passes

through y2, . . . , ym after a suitable renumbering. For simplicity assume that X1 is a
terminal component. Then put

Dn :=D′n ⊗
m
⊗

μ=2

p∗P+1
B×ι′(y′′μ) ⊗ p∗P−1

B×ι′(y′μ) =D′n ⊗
m
⊗

μ=2

p∗PB×(ι′(y′′μ)−ι′(y′μ)).

Thus, for every double point yμ which is the intersection point of Xi and Xj , there
is a canonical isomorphism

ημ :Di |y′μ×B ˜−→Dj |y′′μ×B.

We leave it to the reader to check that (D1, . . . ,Dn) equipped with the connecting
isomorphisms (η2, . . . , ηn) is a universal line bundle on X × B , which is rigidified
along the base point x0

1 .
Now consider the given X and let r ≥ 1 be the rank of H1(X,Z). So there exist

r double points x1, . . . , xr such that X− {x1, . . . , xr} is a tree-like configuration of
smooth irreducible components. Furthermore, let y2, . . . , yn be the double points
of X − {x1, . . . , xr}. Then let Y → X be the normalization of X above the points
{x1, . . . , xr}; in other words, Y is defined as X but without the identification of
the points x′ρ and x′′ρ for ρ = 1, . . . , r . Thus, Y is a tree-like configuration of smooth
irreducible curves. As constructed above there is a universal line bundle D :=DY×B
on Y ×B which is given by line bundles (D1, . . . ,Dn) equipped with the connecting
isomorphisms (η2, . . . , ηn). To construct the universal line bundle on X×B we will
introduce universal connecting isomorphisms

τρ :D|x′ρ×B ˜−→D|x′′ρ×B.

For this consider the cycle without backtracking

cρ = zρ,1 + · · · + zρ,Nρ ,
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which passes only once through xρ and does not meet any other point of
{x1, . . . , xr}. Then we define a universal line bundle on X × E in the following
way. We introduce coordinates on E by

q :E := PB×c′1 ×B . . .×B PB×c′r −→ B,

where PB×c′ρ is the Gm-torsor associated to c′ρ := −ϕΘ([cρ]) and where cρ is a
simple closed path, for ρ = 1, . . . , r .

Every line bundle q∗PB×c′ρ has a canonical tautological trivialization

τρ :E −→ PB×c′ρ ,

which is defined by the projection onto the ρ-th component. We will define the con-
necting isomorphism of D|x′ρ×B ˜−→D|x′′ρ×B via τρ for each ρ = 1, . . . , r . Assume
that xρ is the intersection point of Xi and Xj . Let (u1, . . . , u�) be the double points
which cρ passes through from X1 to Xi and (v1, . . . , vm) the ones from X1 to Xj .
Let h ∈ {1, . . . , �} and k ∈ {1, . . . ,m} be indices such that

cρ = uh + · · · + u� + xρ − vm − · · · − vk.

The cycle has the same orientation as one of the paths starting at X1 and leading
to xρ . Thus, we may assume that this part is given by (u1, . . . , u�). Then the ori-
entation of the other part is opposite. The definition of the (vertical) isomorphism
over E

D|x′ρ×B Di |x′ρ×B = PB×ι′(x′ρ) ⊗
�
⊗

λ=1

PB×(ι′(u′′λ)−ι′(u′λ))

D|x′′ρ×B Dj |x′′ρ×B = PB×ι′(x′′ρ ) ⊗
m
⊗

μ=1

PB×(ι′(v′′μ)−ι′(v′μ))

is equivalent to a section of the Gm-torsor

E −→ PB×(ι′(x′′ρ )−ι′(x′ρ)) ⊗
m
⊗

μ=k
PB×(ι′(v′′μ)−ι′(v′μ)) ⊗

�
⊗

λ=h
PB×(ι′(u′λ)−ι′(u′′λ)).

This Gm-torsor is associated to the line bundle PB×c′ρ . Therefore, the canonical
section τρ : E→ PB×c′ρ gives rise to a connecting isomorphism over the double
point xρ for ρ = 1, . . . , r . Note that the change in the sign is forced by considering
line bundles instead of invertible sheaves. Thus, we obtain a line bundle

L :=DX×E −→X×E
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via the pasting with τ1, . . . , τr , where we rigidified the pasting over the unit 1 section
of E by requiring that DX×1 is the trivial line bundle on X.

We obtain the line bundle Lρ on X × E which is defined via the past-
ing with γρ := τρ : E → PB×cρ and γρ′ = τρ′(1) for ρ′ 
= ρ. The pasting
τρ′(1) : E → PB×c′

ρ′
is the unique extension of the constant group homomor-

phism T → P0×c′ρ ; cf. Sect. A.2. This is equivalent to the character on the torus
T = E1,0 × · · · × Er,0, which is the fiber of E→ B over the unit element 0 of B .
This assignment is the identification of H1(X,Z) with the group of characters of T ;
cf. Theorem A.2.8.

Then DX×E is the universal line bundle on X×E.
Indeed, every line bundle L on X is equivalent to the isomorphism class of

(L′, τ ), where L′ is a line bundle on Y and τ = {τρ;ρ = 1, . . . , r} is a system of
isomorphisms of the stalks τρ : L′(x′ρ) ˜−→L′(x′′ρ), where (x′ρ, x′′ρ) are the points of
Y lying above the singular point xρ . Since B represents the isomorphism classes of
line bundles on Y which have degree zero on every component, the line bundle L′
is of type L′ ∼=DY×b for some point b of B . Moreover, L′ is equipped with gluing
data τρ : L(x′ρ) ˜−→L(x′′ρ) for ρ = 1, . . . , r . Such gluing data are of the type as con-
sidered above. Thus, we see that the couple (L′, τ ) corresponds to a unique point
of E.

We leave it to the reader to check that (E,DX×E) satisfies the universal property
of the functor Pic0

X/k . Thus, we see that E represents Pic0
X/k . �

Corollary 5.2.4. In the situation of Proposition 5.2.3 let x1, . . . , xr be double
points of X for r := rkH1(X,Z) such that X − {x1, . . . , xr} is a tree-like config-
uration of irreducible components. Then let p : Y → X be the normalization of X
above the points {x1, . . . , xr}. Then there is a canonical isomorphism

J := Pic0
X/k

p∗

∼
E := PB×c′1 ×B . . .×B PB×c′r

q

Pic0
Y/k B := Pic0

X′/k

which sends a point � ∈ J to the point τ ∈ E, where q(τ) := p∗� ∈ B is a line
bundle on Y and τ := (τ1, . . . , τr ) is the identification of the stalks

Pq(�)×ι′(x′ρ) −→ Pq(�)×ι′(x′′ρ ), � �−→ τρ(�).

Here c′ρ =−ϕΘ([cρ]) is the image of a simple path through xρ not meeting the other
points x′ρ for ρ = 1, . . . , r and the map τρ is the multiplication with the tautological
section τρ :E→ PB×c′ρ .
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Remark 5.2.5. In Theorem A.2.8 there is an interpretation of J without introduc-
ing a basis of H1(X,Z). Indeed, J can be represented as a B-scheme

q : J = Spec

(

⊕

m′∈H1(X,Z)

PB×φ′(m′)
)

−→ B,

where PB×φ′(m′) is the invertible sheaf HomB(PB×φ′(m′),A1
B) associated to the line

bundle PB×φ′(m′) and where the multiplication on the graded OB -algebra is given
by the Theorem of the Square 7.1.6(b)

PB×φ′(m′1) × PB×φ′(m′2) −→ PB×φ′(m′1+m′2).

Hereby the group H1(X,Z) is viewed as the group of characters of J

H1(X,Z)−→Homq(J,PB×B ′), m′ �−→ [m′ : t �−→ tm
′]
.

Note that an S-valued point t of J is a family consisting of sections tm
′

of
Pq(t)×φ′(m′)(S) satisfying tm

′
1 ⊗ tm

′
2 = tm

′
1+m′2 . After having introduced coordinates

as in Corollary 5.2.4, the point t can be written as an r-tuple t = (t1, . . . , tr ) and
m′ = m′1c1 + · · · + m′rcr . Thus we have that tm

′ = t
⊗m1
1 ⊗ · · · ⊗ t

mr
r is a point of

PB×φ′(m′).

In the following we want to discuss the Weil construction of JacX for later use.

Lemma 5.2.6. In the situation of Proposition 5.2.3 let ψ : X∗ → X be a proper
morphism of connected semi-stable curves, which is an isomorphism above the
complement X − {x1, . . . , xr} such that the inverse image of xρ under ψ is a pro-
jective line Pρ ∼= P

1
k . Then set Aρ := Pρ − {x′ρ, x′′ρ}, where x′ρ, x′′ρ are the intersec-

tion points of Pρ with the remaining part of X∗. Let X1, . . .Xs be all the compo-
nents of X with genus gj := g(Xj )≥ 1. Then there exists an affine dense open part

Wj ⊂X
(gj )

j such that the morphism

ι : (A1 × · · · ×Ar)× (W1 × · · · ×Ws) −→ Pic0
X∗/k = Pic0

X/k

(a1, . . . , ar ,w1, . . . ,ws) �−→
r
⊗

ρ=1

[

aρ − a0
ρ

]⊗
s
⊗

j=1

[

wj −w0
j

]

is an open immersion, where a0
ρ ∈Aρ and w0

j ∈X
(gj )

j are rational points.

Proof. Let X′ →X be the normalization. Then it is well-known that there exists a

dense open affine subset Wj ⊂X
(gj )

j such that

(W1 × · · · ×Ws)−→ Pic0
X′/k, (w1, . . . ,ws) �−→

s
⊗

j=1

[

wj −w0
j

]

,
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is an open immersion; cf. [15, 9.3.5]. The map

(A1 × · · · ×Ar)−→ Pic0
X/k, (a1, . . . , ar ) �−→

r
⊗

ρ=1

[

aρ − a0
ρ

]

,

maps A1 × · · · ×Ar into the torus, since the composition of this map with the pro-
jection onto the abelian variety Pic0

X′/k is constant. This map is a closed immersion
onto the torus of J .

Indeed, a basis of H1(X,Z) ∼= Z
r is given by the circuits c1, . . . , cr , where, for

ρ = 1, . . . , r , the circuit cρ passes xρ and meets no other xρ′ for ρ′ 
= ρ. Every value
α ∈Gm,k can be adjusted by a rational function fρ on Pρ with value 1 in x′ρ and α in
x′′ρ which has a simple zero in a suitable aρ ∈ Pρ and a simple pole in a0

ρ . Therefore,
the divisor aρ − a0

ρ yields a unique line bundle which is obtained by twisting the
trivial line bundle by α over the point xρ . Thus, the assertion follows. �

Using this lemma, one obtains a dense open part of JacX. Moreover, there is a bi-
rational group law on this open part. Then, the associated algebraic group represents
JacX; cf. [15, §9.3].

Remark 5.2.7. The torus can be described in another way by topological cocycles
with integer coefficients. Every cocycle n = (ni,j ) ∈ H 1(X,Z) gives rise to a line
bundle on X×Gm,k via the cocycle

ζ n := (ζ ni,j ) ∈H 1(X×Gm,k,O×X×Gm,k

)

,

where ζ serves as a coordinate function on Gm,k . Due to the universal property of
the generalized Jacobian, this line bundle induces a group homomorphism

Gm,k −→ Pic0
X/k, t �−→ ζ(t)n.

If n1, . . . , nr is a basis of H 1(X,Z), then the map

G
r
m,k −→ Pic0

X/k, t �−→ ζ1(t)
n1 ⊗ · · · ⊗ ζr (t)

nr ,

gives rise to an isomorphism of the split torus Gr
m,k to the torus T , where ζ1, . . . , ζr

are the coordinate functions on G
r
m,k .

Proposition 5.2.8. In the situation of Proposition 5.2.3 there is a commutative di-
agram

H 1(X,Z)×H1(X,Z)

h×h′

Z

χ

Hom(Gm,k, J )×Hom(T ,Gm,k) Hom(Gm,k,Gm,k)
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of isomorphisms of canonical pairings. Here h maps a cocycle m of H 1(X,Z) to
the line bundle ζm and h′ maps a cycle m′ ∈H1(X,Z) to the character in the sense
of Remark 5.2.5. The pairing between H 1(X,Z) and H1(X,Z) is the Kronecker
product, when we view X as the realization realΓ (X) of its graph of coincidence.
The down-arrow on the right-hand side is the canonical one.

Proof. To specify the pairing between H 1(X,Z) and H1(X,Z) consider represen-
tations

H 1(X,Z)= Zz1 ⊕ · · · ⊕Zzr ,

H1(X,Z)= Zz′1 ⊕ · · · ⊕Zz′r .

In the first row each double point xρ gives rise to the cocycle zρ ∈ Z1(X,Z). Thus,
(ζ(t)zρ ) gives rise to a cocycle in H 1(X×Gm,k,O×X×Gm,k

) for t ∈Gm,k and hence
to an invertible sheaf on X × Gm,k , which in turn is equivalent to a morphism
Gm,k → J . In the second row z′ρ represents the simple cycle passing through xρ
and no other xρ′ for ρ′ 
= ρ. Furthermore, in both cases we choose the same orien-
tation on the double points; i.e., the orientation on the edge associated to the double
point. Write m=∑r

ρ=1mρzρ and m′ =∑r
ρ=1m

′
ρzρ . Then, the pairing in the upper

row of the assertion yields n :=∑r
ρ=1mρm

′
ρ . For the down maps one obtains

h(m)(t)= (tm1, . . . , tmr
)

and h′
(

m′
)

(t1, . . . , tr )= t
m′1
1 · . . . · tm′rr .

Indeed, by Remark 5.2.5 the elements of Hom(T ,Gm,k) correspond one-to-one
to the elements of H1(X,Z). Moreover, we know that Hom(Gm,k, J ) equals
Hom(Gm,k, T ), since a morphism from Gm,k to an abelian variety is constant. By
Lemma 5.2.9 the elements of Hom(Gm,k, J ) are of type t �→ (ζ(t)m) for a uniquely
determined m ∈ H 1(X,Z) and t ∈ Gm,k . Because of χ(n)(t) = tn the assertion is
clear. �

Lemma 5.2.9. In the situation of Proposition 5.2.3 let T = G
r
m,k be a split torus

with coordinate functions (ζ1, . . . , ζr ). Let εX : X→ X × T be the unit section of
the torus and p1 :X× T →X the first projection. Then every invertible sheaf L on
X× T has a unique representation

L∼= (tm)⊗ p∗1ε∗XL,

where m := m1z1 + · · · + mrzr is a cocycle in H 1(X,Z) = Zz1 ⊕ · · · ⊕ Zzr and
(tm) is the invertible sheaf given by the cocycle (ζ1(t)

m1 ⊗ · · · ⊗ ζr (t)
mr ).

Proof. Let p : Y → X be the normalization of X over {x1, . . . , xr}. Set pT :=
(p, idT ). Then p∗TL is isomorphic to p∗1ε∗Y p∗TL due to the universal property of
the Jacobian, since T → Pic0

Y/k is constant and OT (T ) is factorial. Then L is ob-
tained from ε∗XL by pasting the stalks over the couples (T × {x′ρ}, T × {x′′ρ}) by
ζ1(t)

m1 · . . . · ζr (t)mr , where (m1, . . . ,mr) ∈ Z
r . �

The last statement follows from the universal property of Pic0
X/k as well.
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5.3 Lifting of the Jacobian of the Reduction

In the following let XK be a connected smooth projective curve over a algebraically
closed non-Archimedean field K . Then XK has a formal R-model X, whose special
fiber ˜X is semi-stable; cf Theorem 4.4.3. Assume, in addition, that the irreducible
components of ˜X over the residue field k are smooth. Let ˜J be the generalized
Jacobian of ˜X; cf. Proposition 5.2.1.

Let g be the genus of X and r the rank of H1(˜X,Z). Assume, in addition, that
there exist rational components

˜A1, . . . , ˜Ar

of ˜X − Sing˜X which are isomorphic to P
1
k − {0,∞} such that the complement

˜X− (˜A1, . . . , ˜Ar) is a tree-like configuration of irreducible components. Let

ã0
ρ ∈ ˜Aρ

be a k-rational point for ρ = 1, . . . , r . Furthermore, let ˜X1, . . . ,˜Xs be all the irre-

ducible components of ˜X with genus gj := g(˜Xj) ≥ 1. Then ˜X
(gj )

j is smooth over
k as follows from the theorem on symmetric functions. Let

w̃0
j ∈ ˜X(gj )

j

be a closed point, which is induced by gj points of ˜Xj , which are contained in the
smooth locus of ˜X for j = 1, . . . , s. Likewise let

˜Wj ⊂ ˜X(gj )

j

be a dense open affine subscheme, which is disjoint from the singular locus of ˜X(gj )

such that

˜Wj −→ Jac(˜Xj), w̃j �−→
[

w̃j − w̃0
j

]

,

is an open immersion; cf. [15, 9.3/5]. Moreover, we may assume w̃0
j ∈ ˜Wj .

Let X be the generic fiber of the smooth part of the formal R-curve X. There
are formal liftings of all these “˜”-objects on X, which were introduced above. We
denote them by the same symbol without “˜” on top. Thus, we have open formal
affine subdomains

Aρ ⊂X and Wj ⊂X
(gj )

,

which are smooth formal R-models [15, p. 255] with the given reductions ˜Aρ

and ˜Wj . There exist K-rational points

a0
ρ ∈Aρ and w0

j ∈X(gj )

j ,
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which are liftings of ã0
ρ and of w̃0

j , respectively. Put

A :=A1 × · · · ×Ar and W :=W1 × · · · ×Ws.

We view A×W ⊂X
(g)
K as an open subset of the symmetric product X(g)

K . Note that
g = r + g1 + · · · + gs equals the genus of XK ; cf. Proposition 4.2.6.

Lemma 5.3.1. With the above notations we have the following results:

(a) Let LK =OXK
(D) be the invertible sheaf given by a divisorD =∑n

i=1(xi−yi),
where (xi, yi) is a pair of K-valued points of X which specialize into the same
irreducible component of ˜X for i = 1, . . . , n. Then LK extends to a formal
invertible sheaf L on X with reduction ˜L=O

˜X(
∑n

i=1(x̃i − ỹi )) ∈ Pic0
˜X/k

(k).

(b) The map

ι :A×W −→ Jac(XK), (a,w) �−→
r
∑

ρ=1

[

ai − a0
i

]⊗
s
∑

j=1

[

wj −w0
j

]

,

is an open immersion of rigid analytic varieties.
(c) If (a,w) ∈A×W , then we have the following compatibility

˜ι(a,w)= ι̃(ã, w̃),

where ι̃ is the map defined in Lemma 5.2.6, which is associated to (ã0, w̃0).
(d) The reduction map is compatible with the group law

˜ι(a,w)⊗ ι
(

a′,w′
)= ˜ι(a,w)⊗ ˜ι

(

a′,w′
)

.

Proof. (a) The points xi, yi extend to R-valued points xi, yi of X lying in the
smooth locus of X/R. Then the Weil divisor

∑n
i=1(xi − yi) is a Cartier divisor,

and hence it defines a formal line bundle L on X. Thus, the reduction of L is given
by the Weil divisor

∑n
i=1(x̃i − ỹi ), which is Cartier as well. Due to the very defini-

tion of Pic0
˜X/k

the reduction ˜L belongs to Pic0
˜X/k

(k).

(b) Since ι :X(g)→ Jac(XK) is an open immersion on the open subset of X(g),
where ι is injective, it suffices to show that ι|A×W is injective.

If ι(a,w)= ι(a′,w′), then there exists a meromorphic function m on XK with
(a−a′ +w−w′)= divm. By Corollary 4.3.4 the sup-norms of m on the irreducible
components are equal. After adjusting the sup-norm to 1, the function m has a well-
defined reduction as a rational function m̃ on ˜X and solves the divisor ã − ã′ +
w̃ − w̃′. Thus, we see that the fiber of a point ι(a,w) under ι is contained in a
formal fiber of A×W , because ι̃ is an open immersion by Lemma 5.2.6. Then the
fiber of ι|A×W consists of a single point, because the fibers of ι : X(g)→ Jac(XK)

are projective spaces.
(c) and (d) These follow from (a). �
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Lemma 5.3.2. The group law of JK := Jac(XK) induces a group structure on the
rigid analytic subvariety

J+ := ι
(

(A×W)+
)

of JK , where (A×W)+ is the formal fiber of A×W at the point (a0,w0).
Moreover, J+ acts on ι(A×W) and leaves the formal fibers of ι(A×W) invari-

ant. The action on the formal fibers is faithful and transitive.
In particular, J+ has the following property:
Let LK = OXK

(D) be the class of an invertible sheaf given by a divisor
D =∑n

i=1(xi − yi), where (xi, yi) are pairs of K-valued points which special-
ize into the smooth part of ˜X and into the same irreducible component. Then ˜L is
trivial if and only if [L] belongs to J+.

Proof. Let V := ι(A×W) and � ∈ V . Since V has a smooth formal R-model, J+ is
isomorphic to an open ball by Corollary 4.1.10. Consider now a connected affinoid
subdomain U ⊂ J+ with 1 ∈U and the morphism

ϕ� :U −→ JK, a �−→ a⊗ �.

Then U ∩ ϕ−1
� (V ) is an affinoid subdomain of U . In particular, we have the restric-

tion ψ :U ∩ ϕ−1
� (V )→ V . Due to Lemma 5.3.1(d) the canonical reduction of ψ is

constant to �̃ ∈ ˜J . Thus, ψ maps U ∩ ϕ−1
� (V ) to the formal fiber V+(�) of �. Since

U is connected, the whole U is mapped to J+(�) by ϕ�, since {V,JK − V+(�)} is
an admissible covering of JK by Remark 3.3.5.

Likewise one shows that J+ is invariant under the inverse map and that J+ acts
transitively on each formal fiber of V . Thus we see that J+ is closed under the group
law of JK and the inverse map of JK . Thus, we see that J+ is a subgroup of JK .

If [˜L] = 1, then there exists a rational function m̃ on ˜X such that ˜D = div(m̃). By
Corollary 4.3.6 there exists a meromorphic function m on XK , which lifts m̃. Then
E := D − div(m) is of the same type as D with ˜E = 0. This means that on each
formal fiber X+(x̃) of X→ ˜X the degree of E|X+(x̃) is zero. So it remains to see
that, for points x, y of a smooth formal fiber, the class [x − y] belongs to J+. Since
such a formal fiber is isomorphic to an open ball by Proposition 4.1.12, there exists
a closed disc B contained in X+(y) with x, y ∈ B . Now consider the mapping

ϕ : B −→ JK, a �−→ [a − y].
As before consider the subvariety B ∩ ϕ−1(V ). The reduction of [a − y] is zero as
ã = ỹ. Since [a − y] belongs to V and ι̃ is an open immersion, we see ϕ(a) ∈ J+.
Since B is connected, one concludes as above that ϕ maps the whole B to J+. �

Let us summarize the results of this section.

Proposition 5.3.3. In the above situation the image ι(A×W) generates a subgroup
JK ⊂ JacXK which has a smooth formal R-model J such that ι|A×W is a formal



234 5 Jacobian Varieties

analytic open immersion. The formal fiber at the unit section is J+. The reduction
map induces the commutative diagram

A×W
ι

JK (a,w) [∑r
ρ=1(aρ − a0

ρ)+
∑s

j=1(wj −w0
j )]

˜A× ˜W ι̃
˜J (ã, w̃) [∑r

ρ=1(ãρ − ã0
ρ)+
∑s

j=1(w̃j − w̃0
j )]

where the vertical map on the right-hand side coincides with the reduction of formal
invertible sheaves. J represents all the divisor class of the form

⊗n
i=1[xi − yi],

where (xi, yi) are pairs of K-valued points of X which specialize into the smooth
part X and into same irreducible component.

In particular, the reduction of J is the generalized Jacobian ˜J of ˜X, and hence
semi-abelian.

Proof. Put V := ι(A×W). Its reduction ˜V equals ˜A× ˜W . Since ˜J is quasi-compact,
there exist finitely many K-valued points τ1, . . . , τN in V such that

˜J = τ̃1 · ˜V ∪ · · · ∪ τ̃N · ˜V .

If we put

JK := τ1 · V ∪ · · · ∪ τN · V,

then {τ1 ·V, . . . , τN ·V } is a formal analytic covering of JK . So this defines a formal
R-model J of JK . The group law on Jac(XK) restricts to a formal analytic group
law on J .

Indeed, let �1, �2, �3 ∈ {τ1, . . . , τN } and let ˜U ⊂ �̃1 · ˜V × �̃2 · ˜V be an open subset
such that the group law on ˜J maps ˜U to �̃3 · ˜V . Let U ⊂ �1 · V × �2 · V be a lifting
of ˜U . Then the group law in JK maps U to �3 · V . In fact, consider (aν,wν) in
A×W with vν := ι(aν,wν) ∈ V for ν = 1,2 such that (�1 · v1, �2 · v2) ∈ U . Then
there exists v3 ∈ V such that we have the reduction �̃1 · ṽ1 · �̃2 · ṽ2 equals �̃3 · ṽ3. This
implies by Lemma 5.3.1(d) that the invertible sheaf L associated to �1 · v1 · �2 · v2 ·
�−1

3 · v−1
3 has reduction ˜L= 1. Then we see by Lemma 5.3.2 that there exists some

j ∈ J+ such that the class of L is j , and hence we have �1 · v1 · �2 · v2 · �−1
3 = j · v3.

Since J+ acts on the formal fibers of V , we obtain that j · v3 = ι(a3,w3) for some
(a3,w3) ∈ (A ×W)+. This shows that the group law on JK restricts to a formal
analytic law of composition on JK . Likewise one verifies that the covering is formal
analytic and that the inverse map is also formal analytic. �
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5.4 Morphisms to Rigid Analytic Groups with Semi-Abelian
Reduction

In the following let GK be a rigid analytic group and GK ⊂GK an open subgroup
which has a smooth formal R-model G with semi-abelian reduction ˜G; i.e., ˜G is
semi-abelian k-scheme.

Definition 5.4.1. A semi-abelian group scheme is a smooth separated commutative
group scheme G→ S with connected fibers such that each fiber Gs is an extension
of an abelian variety by a torus Ts .

In this section we will consider rigid analytic morphisms uK :ZK →GK from a
connected rigid space ZK with a K-rational point z0 satisfying uK(z0)= e, where
e is the unit element of GK . We are especially interested in the case, where ZK has
a smooth formal model Z or where ZK is an affine formal curve with semi-stable
reduction.

Lemma 5.4.2. Let X := SpfA and Y := SpfB be admissible affine formal R-
scheme with geometrically reduced reductions. If ϕK : XK → YK is a morphism
of their generic fibers, then ϕK extends to a formal morphism ϕ :X→ Y .

Proof. By Proposition 3.4.1 we have that A= ÅK and B = B̊K . Obviously, the map
ϕ∗K maps B to A, and hence ϕ∗K extends to a formal morphism. �

Lemma 5.4.3. Let ϕK : XK → YK be a morphism of separated rigid analytic
spaces. Let UK and VK be an open affinoid subvarieties of XK and of YK , re-
spectively, which admit smooth formal models U and V , respectively. Let x ∈ UK

be a point with reduction x̃ ∈ ˜U such that ϕK(U+(x))⊂ V+(ϕK(x)). Then there ex-
ists a formal open neighborhood U ′ of x̃ in U such that ϕK |U ′K extends to a formal
morphism ϕ :U ′ → V .

Proof. Let ΓK ⊂ XK ×K YK be the graph of ϕK . Since ϕK is defined on XK , the
projection p1 induces an isomorphism from the generic fiber ΓK to XK . In particu-
lar, we have that ϕK = p2 ◦ (p1|ΓK )−1.

Consider now the schematic closure Γ ⊂ U ×R V of ΓK ∩ (UK × VK); cf. [15,
§2.5]. Due to Theorem 3.2.1 the formal scheme Γ is locally of topologically finite
presentation. Then look at the first projection p1|Γ : Γ →U .

First we verify that p1|Γ is flat at x̃. This can be checked after faithfully flat
base change. The base change OU,x̃ → O̊U(U+(x̃)) is faithfully flat due to Corol-
lary 3.5.7, where the latter is the ring of holomorphic functions on U+(x̃) which
are bounded by 1. Since the schematic closure is compatible with flat base change
[15, §2.5/2], the flatness of p1|Γ at x̃ can be checked after that base change. Since
ϕK maps on U+(x̃) to V+(ϕK(x)), the projection p1|Γ : Γ →U is an isomorphism
over U+(x̃), and hence p1|Γ is flat at x̃.
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Since the flat locus is open and a flat map is open, there exists a formal open affine
U ′ ⊂ U , which is contained in the image of p1|Γ . Thus, we obtain the morphism
ϕ|K |U ′ := p2 ◦ (p1|ΓK )−1 : U ′K → VK of the affinoid subdomains. Then ϕ|K |U ′
extends to a morphism ϕ :U ′ → V by Lemma 5.4.2. �

Corollary 5.4.4. Let ϕK : XK → YK be a morphism of rigid analytic spaces. As-
sume that XK and YK admit smooth formal models X and Y , respectively. If ϕK
respects formal fibers, then ϕK extends to a formal morphism ϕ :X→ Y .

In the following we will make use of an extension theorem for holomorphic func-
tions, which we will be presented only in a very simple setting. Actually the state-
ment can be generalized to a more general situation.

Proposition 5.4.5. Let Bn, n ≥ 2, be an n-dimensional ball with coordinate func-
tions ζ1, . . . , ζn. Let g := (ζ1 − c1) · . . . (ζ1 − cm) ∈ R[ζ1] be a polynomial, where
the reductions c̃1, . . . , c̃m ∈ k are pairwise distinct. For some ε ∈ |K×| put

U := {z ∈ B
n; ∣∣ζν(z)

∣

∣≤ ε for ν = 2, . . . , n
}

,

L := {z ∈ B
n; ∣∣g(z)∣∣= 1

}

.

Then every holomorphic function on U ∪ L extends to a holomorphic function on
B
n in a unique way.

Proof. Because of the identity principle it suffices to show that every holomorphic
function f ∈ OBn(U ∪ L) is induced by an element of K〈ζ1, . . . , ζn〉. First, we
remark that f |L admits a unique partial fraction expansion

f =
∞
∑

i=0

aiζ
i
1 +

m
∑

μ=1

∞
∑

jμ=1

ajμ,μ(ζ1 − cμ)
−jμ

with coefficients inK〈ζ2, . . . , ζn〉 and the usual conditions on convergence. Restrict-
ing the expansion to U shows that the fractional part vanishes. This implies that the
extension of f is a holomorphic function on B

n. �

Now we turn to the extension theorem for morphisms to group varieties.

Proposition 5.4.6. Let GK be a rigid analytic group and GK ⊂GK an open sub-
group, which has a smooth formal model G with semi-abelian reduction ˜G. Let
uK :ZK →GK be a rigid analytic morphism, where ZK is a connected rigid space
with a K-rational point z0.

If ZK admits a smooth formal model Z, then uK maps ZK to the translate
uK(z0) ·GK . If uK(z0) ∈GK , then uK : ZK →GK extends to a formal morphism
u : Z→G.

This, especially, applies to morphisms ϕK :Gm,K →GK , where

Gm,K :=
{

t ∈Gm,K ; |t | = 1
}

is the torus of units. Its R-model is the formal torus Gm,R := SpfR〈ζ, ζ−1〉.
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Obviously, we may assume that K is algebraically closed. We start with the proof
in a special case.

Lemma 5.4.7. In the situation of Proposition 5.4.6 assume, in addition, that ZK is
the 1-dimensional unit disc DK , z0 = 0 and uK(z0)= e. Then uK maps ZK into the
formal fiber G+(e) of GK of the unit element e of GK .

Proof. Since the reduction ˜G of G is semi-abelian, ˜G is an extension of an abelian
variety ˜B by a torus ˜T . In particular, ˜G is a ˜T -torsor over ˜B; cf. Theorem A.2.8.
Thus, there exists an affine open neighborhood ˜V of ˜T in ˜G. Let V ⊂ G be the
lifting of ˜V . Then the generic fiber VK is affinoid.

Let us first consider the special case, where uK maps ZK into VK . Then uK
extends to a formal morphism u : Z→ V by Lemma 5.4.2, and hence u induces
a morphism ũ : ˜Z→ ˜V . Since the reduction ˜Z is the affine line and a map from a
rational variety to an abelian variety is constant, ũ maps ˜Z into the torus ˜T . Since a
map from the affine line to a torus is constant, the map ũ is constant. Thus, we see
that uK maps ZK into G+(e).

Now consider the general case. Let UK ⊂ u−1
K (VK) be the connected component

of u−1
K (VK) which contains z0. Due to Corollary 2.4.7 the subdomain UK is a closed

disc DK(r) minus finitely many open discs, where DK(r) is a subdisc of ZK =DK

of radius r ∈ |K×|. Let us first assume that all the open discs are contained in the
boundary {z ∈DK ; |z| = r}. Once we have verified the assertion in this case, we are
done in general. In fact, that case implies that DK(r) is not punctured by open discs.
Thus, we have UK = DK(r) is a disc, and uK(UK) ⊂ G+(e), as was seen above.
Then the maximum principle implies UK =DK .

Therefore, we can consider the case, where UK ⊂DK(r) and that UK contains a
non-empty formal open subdomain WK of DK(r). Thus, WK is the generic fiber of
an open formal subscheme W of DR(r). Let ζ be a coordinate on DK(r), which is
adjusted to sup-norm 1. Then there exists a polynomial

g := (ζ − c1) · . . . · (ζ − cm) ∈R[ζ ]
as in Proposition 5.4.5 such that every z ∈DK(r) with |g(z)| = 1 belongs to WK .

For c ∈ |K×| with c < 1 consider the subdomain

$(c) := {z ∈D
2
K(r);
∣

∣ζ1(z)− ζ2(z)
∣

∣≤ c
}

,

where ζ1, ζ2 are the coordinate functions of D2
K(r), and the morphism

vK :DK(r)×DK(r)−→GK, (z1, z2) �−→ uK(z1) · uK(z2)
−1.

By arguments on continuity we see that there exists an ε ∈ |K×| with
vK($(ε))⊂G+(e). Since the reduction of W is rational, one concludes as above
that uK maps WK into a subset which reduces to the torus ˜T . Therefore, vK maps
WK ×WK to a subset of GK , which reduces to the torus as well and hence vK maps
WK ×WK to VK . So it follows from Proposition 5.4.5 that vK($(c))⊂ VK for all
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c < 1. Indeed, introduce the coordinate functions ξ1 := ζ1, ξ2 := ζ1 − ζ2 on D
2
K(r).

Note that, for c < 1, it holds

$(c)∩ (WK ×WK) =
{

(z1, z2) ∈$(c);
∣

∣g(z1)
∣

∣= 1,
∣

∣g(z2)
∣

∣= 1
}

= {(z1, z2) ∈$(c);
∣

∣g(z1)
∣

∣= 1
}

,

since |g(z1)| = 1 implies |g(z2)| = 1 if |z1 − z2| < 1. Therefore, the morphism
vK :$(c) ��� VK is defined everywhere for all c < 1.

Then it follows from Lemma 5.4.3 that vK maps a formal open neighborhoodDK

of the diagonal of D2
K(r) to VK . Let DK be the generic fiber of an open subdomain

D ⊂D
2
R(r). By Lemma 5.4.2 we conclude that the morphism vK extends to a formal

morphism v :D→ V . Then it follows by the usual techniques that uK extends to
formal morphism u : DR(r)→ G. Indeed, the domain of definition of a rational
map can be checked after faithfully flat base change [15, 2.5/5]. Then consider the
diagram

D′ (x1, x2)

DR(r) G; x1 u(x1)= v(x1, x2) · u(x2),

where D′ = D ∩ (DR(r) ×W); cf. [15, 4.4/2]. The vertical map is faithfully flat,
the down right map is defined everywhere and the horizontal map coincides with u.
Restricting the diagram to infinitesimal levels mod πn+1, the induced horizontal
map is defined everywhere due to [15, 2.5/5]. Thus, we see that uK : WK → VK
extends to a morphism u :DR(r)→ V . Now as above we see that ũ is constant and
hence uK maps D1

R(r) into the formal fiber G+(e). �

Now we turn to the proof of Proposition 5.4.6.

Proof of Proposition 5.4.6. Since ZK has smooth reduction, every formal fiber is an
open n-dimensional ball due to Corollary 4.1.10. We may assume that uK(z0)= e.
Then it follows from Lemma 5.4.7 that the formal fiber Z+(z̃0) is mapped into
G+(e). By Lemma 5.4.3 we have that ZK contains a formal open neighborhood U
of z0 such that uK |UK extends to a formal map U→G. Likewise we have for every
other point z ∈ZK

uk
(

Z+(z̃)
)⊂ uK(z) ·G+(e).

Since we may assume that ZK is quasi-compact, there exist finitely many open
subsets U1, . . . ,U� of ZK which cover ZK such that

uK(ZK)⊂ uK(U1)∪ · · · ∪ uK(U�)⊂ uK(z1) ·GK ∪ · · · ∪ uK(z�) ·GK.
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Two residue classes uK(zi) ·GK and uK(zj ) ·GK either coincide or are disjoint.
Since ZK is connected, we see that uK(ZK)⊂GK . Due to Corollary 5.4.4 the map
uK extends to a formal morphism u : Z→G. �

Next we want to discuss the case, where ZK is an affinoid curve with semi-stable
reduction.

Proposition 5.4.8. Let GK be a rigid analytic group and GK ⊂GK an open sub-
group which has a smooth formal model G with semi-abelian reduction ˜G. Assume
that the embedding of the maximal formal torus T ↪→G extends to a rigid analytic
homomorphism of the associated affine torus TK →GK .

Let ZK be a connected affine rig-smooth formal curve, which has a semi-stable
model Z with precisely one singular point z̃0. Let ζ :ZK →Gm,K be a holomorphic
function which restricts to a coordinate function on the formal fiber of Z+(z̃0) of the
double point z̃0. Let z0 ∈ Z+(z̃0) be a K-rational point with ζ(z0)= 1.

If uK : ZK →GK is a rigid analytic morphism, then there exists a unique group
homomorphism ϕ :Gm,K →GK such that uK factorizes into

uK = (ϕ ◦ ζ ) · u · uK(z0),

where u : ZK →GK is a rigid analytic morphism.

Proof. Let � ∈ √|K×| and let �2 < 1 be the height of the annulus Z+(z̃0); cf.
Proposition 4.1.12. After removing finitely many smooth formal fibers of ZK we
may assume that ζ has no zeros. Thus we have

Z+(z̃0)=
{

z ∈ZK ;� <
∣

∣ζ(z)
∣

∣< �−1},

where ζ takes absolute values � or �−1 on the smooth parts of Z. For � < ρ ≤ 1 we
put

A(ρ) := {z ∈ ZK ;ρ ≤
∣

∣ζ(z)
∣

∣≤ ρ−1
}

,

A(ρ) := {z ∈ ZK ;
∣

∣ζ(z)
∣

∣= ρ
}

.

We may assume that z0 ∈ A(1) and uK(z0) = e. Then ζ gives rise to an isomor-
phism ζ : A(1) ˜−→Gm,K with ζ(z0) = 1 ∈ Gm,K . Then uK maps A(1) into GK

and extends to a morphism u : A→G by Proposition 5.4.6, where A is a smooth
R-model of A(1).

Since morphisms from rational variety to an abelian varieties are constant, the
reduction map ũ : ˜A→ ˜G maps ˜A into the torus ˜T of ˜G. Then there exists a group
homomorphism χ̃ : ˜Gm,k→ ˜T such that ũ = χ̃ ◦ ζ̃ . Now χ̃ : ˜Gm,k → ˜T lifts to
a homomorphism χ : Gm,K → T K by Proposition 5.6.7 or by Lemma 5.5.1, and
hence it extends to a group homomorphism χ :Gm,K → TK .

By our assumption we obtain a rigid analytic morphism ϕ ◦ ζ :ZK →GK , which
restricts to χ ◦ζ |A(1). By multiplying uK by (ϕ◦ζ )−1, we may assume that uK maps

A(1) to the formal fiber G+(e).
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Then we want to show that uK(Z+(z0))⊂G+(e). Let UK be a connected com-
ponent of u−1

K (GK) which contains z0. If UK 
= ZK , then there are only three pos-
sibilities for UK with suitable ρ,ρ1, ρ2 in |K×|:

UK :=
{

z ∈ZK ;ρ1 ≤
∣

∣ζ(z)
∣

∣≤ ρ2
}

with � < ρ1 < 1< ρ2 < �−1,

UK :=
{

z ∈ZK ;ρ ≤
∣

∣ζ(z)
∣

∣

}

with � < ρ < �−1,

UK :=
{

z ∈ZK ;
∣

∣ζ(z)
∣

∣≤ ρ
}

with � < ρ < �−1.

We have to show that all three cases cannot occur. Let us treat the second case. Con-
centrate on the map uK |A(ρ). By what we saw for uK |A(1) we know that there is a
factorization uK |A(ρ) = (χ ◦ ζ ) · u · g, where χ :Gm,K → TK is a group homomor-

phism, u :A(ρ)→G+(e) and g ∈G is a point. By continuity for every ρ′ close to
ρ we would have a similar representation of uK |A(ρ′). But this can happen only if

χ ◦ ζ is constant, because the torus T K is a closed subset of GK and hence the in-
duced map χ ◦ ζ |A(ρ′) maps to a torus of units, where A(ρ′) is an annulus of height
less than one. Thus, χ is trivial and hence uK maps Z+(z̃0) into G+(e). Then it is
obvious that the second case cannot occur.

By similar arguments one excludes the other cases. �

5.5 Uniformization of Jacobians

In the following let XK be geometrically connected smooth projective curve of
genus g ≥ 1. Due to Theorem 4.5.3 there exists a finite separable field extension
K ′/K such that, after replacing K by K ′, there exists a semi-stable reduction
XK → ˜X such that ˜X satisfies all the conditions mentioned in the beginning of
Sect. 5.3. In this section we assume that such a semi-stable reduction of XK exists
already over the given field; i.e., all statements are true only after a suitable finite
separable field extension. To avoid frequently extending the base field, we assume
that K is algebraically closed. In the following let

JK := Jac(XK)

be the Jacobian of XK . We have shown in Proposition 5.3.3 that there exists an open
analytic subgroup JK of JK which has a smooth formal structure with semi-abelian
reduction ˜J .

Lemma 5.5.1. If n1, . . . , nr be a basis of H 1(˜X,Z), then we have the map

Φ :Gr
m,K −→ JK, t �−→ ζ1(t)

n1 ⊗ · · · ⊗ ζr (t)
nr ,

where (ζρ(t)nρ ) is the invertible sheaf given by the cocycle nρ ∈H 1(˜X,Z) and the
coordinate functions ζ1, . . . , ζr on G

r
m,K . The morphism Φ restricts to a morphism
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Φ :=Φ|
G
r

m,K
, where

Gm,K :=
{

t ∈Gm,K ; |t | = 1
}

is the torus of units of Gm,K . The map Φ induces an isomorphism to the maximal
torus of JK . The reduction of Φ is a closed immersion onto the maximal subtorus
˜T of ˜J .

Proof. If n = (nμ,ν) ∈ H 1(˜X,Z) is a cocycle with respect to an open covering
˜U = {˜U1, . . . , ˜UN }, then it gives rise to a cocycle in H 1(XK,Z) with respect to a
lifting {U1, . . . ,UN } of the covering ˜U. Thus, for every t ∈Gm,K and a coordinate
function ζ of Gm,K one obtains a cocycle (ζ(t)nμ,ν ) in Z1(XK,O×XK

), and hence,
due to the universal property of Jac(XK), a morphism

ϕ :Gm,K −→ Jac(XK), t �−→ ζ(t)n.

Therefore, a basis n1, . . . , nr of H 1(˜X,Z) gives rise to a morphism

Φ :Gr
m,K −→ JK, t �−→ ζ1(t)

n1 ⊗ · · · ⊗ ζr (t)
nr ,

which restricts to a morphism

Φ :Gr

m,K −→ JK, t �−→ ζ1(t)
n1 ⊗ · · · ⊗ ζr(t)

nr ,

by Proposition 5.4.6. The latter is a lifting of the torus of ˜J ; cf. Remark 5.2.7. �

The next objective is the quotient J/T . There is a general result.

Lemma 5.5.2. For n ∈N put Rn :=R/Rπn+1 for some π ∈mR with π 
= 0. Let G
be a smooth formal R-group scheme with semi-abelian reduction ˜G and let T ⊂G

be a formal torus which reduces to the maximal torus ˜T of ˜G. Put Gn :=G⊗R Rn
and T n = T ⊗R Rn. Then the quotient Gn/T n is representable by an abelian
Rn-scheme for all n ∈ N and the inductive limit B := lim−→Bn is a smooth formal

abelian R-scheme.
In particular, every Bn has a dual B ′n and B ′ := lim−→B

′
n is the dual of B; i.e.,

B ′ represents the functor of translation invariant formal line bundles on B .

Proof. The existence of the quotient is shown in [41, Exp. VIA, 3.2]; see also [42,
Exp. IX, 7.1]. But it is buried in a very general context. In our case it is easier to
show. Indeed, we know that the reduction ˜G is an extension of an abelian variety
˜B by the torus ˜T ; cf. Sect. A.2. Moreover, there exists a quasi-section σ : ˜B ��� ˜J ,
which is defined on a dense open affine subscheme Uk of ˜B; cf. Proposition A.2.5.
Since the schemes are of finite presentation there exists a element π ∈ mR with
π 
= 0 such that all the objects are defined over R/Rπ . Now denote the new objects
by a subindex “0”.
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Let V0 := σ0(U0) be the image of σ0; this is a closed smooth subscheme of
q−1(U0), where q0 : G0 → B0 is the projection. Now V0 lifts to a smooth closed
formal subscheme Vn ⊂ q−1(Un) for every n ∈N in a coherent way. Moreover, the
group law of G gives rise to an isomorphism T n × Vn ˜−→q−1(Un). Thus, Vn is a
chart for the quotient and can be equipped with a birational group law. Such a bi-
rational group law can be realized as smooth group scheme Bn over Rn by gluing
translates, because Rn is strictly Henselian; cf. [41, Exp. XVIII] and [15, Chap. 5].
The associated group Bn is the quotient Gn/T n for all n ∈N. Since ˜B is proper, so
Bn is a proper Rn-scheme.

For the existence of the dual see Theorem 6.1.1. �

Proposition 5.5.3. In the situation of Proposition 5.3.3 the group J is an extension
of a formal abelian R-scheme B by a formal torus T

1→ T → J → B→ 1 =̂ φ :H1(˜X,Z)→ B ′, (†)

where B ′ is the dual of B . The extension (†) is a lifting of the torus extension

1→ ˜T → ˜J → ˜B :=
s
∏

j=1

˜Bi→ 1 =̂ ˜φ :H1(˜X,Z)→ ˜B ′, (˜†)

where ˜Bj = Jac(˜X′j ) is the Jacobian of the normalization ˜X′j of the irreducible

component ˜Xj for i = 1, . . . , s and ˜B ′ is dual of ˜B .

Proof. The assertion follows from Proposition 5.3.3, Lemmas 5.5.1 and 5.5.2. The
characterization via φ and ˜φ follow from Theorem A.2.8. The explicit definition of
the homomorphism ˜φ is given in Proposition 5.2.3. �

Furthermore, J can be represented as the total space

J =E1 ×B . . .×B Er

of translation invariant formal Gm,K -torsors E1, . . . ,Er over B; cf. Theorem A.2.8.
We write here Ei in order to indicate that these are formal Gm,R-torsors on B . They
are given by cocycles (εμ,ν) ∈Z1(B,O×B ) with respect to the formal topology on B .
Their absolute value functions satisfy |εμ,ν(b)| = 1 for every b ∈ BK . We can also
restrict them to the generic fiber BK . Thus, we obtain a rigid analytic line bundle Ei

and hence a Gm,K -torsor over BK . Thus we have an affine torus extension

̂JK :=E1 ×B . . .×B Er,

which contains JK as an open rigid subgroup. On ̂JK there is a value map

v : ̂JK −→R
r , (z1, . . . , zr ) �−→

(|z1|, . . . , |zr |
)

, (∗)

since the transition functions have constant absolute value functions equal to 1. One
can also interpret ̂JK as the push-forward of JK with respect to the inclusion map
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T K ↪→ TK of the torus of units into the affine torus like Gm,K ↪→Gm,K . Thus we
obtain a commutative diagram with exact rows

1 T K JK

q

BK 1

1 TK ̂JK

q

BK 1,

where the down arrow in the middle is induced by the down arrow on the left; cf.
Sect. A.2. Thus we obtain the following result.

Corollary 5.5.4. In the above situation we have the commutative diagram

Hom(TK,Gm,K)
∼

Hom(T ,Gm,R)
∼

Hom(˜T ,Gm,k)

HomBK (
̂JK,PBK×B ′K )

∼
HomB(J ,PB×B ′)

∼
Hom
˜B(
˜J ,P
˜B×˜B ′)

of canonical isomorphisms, where PB×B ′ denotes the Poincaré Gm-torsor over
B × B ′, etc. In each row, the first horizontal map is the restriction and the second
is the reduction. The down arrows are defined via the push-outs; cf. Notation 6.1.7
and Sect. A.2.

Proposition 5.4.8 implies the following result.

Proposition 5.5.5. Let uK : ZK → JK be a rigid analytic morphism from a con-
nected rigid space ZK with a K-rational point z0 satisfying uK(z0)= 1, where 1 is
the unit element of JK .

If ZK admits a smooth formal R-model, then uK maps ZK to JK and
uK :ZK → JK extends to a formal morphism u : Z→ J .

As an application the proposition has the following corollary.

Corollary 5.5.6. The canonical map H 1(˜X,Z) −→ H 1(XK,Z) is bijective. In
particular, all morphisms in the canonical commutative diagram

H 1(˜X,Z) Hom(Gm,k, ˜J )

H 1(XK,Z) Hom(Gm,K,JK) Hom(Gm,K,JK)

are bijective.
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Proof. Due to Proposition 5.2.8 the upper horizontal map is bijective. The second
map in the lower row is the restriction to the formal torus Gm,K , which is well de-
fined by Proposition 5.5.5. This map is obviously injective. The vertical map on the
right-hand side is injective. Indeed, a group homomorphism Gm,K → JK with con-
stant reduction is constant, because J+(1̃) is of unipotent type; for example J+(1̃)
does not contain any non-trivial �-torsion point for � prime to chark. Thus, it re-
mains to show that

H 1(XK,Z)−→Hom(Gm,K,JK)

is injective. So consider a cocycle of n = (nμ,ν) ∈ H 1(XK,Z) with respect to
an admissible covering {Uμ} which is mapped to the constant homomorphism
1 ∈ Hom(Gm,K,JK). Thus, by the universal property of JK we see that the in-
vertible sheaf associated to the cocycle

(

ζ nμ,ν
)∼= p∗2L ∈H 1(XK ×K Gm,K,O×

XK×KGm,K

)

is a pull-back of an invertible sheaf L on Gm,K , where p2 is the second projection
XK ×K Gm,K →Gm,K , and where ζ be a coordinate function on Gm,K . Since the
coordinate ring of Gm,K is factorial, L is trivial, and hence the cocycle (ζ nμ,ν ) is
solvable. Thus, there exist units εμ in O×

XK×KGm,K
(Uμ ×K Gm,K) such that

ζ nμ,ν = εμ · ε−1
ν

for all μ,ν. Due to Proposition 1.3.4 the units are of type

εμ = cμ · ζ nμ · (1+ hμ),

where cμ is a constant and hμ is a holomorphic function on Uμ ×K Gm,K with
sup-norm |hμ|< 1. Thus, we have that nμ,ν = nμ − nν , and hence that the cocycle
n= (nμ,ν) is trivial. �

Corollary 5.5.6 implies that the morphism ι : T K → JK → JK extends to a mor-
phism TK → JK . Thus, we obtain the important result:

Corollary 5.5.7. In the above situation the inclusion map JK ↪→ JK extends to a
homomorphism ̂JK → JK of rigid analytic groups.

Moreover, Proposition 5.4.8 yields the mapping property:

Proposition 5.5.8. Let ZK be a connected affine rig-smooth formal curve which
has a semi-stable model Z with precisely one singular point z̃0. Let ζ : ZK → JK
be a holomorphic function which restricts to a coordinate function on the formal
fiber of Z+(z̃0) of the double point z̃0. Let z0 ∈ Z+(z̃0) be a K-rational point with
ζ(z0)= 1.
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If uK : ZK → JK is a rigid analytic morphism, then there exists a unique group
homomorphism ϕ :Gm,K → JK such that uK factorizes into

uK = (ϕ ◦ ζ ) · u · uK(z0),

where u : ZK → JK is a rigid analytic morphism.

As was explained above there is a canonical value map on ̂JK . Thus, for every
c ∈ |K×| with c ≥ 1, we can define the open subvariety

̂JK(c) :=
{

(z1, . . . , zr ) ∈E1 ×B . . .×B Er ; c−1 ≤ |zi | ≤ c for i = 1, . . . , r
}

.

Corollary 5.5.9. In the above situation we have the following:

(a) There exists an element c ∈ |K×|, c > 1, such that the inclusion JK ↪→ JK
extends to a surjective rigid analytic group homomorphism

p : ̂JK(c)−→ JK.

(b) There exists an element ε ∈√|K×| with c > ε > 1 such that

̂JK(ε)∩ p−1(JK)= JK.

Proof. (a) Let p0 ∈XK be a K-rational point. Then consider the mapping

j :X(g)
K −→ JK, (q1 + · · · + qg) �−→ [q1 − p0] · . . . · [qg − p0].

Every point � ∈ JK is of type

�= j (p1 + · · · + pg)= [p1 + · · · + pg − g · p0],
where p1, . . . , pg ∈XK are closed points and g is the genus of XK . Now we move
the points q1, . . . , qg one by one from p0 to pi . So we will study the morphism

u :XK −→ JK, z �−→ [z− p0].
It suffices to see that there exists a constant c such that [q − p0] ∈ ̂J (c) for all
q ∈XK . For this take one of the shortest paths in the graph Γ (˜X) which leads from
the reduction p̃0 to q̃ . This path passes through finitely many double points of ˜X,
where each double point is involved only one time. It follows from Proposition 5.5.8
that passing with q through the annulus associated to a double point requires a cer-
tain amount of the torus TK to keep [q−p0] inside ̂J (c). This amount of TK depends
only on the height of the annulus. Furthermore, it follows from Proposition 5.5.5
that moving with q inside a connected smooth formal part of XK one stays inside a
translate of J . Since there are only finitely many double points in ˜X, the assertion
follows.
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(b) Let c be the element from (a) and consider the morphism

pc := p|... : p−1(JK)∩ ̂JK(c)−→ JK.

Then JK is an open subset of p−1(JK) ∩ ̂JK(c) and the restriction of pc to
JK → JK is an isomorphism and, in particular, finite. Therefore, the inclu-
sion JK → p−1(JK) ∩ ̂JK(c) is finite. Thus, JK is a closed analytic subset of
p−1(JK)∩ ̂JK(c). Thus, it is a connected component of p−1(JK)∩ ̂JK(c). Due to
the maximum principle there exists an ε > 1 such that ̂JK(ε)∩ p−1(JK)= JK . �

Definition 5.5.10. The G
r
m,K -extension

̂JK :=Ei ×B × . . .×B Er

is called the universal covering of JK . It is the push-forward TK ×T JK of JK by
the inclusion of the formal torus T K ↪→ TK .

The notion “universal covering” will become clear in Corollary 6.3.4, since
H 1(̂JK,Z) vanishes. Let us summarize the results of this section.

Theorem 5.5.11. In the situation of above we have the following results:

(a) The group homomorphism p : ̂JK → JK is surjective.
(b) The kernel M := kerp is discrete in ̂JK with M ∩ ̂JK(ε) = {1} for ε > 1 and

close to one. M is free of rank r = rkH1(˜X,Z)= rkH 1(XK,Z).
(c) The rigid analytic quotient ̂JK/M is isomorphic to the Jacobian of XK . The

morphism ̂JK → JK is a covering map in the topological sense.

Proof. (a) The map is surjective by Corollary 5.5.9(a).
(b) The kernel M := kerp satisfies M ∩ ̂JK(ε) = {1} for ε > 1 close to 1 by

Corollary 5.5.9(b). Therefore, ̂JK(ε)→ JK is an open immersion.
The absolute value on ̂JK gives rise to a group homomorphism

σ : ̂JK
v

̂JK/JK = |K×|r
− log

R
r ,

which maps M bijectively to a lattice of Rr . Thus, we see that M is free of rank ≤ r .
In order to show that σ(M) has rank r , consider the induced homomorphism

̂JK/JK |K×|r/v(M)
− log

R
r/σ (M).

Then we see by Corollary 5.5.9(b) that a bounded part of |K×|r has dense image
in R

r/σ (M). Hence, a bounded part of R
r has dense image in R

r/σ (M), and it
follows that M ∼= σ(M) has rank r .
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(c) The rigid analytic quotient ̂JK/M exists. Indeed, we have the charts of type
x · ̂JK(ε), where x ∈ ̂JK is a K-rational point, which itself can be covered by affi-
noid spaces. Obviously, there are finitely many points x1, . . . , xN such that the charts
xi · ̂JK(ε) for i = 1, . . . ,N cover the set ̂JK(c), and hence their images cover the
quotient set ̂JK/M . Then the inverse image p−1(xi · ̂JK(ε)) is a disjoint union˙⋃

m∈Mm · xi · ̂JK(ε). Thus p : ̂JK → JK is a covering in the topological sense. �

Corollary 5.5.12. Let XK be a smooth projective curve assumed to be geometri-
cally connected. Then the following conditions are equivalent:

(a) XK is a Mumford curve.
(b) Jac(XK) is a rigid analytic torus.

Proof. (a)→ (b) This was shown in Theorem 2.8.7.
(b)→ (a) Due to Theorem 5.5.11 we know the structure of JK . There is an open

analytic subgroup JK of JK which is an extension of a formal abelian variety B by
a formal torus and B is a lifting of the Jacobian of the normalization of the stable
reduction ˜X of XK . In order to show that XK is a Mumford curve it suffices to
show that B is trivial; cf. Theorem 4.7.2. Since JK is a rigid analytic torus, the
formal abelian part is trivial. �

5.6 Applications to Abelian Varieties

The uniformization of Jacobians can be generalized to abelian varieties, since every
abelian variety is a quotient of a product of Jacobians by a connected subgroup; cf.
[88, VII, §13]. We want to mention that one can achieve the results of this section
by the methods of Chap. 7 without using Jacobians; however one needs the stable
reduction theorem for smooth projective curves.

Proposition 5.6.1. IfA is an abelian variety over a perfect fieldK , then there exists
a product J of Jacobians and an abelian subvariety N of J such that J is isogenous
to A×N .

Proof. As explained in [88, VII, §13], there exists a product J of Jacobians and a
quotient morphism β : J → A with connected kernel N ′. Since K is perfect, the
reduced subvariety N :=N ′red ⊂ J is an abelian variety. Due to Poincaré’s complete
irreducibility theorem [74, §19] there exists an abelian subvariety Z ⊂ J such that
J is isogenous to the product Z ×N . Then β|Z : Z→ A is an isogeny, and hence
there exists an isogeny α :A→ Z satisfying β ◦ α = n · idA for some integer n≥ 1;
cf. [74, §18]. �

Theorem 5.6.2 (Formal semi-abelian reduction theorem). Let AK be an abelian
variety over an algebraically closed non-Archimedean field. Then there exists a con-
nected open rigid analytic subgroup AK ⊂AK with the following properties:
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(a) AK extends to a formal smooth R-group scheme A with semi-abelian reduction.
(b) A is an extension of a formal abelian R-group scheme B by a split formal

torus T .
(c) The inclusion map T K ↪→AK extends to a homomorphism TK →AK from the

affine torus which contains the formal torus T K as torus of units.

The group AK is uniquely determined by condition (a). Also the torus T K is
unique.

Proof. (a) We know the assertion for Jacobians; cf. Proposition 5.5.3, and hence for
a product JK of Jacobians as well. Let ZK be an abelian subvariety of a product
JK of Jacobians and let α :AK → ZK be the isogeny as in Proposition 5.6.1. Then
α−1(JK) is an open analytic subgroup which inherits the formal structure from J ,
because α is finite. Now let AK = α−1(JK)

0 be its 1-component. Then AK is a con-
nected formal analytic smooth group variety and satisfies the assertion (a). Indeed,
the reduction ˜A is reduced, and hence smooth as a group variety. The reduction map
α̃ : ˜A→ ˜J is finite, and so ˜A is semi-abelian as well.

(b) Let ˜T ⊂ ˜A be the maximal torus which is a smooth subgroup of ˜A. Let ˜B be
the quotient ˜A/˜T . Due to the lifting of tori [41, II, Theorem 3.6] or Proposition 5.6.7
below, the group ˜T lifts to a formal torus T of A and its quotient B = A/T is a
formal abelian R-scheme due to Lemma 5.5.2. Therefore, the sequence

0→ T →A→ B→ 0

is strict exact, and hence A is a formal torus extension of B cf. Sect. A.2.
The uniqueness follows from Proposition 5.4.6.
(c) follows from Lemma 5.6.4 below.
The assertion on the uniqueness follows from Proposition 5.4.6. �

Theorem 5.6.2 implies the Semi-Abelian Reduction Theorem of Grothendieck;
see [42].

Theorem 5.6.3 (Algebraic semi-abelian reduction theorem). Let R be a discrete
valuation ring of height 1 and let AK be an abelian variety over its field of fractions
K =Q(R).

Then there exists a finite Galois extension K ′/K such that the Néron model AR′
of AK ′ := AK ⊗K K ′ over the ring of integers R′ of K ′ has semi-abelian reduc-
tion.

Proof. Let ̂R be the completion of R and ̂K its field of fractions. One shows as in
the proof of Lemma 3.1.13 that there exists a finite separable extension ̂K ′/̂K such
that A

̂K ′ :=AK⊗K
̂K ′ has an open subgroupA

̂K ′ as asserted in Theorem 5.6.2. Due
to the lemma of Krasner [10, 3.2.4/5] there exists a finite separable field extension
K ′/K such that the completion of K ′ is isomorphic to ̂K ′. Now consider the Néron
model AR′ of A ⊗K K ′ over R′. Since the extension R′ → ̂R′ is of ramification



5.6 Applications to Abelian Varieties 249

index 1, the canonical morphism

AR′ ⊗R′ ̂R
′ −→A

̂R′

to the Néron model A
̂R′ of A

̂K ′ is an isomorphism due to [15, 7.2/1].
The completion of A

̂R′ with respect to the 1-component of the special fiber is
canonically isomorphic to A

̂K ′ , since its étale ̂R′-points are dense in A
̂K ′ . Thus we

see that AR′ has semi-abelian reduction. �

We continue towards the uniformization of abelian varieties.

Lemma 5.6.4. In the situation of Theorem 5.6.2 let AK be an abelian variety and
let A′K be its dual. Then there are canonical morphisms

H 1(A′K,Z
)→Hom(Gm,K,AK)→Hom(Gm,K,AK)=Hom(Gm,K,AK)

and these morphisms are bijective.

Proof. The first morphism maps a cocycle n = (ni,j ) ∈ H 1(U,O×
A′K

) to the cocy-

cle ζ n ∈ H 1(U,O×
A′K×Gm,K

), where U is an admissible covering of A′K and ζ is

a coordinate function on Gm,K . Thus, we can regard ζ n as an invertible sheaf on
A′K × Gm,K . Since AK is the dual of A′K , the cocycle gives rise to a morphism
ϕ :Gm,K →AK , which is obviously a group homomorphism. The second map is
the restriction of morphisms to the open subgroup Gm,K , so the second map map-
ping is injective.

So it remains to see that every homomorphisms ϕ :Gm,K →AK is induced by a
unique cocycle n ∈ H 1(A′K,Z). As argued before, ϕ is equivalent to an invertible
sheaf L on A′K ×Gm,K which is rigidified along the unit section of A′K . Now we
need an argument that is shown in Corollary 6.2.6 later. In fact, L trivializes locally
on A′K ; i.e., there exists an admissible covering U= (U1, . . . ,Ur) of A′K such that
L|Ui×Gm,K

is trivial. So we see that L can be represented by a cocycle (λi,j ) in

H 1(U×Gm,K,O×
A′K×Gm,K

). Thus, λi,j is of the form

λi,j = ζ ni,j · (1+ hi,j ),

where n := (ni,j ) ∈ H 1(A′K,Z) and hi,j are functions on (Ui ∩Uj )×Gm,K with
sup-norm |hi,j | < 1; cf. Proposition 1.3.4. One easily shows that the cocycle
(1+ hi,j ) is a group homomorphism if and only if hi,j = 0 for all i, j . Thus, the
morphism H 1(A′K,Z)→Hom(Gm,K,AK) is surjective. The injectivity follows by
similar reasoning on such units.

The last identity follows from Proposition 5.4.6. �

Theorem 5.6.5 (Uniformization theorem). Let AK be an abelian variety over an
algebraically closed non-Archimedean field K . Let A and T be as in Theorem 5.6.2
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and TK the affine torus containing T K as a torus of units. Then we have the follow-
ing results:

(a) The push-out ̂AK of AK by T K ↪→ TK is an extension of the generic fiber BK
of a formal abelian R-scheme B by the torus TK .

(b) The open immersion AK ↪→ AK extends to a map p : ̂AK →AK , which is a
covering map in the topological sense.

(c) The kernel M := kerp is a discrete subgroup on ̂AK , which intersects AK in
the unit element. The abelian group M is free of rank equal to the dimension of
the torus part T of A. In particular, there is a value map v, which on the level
of K-valued points

̂AK/AK

v |K×|r/v(M)
− log

R
r/ log(v(M))

induces a bijection, and − log is a dense inclusion into a compact real torus.
(d) As a rigid analytic variety AK is isomorphic to the quotient ̂AK/M .

Proof. (a) This follows from Theorem 5.6.2(b) due to its construction.
(b) It follows from Theorem 5.6.2(c) that the inclusion AK ↪→ AK extends to a

homomorphism p : ̂AK → AK . To show the surjectivity of p, we go back to the
construction of AK in Theorem 5.6.2(a). We considered a product JK of Jacobians
and a surjective morphism β : JK →AK ; cf. Proposition 5.6.1. Then we applied the
uniformization of JK . Due to Proposition 5.4.6 the morphism β maps JK to AK .
Obviously the torus part of ̂JK is mapped to the torus TK of ̂AK . Since β and
̂JK → JK are surjective, the map p : ̂AK → AK is surjective. As in the case of
Jacobians there is a value map v : ̂AK → R

r as ̂AK is a product of Gm,K -torsors
given by formal line bundles. Thus, one can conclude as in Corollary 5.5.9 and
Theorem 5.5.11 that p is a covering map in the topological sense.

(c) and (d) Follow from (b) as in Theorem 5.5.11. �

Definition 5.6.6. The representation AK = ̂AK/M is called the Raynaud represen-
tation of the abelian variety AK .

We will show in Theorem 6.4.8 that the BK of Theorem 5.6.2(a) is in fact an
abelian variety with good reduction and ̂AK is an algebraic torus extension of BK .
For the convenience of the reader we add the proof of the lifting of tori as we used
it here. A main point in the proof is the vanishing of a certain Hochschild homology
group [23, II, Sect. 3, Prop. 4.2], but in our case it can easily be verified by checking
coefficients. The lifting of tori is also treated in [95].

Proposition 5.6.7. Assume that K is algebraically closed. Let G be a smooth for-
mal R-group scheme and assume that its reduction ˜G is a torus extension of a com-
mutative smooth group variety ˜B by a split torus ˜T . Then there is a unique lifting
ϕ : T →G of the closed immersion ϕ̃ : ˜T → ˜G, where T is a split formal torus with
reduction ˜T .



5.6 Applications to Abelian Varieties 251

In particular, ϕ is a closed immersion, and G is a formal torus extension of a
commutative smooth formal group scheme B which is a lifting of ˜B .

Proof. We start with the torus extension

0→ ˜T ϕ̃−→ ˜G q̃−→ ˜B→ 0.

Denote by

m :G×G−→G

the group law of G and by m̃ the induced group law on the reduction. Since ˜G is a
torus extension of ˜B , there exists an open affine neighborhood ˜U of the unit section
of ˜B and a section σ : ˜U→ ˜G of q̃ over ˜U ; cf. Proposition A.2.5. Thus, the map

˜W := ˜T × ˜U ˜−→q−1(˜U), (t, u) �−→ m̃
(

t, σ (u)
)

,

is an isomorphism. In particular, q−1(˜U) is affine.
Let W ⊂ G be the formal open subscheme of G lifting ˜W . The unit section of
˜B is a smooth subvariety, so there exists a system of parameters g̃1, . . . , g̃s on ˜U
whose locus is the unit section; eventually after a shrinking of ˜U . Let g1, . . . , gs be
functions on W whose reductions coincide with the pull-backs of g̃1, . . . , g̃s . Then
the locus V (g1, . . . , gs) ⊂W is smooth with reduction ˜T . Let T be a formal torus
with reduction ˜T . Since W is smooth, there exists a lifting

ϕ : T −→W

of ϕ̃ with ϕ(1) equal to the unit section of A. Note that ϕ is in general not a group
homomorphism from T to G. We will stepwise transform ϕ into a homomorphism.

The image σ(˜U) ⊂ ˜W is a smooth subscheme of ˜W . It also lifts to a smooth
closed subscheme U ⊂W of W . We may assume that the unit section 0 of G is a
point of U . Then the formal fiber U+(0) is isomorphic to an r-dimensional open
ball due to Corollary 4.1.10. The morphism

T ×U −→W, (t, u) �−→m
(

ϕ(t), u
)

,

is étale and finite. Since it is an isomorphism in the reduction, it is an isomorphism.
It is clear that the group law m restricts to a group law of

W+ :=
{

a ∈AK ;
∣

∣g1(a)
∣

∣< 1, . . . ,
∣

∣gs(a)
∣

∣< 1
}

.

In particular, we have an isomorphism

TK ×U+(0) ˜−→W+.

Let ξ1, . . . , ξr be coordinates on T which induce coordinates on the torus ˜T .
Since U+(0) is isomorphic to an open s-dimensional unit ball, the parameters
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g1, . . . , gs give rise to coordinates (η1, . . . , ηs) on U+(0). Moreover, we may as-
sume that the unit element of G coincides with the origin of W+. The restriction
of the formal group law induces a group law on W+. Therefore m|W+×W+ can be
written as an (r + s)-tuple of Laurent series in the coordinates of TK × TK with
coefficients in OUK (U+(0)):

m|W+×W+
((

ζ1
η1

)

,

(

ζ2
η2

))

=
(

ζ1 · ζ2
η1 + η2

)

+
∑

μ,ν∈Zr

(

u
(1)
μ,νζ

μ
1 ζ

ν
2

u
(2)
μ,νζ

μ
1 ζ

ν
2

)

with coefficients u(i)μ,ν ∈ O̊UK (U+(0)); these depend on η1, η2. The product and the
sum are defined on the components. Since the reduction of m is the group law on ˜T ,
the absolute value of coefficients of u(1)μ,ν are less than 1 and of u(2)μ,ν are less or
equal to 1. Thus, we see that there exists an element c of K× with |c|< 1 such that
m|W+×W+ restricts to a group law on

Wc :=
{

x ∈WK ;
∣

∣g1(x)
∣

∣≤ |c|, . . . , ∣∣gs(x)
∣

∣≤ |c|}.
This is a smooth formal group with reduction G

r
m,k×G

s
a,k . For proving our theorem,

we can replaceG by this group. Now we start some calculations where we normalize
the coordinates η by η/c.

We have to study the pull-back of m by ϕ × ϕ as a function of the coordinates
ζi := (ζi,1, . . . , ζi,r ) of the two factors of TK × TK

m
(

ϕ(ζ1), ϕ(ζ2)
)=
(

ζ1 · ζ2
0

)

+
∑

μ,ν∈Zr

(

r
(1)
μ,ν

r
(2)
μ,ν

)

ζ
μ
1 ζ

ν
2 ,

where r(1)μ,ν ∈ Rr and r(2)μ,ν ∈ Rs , whose components have absolute value less than 1,
because the reduction of ϕ is an isomorphism to ˜T . By our choice of the coordinate
functions we have r1

0,0 = r2
0,0 = 0. Since the Laurent series converges, there exists

an element π ∈ R with |π | < 1 such that, with respect to the maximum norm on
components, it holds

rμ,ν = 0 mod πn

for all μ,ν ∈ Z
r and n = 1. We write here n, because we will iterate a process,

which will be explained below.
An important point of the proof is the associativity of the group law. We obtain

modulo πn+1:

m
(

ζ1,m(ζ2, ζ3)
) =
(

ζ1(ζ2ζ3 + u(1)(ζ2, ζ3))

u(2)(η2, η3)(ζ2, ζ3)

)

+
(

u(1)(ζ1, ζ2ζ3)

u(2)(η1, η2 + η3)(ζ1, ζ2ζ3)

)

m
(

m(ζ1, ζ2), ζ3
) =
(

(ζ1ζ2 + u(1)(ζ1, ζ2))ζ3

u(2)(η1, η2)(ζ1, ζ2)

)

+
(

u(1)(ζ1ζ2, ζ3)

u(2)(η1 + η2, η3)(ζ1ζ2, ζ3)

)
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where we omitted the pull-back morphism given by ϕ and where u(1) are the first r
and u(2) are the last s components of u.

Thus, for the first r components we obtain the relation

ζ1u
(1)(ζ2, ζ3)+ u(1)(ζ1, ζ2ζ3)= u(1)(ζ1, ζ2)ζ3 + u(1)(ζ1ζ2, ζ3) mod πn+1.

Comparing the coefficients of ζ1 yields

u(1)μ,νζ
μ
2 ζ

ν
3 + u

(1)
1,νζ

ν
2 ζ

ν
3 = u

(1)
1,νζ

ν
2 ζ3 + u

(1)
1,νζ2ζ

ν
3 mod πn+1.

We see that u(1)μ,ν ∈ πn+1 if (μ, ν) 
= (1,1), and hence

u(1)(ζ1, ζ2)= u
(1)
1,1ζ1ζ2 = r

(1)
1,1ζ1ζ2 mod πn+1,

where r(1)1,1 = u
(1)
1,1(1) ∈Rr is the evaluation at the unit element of T .

For the last s components we have to specify the dependency on the coordinates
η1, η2, η3. Therefore we obtain modulo πn+1:

∑

μ,ν

u(2)μ,ν(η2, η3)ζ
μ
2 ζ

ν
3 + u(2)μ,ν(η1, η2 + η3)ζ

μ
1 ζ

ν
2 ζ

ν
3

=
∑

μ,ν

u(2)μ,ν(η1, η2)ζ
μ
1 ζ

ν
2 + u(2)μ,ν(η1 + η2, η3)ζ

μ
1 ζ

μ
2 ζ

ν
3 .

This yields the following relations modulo πn+1:

u(2)μ,ν = 0 if μ 
= 0, ν 
= 0 and μ 
= ν.

Then, by looking at the coefficients of ζ 0
3 one obtains for μ 
= 0

u
(2)
μ,0(η2, η3) = u

(2)
0,μ(η1, η2)

u
(2)
μ,0(η1, η2 + η3) = u

(2)
μ,0(η1, η2)

u
(2)
μ,0(η1 + η2, η3) = −u(2)μ,μ(η1, η2)

and for μ= ν = 0

u
(2)
0,0(η2, η3)+ u

(2)
0,0(η1, η2 + η3)= u

(2)
0,0(η1, η2)+ u

(2)
0,0(η1 + η2, η3)) mod πn+1.

For our purpose we are interested in the value of u(2) modulo πn+1. Since the coef-
ficients of u(2) vanish modulo π and our values η fulfill η≡ 0 mod πn, we get from
the above relations modulo πn+1:

u(2)(ζ1, ζ2)=
∑

μ∈Zr
r
(2)
μ,0ζ

μ
1 +
∑

μ∈Zr
r(2)μ,μζ

μ
1 ζ

μ
2 +
∑

μ∈Zr
r
(2)
0,μζ

μ
2 ,
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where r(2)μ,ν ∈R with r(2)0,0 = 0, r(2)μ,0 =−r(2)μ,μ = r
(2)
0,μ. Putting

v(ζ )=
∑

μ∈Zr
r
(2)
μ,0ζ

μ,

implies

v(ζ1)+ v(ζ2)− v(ζ1ζ2)= u(2)(ζ1, ζ2) mod πn+1.

Then we replace ϕ : T →W by

ψ : T −→W+, ζ �−→
(

ζ − r
(1)
1,1ζ

−v(ζ )

)

.

Thus, computing modulo πn+1, we arrive at

m
(

ψ(ζ1),ψ(ζ2)
) =
(

(ζ1 − u
(1)
1,1ζ1)(ζ2 − u

(1)
1,1ζ2)

−v(ζ1)− v(ζ2)

)

+
(

u
(1)
1,1ζ1ζ2

u(2)(ζ1, ζ2)

)

=
(

ζ1ζ2 − u
(1)
1,1ζ1ζ2

−v(ζ1ζ2)

)

= ψ(ζ1ζ2) mod πn+1.

Starting the process at n= 1, iteration yields the lifting of the torus.
The uniqueness follows easily. Indeed, let˜ξ1, . . . ,˜ξr be coordinates of the torus
˜T and let ξ1,1, . . . , ξ1,r resp. ξ2,1, . . . , ξ2,r be liftings of the coordinates. Then the
correction term u

(1)
1,1 is uniquely determined modulo πn+1. Therefore, ξ1,j − ξ2,j

vanishes modulo πn+1. Then the uniqueness follows by induction. �



Chapter 6
Raynaud Extensions

In the last chapter we presented the uniformization JK = ̂JK/M of the Jacobian
variety JK of a connected smooth projective curve. The universal covering ̂JK is
a Raynaud extension; i.e. an affine torus extension of the generic fiber of a formal
abelian R-scheme. The new topic in this chapter is the algebraization result for ̂JK ;
i.e., that ̂JK is an algebraic torus extension of an abelian variety with good reduction.

We study this in the more general setting of uniformized abeloid varieties; i.e.,
of rigid analytic groups in Raynaud representation EK/M , where EK is a Raynaud
extension and where M ⊂ EK is a lattice of rank equal to the torus part of EK .
This requires a systematic study of Raynaud extensions and their line bundles with
M-action. Thus, one is led to the construction of the dual of a uniformized abe-
loid variety. The algebraization of a uniformized abeloid variety is related to the
existence of a polarization.

Of special interest are the polarizations of Jacobians Jac(X). There are two, the
usual theta polarization and the canonical polarization which is related to a pairing
on the homology group H1(X,Z) of the curve X. In Sect. 6.5 we discuss these
polarizations. This is related to Riemann’s vanishing theorem Corollary 2.9.16 for
Mumford curves.

In Sect. 6.6, following the article [13] we discuss the results of this chapter on the
degeneration data of abelian varieties and compare them with the ones established
in [27]. Prerequisites on torus extensions and cubical structures are surveyed in the
Appendix.

6.1 Basic Facts

Let us fix the notation for the following sections. For simplicity we assume in this
chapter that K is an algebraically closed non-Archimedean field. Let

B := lim−→Bn
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W. Lütkebohmert, Rigid Geometry of Curves and Their Jacobians, Ergebnisse der
Mathematik und ihrer Grenzgebiete. 3. Folge / A Series of
Modern Surveys in Mathematics 61, DOI 10.1007/978-3-319-27371-6_6

255

http://dx.doi.org/10.1007/978-3-319-27371-6_6


256 6 Raynaud Extensions

be a formal abelian scheme over SpfR; i.e., a direct limit of abelian schemesBn over
Rn := R/Rπn+1, where 0 
= π ∈mR . The functor PicτBn/Rn of translation invariant
line bundles is representable by an abelian Rn-scheme B ′n due to [2, 7.3]. Recall the
statement for abelian varieties of Theorem 5.1.4.

Theorem 6.1.1. In the above situation the formal abelian group scheme B ′ :=
lim−→B

′
n, where B ′n represents the functor PicτBn/Rn , represents the functor of transla-

tion invariant formal line bundles on B .
The generic fiber B ′K := B ′ ⊗R K of B ′ represents the functor PicτBK/K of trans-

lation invariant line bundles on the generic fiber BK of B .

Proof. The first statement follows from [2, 7.3]. The second assertion follows from
Proposition 6.2.5; see below. Indeed, if SK is an affinoid space, then every rigid
analytic line bundle on BK ×R SK extends to a formal line bundle on B ×R S,
where S is a suitable formal R-model of SK . �

The universal line bundle PB×B ′ on B × B is called the Poincaré bundle. It is
rigidified both-sided along 0× B ′ and B × 0′, where 0 and 0′ are the unit section
of B and B ′, respectively. In the sequel we will denote the associated Gm-torsor
by PB×B ′ as well; see [42, Exp. VII] for details. If we consider the invertible sheaf
associated to PB×B ′ , we write PB×B ′ . The formal scheme B ′ is called the dual of B .

The biduality theorem states that the canonical map

B −→ B ′′, b �−→ [Pb×B ′ ];
is an isomorphism; this follows from [74, p. 133], since B and B ′ are smooth formal
R-schemes. Thus, PB×B ′ is also the Poincaré bundle of B ′.

On the Gm-torsor PB×B ′ there are two compatible partial group laws which are
induced by the tensor product of line bundles on B×B ′ depending on which one of
the two factors B and B ′ is viewed as the base scheme.

A formal torus extension of B by a split formal torus T =G
r

m,R is a strict exact
sequence

1→ T →E→ B→ 1. (†)

Gm,R = SpfR〈ζ, ζ−1〉 is the formal 1-dimensional torus. Its generic fiber

Gm,K :=
{

z ∈Gm,K ; |z| = 1
}

is called torus of units. Associated to the extension (†) we denote by

M ′ :=Hom(T ,Gm,R)

the character group of T :=G
r

m,R . Due to Theorem A.2.8 the extension (†) is equiv-
alent to a group homomorphism φ′ :M ′ → B ′. This is indicated by

1→ T →E→ B→ 1 =̂ φ′ :M ′ → B ′.
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Via the push-forward T K :=G
r

m,K ↪→ TK :=G
r
m,K one obtains the affine torus

extension of BK . Since Hom(T ,Gm,R)=Hom(TK,Gm,K), we have

1→ TK →EK → BK → 1 =̂ φ′ :M ′ → B ′K. (†)

Definition 6.1.2. In the above situation, the rigid analytic group varietyEK is called
Raynaud extension. Note that M ′ is a free abelian group.

Every character m′ ∈M ′ gives rise to a commutative diagram

TK

m′

EK

〈_,m′〉

BK

Gm,K PBK×φ′(m′) BK,

where the down arrow in the middle is push out by m′; cf. Sect. A.2. In other terms,
if one has introduced coordinates, say

EK = PBK×φ′(e′1) ×B · · · ×B PBK×φ′(e′r )

and m′ =m′1e′1 + · · · +m′re′r , the map 〈_,m′〉 is given by the tensor product

(t1, . . . , tr ) �−→ t
⊗m′1
1 ⊗ · · · ⊗ t

m′r
r .

Remark 6.1.3. Let SK be a rigid analytic space. Then the set of SK -valued
points σ : SK → EK of EK bijectively corresponds to the set of families of
SK -valued points (σm′ : SK → PBK×φ′(m′);m′ ∈ M ′) satisfying the relations
σm′1+m′2 = σm′1 ⊗ σm′2 for all m′1,m′2 ∈M ′.

If L is a rigidified formal line bundle on B , then we have a well-defined absolute
value

|_| : LK −→R≥0

on the generic fiber LK of L, because the cocycle of its transition functions λi,j in
Z1(U,O×B ) satisfy |λi,j (x)| = 1 for all rigid points x ∈ Ui ∩Uj and all i, j , where
U= (Ui; i ∈ I ) is an open covering of B .

The absolute value on formal line bundles extends uniquely to a value map

|_| :EK −→R
r , (z1, . . . , zr ) �−→

(|z1|, . . . , |zr |
)

.

A subgroup M ⊂EK is called a lattice if the map

− log |_| :EK −→R
r , (z1, . . . , zr ) �−→

(− log |z1|, . . . ,− log |zr |
)

,

sends M to a lattice of Rr bijectively.
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Proposition 6.1.4. In the above situation we have the following results:

(a) The rigid analytic quotient p : EK → AK := EK/M exists and is a smooth
rigid analytic group variety. The quotient map is a covering in the topological
sense.

(b) M has full rank if and only if EK/M is a proper rigid analytic space.

Proof. It follows as in the case of tori in Proposition 2.7.3. Note that a proper formal
scheme has a proper rigid analytic generic fiber; cf. Theorem 3.3.12. �

We associate to a quotient of a Raynaud extension EK by a lattice M the follow-
ing diagram

M

h

φ

TK EK

q

p

BK =̂ φ′ :M ′ −→ B ′K,

EK/M

where h :M→ EK is the inclusion of a lattice, φ := q ◦ h :M→ BK the induced
map and p :EK →EK/M the rigid analytic quotient map.

Definition 6.1.5. A connected proper smooth rigid analytic group variety AK is
called an abeloid variety; cf. Sect. 7.1.

If AK admits a representation AK = EK/M as above, where M is a lattice in
EK of full rank, then the quotient EK/M is called Raynaud representation of AK .

It will be shown in Theorem 7.6.4 that every abeloid variety over a non-
Archimedean field admits a Raynaud representation after a suitable finite field ex-
tension.

The invertible sheaf associated to a line bundle L on a space Z is denoted by the
associated calligraphic letter

L :=HomZ

(

L,A1
Z

)

.

Note that this association is contravariant; cf. Remark 1.7.2. Using this notation, one
can write

EK = Spec

(

⊕

m′∈M ′
PBK×φ′(m′)

)

,

where the multiplication of homogeneous elements in the graded OBK -module is
induced by the relations explained above.
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Convention 6.1.6. In order to keep the symbols simple, we omit the subindex “K”
at the symbols T and E if no confusion is possible. Later in Sect. 6.2 when dealing
with the relation between formal and rigid geometry we will return to the precise
notation again. Furthermore, the groups M and M ′ are always considered as discrete
rigid analytic spaces; no subindex “K” will be introduced.

Notation 6.1.7. If σ : S→E is an S-valued point of E and m′ ∈M ′ is a character,
then we define

〈

σ,m′
〉 := σm′ : S −→ PB×φ′(m′)

as an S-valued point of the Gm,K -torsor PB×φ′(m′). The mapping

〈σ,_〉 :M ′ −→ PB×B ′ , m′ �−→
〈

σ,m′
〉

,

is a group homomorphism lifting the map φ′ :M ′ → B ′.
In particular, the inclusion ι : T ↪→E gives rise to the character ιm′ =m′ and the

identity map e := idE induces the canonical morphism

em′ :E −→ PB×φ′(m′), z �−→
〈

z,m′
〉

.

Proposition 6.1.8. Let B be a formal abelian scheme and B ′ its dual. Regard B

as the dual of B ′. Let M and M ′ be free abelian groups of rank r . Consider two
Raynaud extensions

1→ T →E
q−→ B→ 1 =̂ φ′ :M ′ → B ′

1→ T ′ →E′ q
′
−→ B ′ → 1 =̂ φ :M→ B.

Then the following data correspond bijectively to each other:

(a) group homomorphisms h :M→E satisfying φ = q ◦ h,
(b) bilinear forms from M ×M ′ to the biextension PB×B ′ over φ × φ′

PB×B ′

M ×M ′

〈_,_〉

φ×φ′
B ×B ′.

(c) group homomorphisms h′ :M ′ →E′ satisfying φ′ = h′ ◦ q ′.
Under the above correspondence the following properties are equivalent:

(i) h :M→E maps into a lattice.
(ii) The absolute value |〈_,_〉| of the bilinear form is non-degenerate; i.e.,

− log |〈_,_〉| :M ×M ′ −→R is non-degenerate.
(iii) h′ :M ′ →E′ maps into a lattice.
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Proof. The map h associates to an m ∈M a point h(m) ∈ E which can be consid-
ered as a group homomorphism

h(m) :M ′ −→ PB×B ′ , m′ �−→ h(m)m′ ∈ Pφ(m)×φ′(m′),
lifting φ′ :M ′ → B ′. Then

〈_,_〉 :M ×M ′ −→ PM×B ′ ,
(

m,m′
) �−→ 〈m,m′〉 := h(m)m′ ,

is bilinear, because h and each m′ ∈M ′ are group homomorphisms. Moreover, h
gives rise to a group homomorphism

h′ :M ′ −→ PB×B ′ , m′ �−→
[

h′(m′) :M −→ PB×B ′
m �−→ 〈m,m′〉

]

,

and h′ fulfills the rule h′(m′1+m′2)= h′(m′1)⊗h′(m′2). This, in turn, defines a group
homomorphism h′ :M ′ →E′ by Remark 6.1.3.

Again by Remark 6.1.3 a bilinear form 〈_,_〉 gives rise to a group homomor-
phism

h :M −→E, m �−→
[

M −→E

m �−→ (〈m,m′〉;m′ ∈M ′)

]

.

Similarly, h′ induces the bilinear form and conversely, a bilinear form induces a
group homomorphism h′ :M ′ →E′.

The additional assertions (i)–(iii) follow by the definition of a lattice. �

Proposition 6.1.9. Consider two Raynaud extensions

1→ T1 →E1 → B1 → 1 =̂ φ′1 :M ′
1 → B ′1

1→ T2 →E2 → B2 → 1 =̂ φ′2 :M ′
2 → B ′2.

(a) Then there is a canonical bijection between the following sets:

(i) The set of homomorphisms Λ :E1 →E2 of rigid analytic groups.
(ii) The set of pairs of morphisms (λ′, ϕ), where λ′ :M ′

2 →M ′
1 is a homomor-

phism of the character groups and where ϕ : B1 → B2 is a morphism of
formal abelian schemes such that the diagram

M ′
1

φ′1
B ′1

M ′
2

φ′2

λ′

B ′2

ϕ′

is commutative, where ϕ′ : B ′2 → B ′1 is the dual map associated to ϕ.



6.1 Basic Facts 261

In particular, the image of a point x1 of E1 is given by the family
〈

Λ(x1),m
′
2

〉= pr
(〈

x1, λ
′(m′2
)〉)

for m′2 ∈M ′
2,

where pr : PB1×φ′1(λ′(m′2)) = ϕ∗PB2×φ′2(m′2)→ PB2×φ′2(m′2) is the projection.
(b) Let Λ : E1 → E2 be a morphism and (λ′, ϕ) the corresponding couple in

the sense of (a). Let hi : Mi → Ei be a group homomorphism and set
φi := qi ◦ hi for i = 1,2 and let λ : M1 → M2 be a group homomor-
phism. Then the condition Λ ◦ h1 = h2 ◦ λ is equivalent to the compatibility
〈h2 ◦ λ(m1),m

′
2〉 = pr(〈h1(m1), λ

′(m′2)〉) for all m1 ∈M1 and m′2 ∈M ′
2.

Proof. (i) → (ii): Consider a morphism Λ : E1 → E2. By Proposition 5.4.6 the
map Λ restricts to a morphism Λ : E1 → E2 of the formal extensions. Thus, it
restricts to a morphism ΛT : T 1 → T 2 of the tori, and hence it gives rise to a group
homomorphism λ′ :M ′

2 →M ′
1 of their character groups; cf. Proposition 2.7.1(b). In

particular, we have λ′(m′2)=m′2 ◦Λ|T .
Taking quotients by T 1 and T 2, we see that Λ induces a morphism ϕ : B1 → B2.

By taking push-outs with respect to λ′(m′2) : T1 →Gm,K and m′2 : T2 →Gm,K , the
morphism Λ produces the commutative diagram

1 Gm,K PB1×φ′1(λ′(m′2))

Λλ′(m′2)

B1

ϕ

1

1 Gm,K PB2×φ′2(m′2) B2 1.

The latter is only possible if the upper extension is the pull-back of the lower ex-
tension. Due to the universal property of the Poincaré bundle there is a canonical
identification ϕ∗PB2×b′2 = PB1×ϕ′(b′2) for points b′2 ∈ B ′2 and hence

PB1×φ′1(λ′(m′2)) = ϕ∗PB2×φ′2(m′2) = PB1×ϕ′(φ′2(m′2)).

Thus, we see φ′1 ◦ λ′ = ϕ′ ◦ φ′2 for m′2 ∈M ′
2.

(ii)→ (i): An S-valued point σ : S→E1 of E1 is a family
(

σm′1 : S→ PB1×φ′1(m′1);m′1 ∈M ′
1

)

of morphisms satisfying the relation σm′1+n′1 = σm′1 ⊗ σn′1 for m′1, n′1 ∈M ′
1. Then,

one can define Λ(σ) as the family (Λ(σ)m′2;m′2 ∈M ′
2), where

Λ(σ)m′2 : S
σλ′(m′2)

PB1×φ′1(λ′(m′2)) = ϕ∗PB2×φ′2(m′2)
pr

PB2×φ′2(m′2)

and pr is the projection. Indeed, due to (ii) there are canonical identifications
PB1×φ′1(λ′(m′2)) = PB1×ϕ′(φ′2(m′2)) = ϕ∗PB2×φ′2(m′2). Applying this reasoning to the
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universal point σ := idE1 yields the desired morphism Λ : E1 → E2. It is clear
that this correspondence is bijective.

In particular, if x1 ∈E1 and m′2 ∈M ′
2, then we have seen that

〈

Λ(x1),m
′
2

〉= pr
(〈

x1, λ
′(m′2
)〉)

,

where pr : PB1×φ′1(λ′(m′2)) = ϕ∗PB2×φ′2(m′2)→ PB2×φ′2(m′2) is the projection.
(b) If Λ ◦ h1 = h2 ◦ λ, then it follows from (a)

〈

h2 ◦ λ(m1),m
′
2

〉= 〈Λ ◦ h1(m1),m
′
2

〉= pr
(〈

h1(m1), λ
′(m′2
)〉)

.

Conversely, if the formula holds, then again by (a) we have that
〈

h2 ◦ λ(m1),m
′
2

〉= pr
(〈

h1(m1), λ
′(m′2
)〉)= 〈Λ ◦ h1(m1),m

′
2

〉

for all m′2 ∈M2, and hence Λ ◦ h1 = h2 ◦ λ. �

Remark 6.1.10. The assertion of Proposition 6.1.9 is of particular importance in
the case, when B1 = B and B2 = B ′, and hence B ′2 = B ′′ and B ′1 = B ′. There is a
canonical isomorphism

ι : B ˜−→B ′′, b �−→ [Pb×B ′ ],
where the brackets indicate the class of the line bundle; cf. [74, p. 132]. Moreover,
a morphism ϕ : B −→ B ′ induces the morphism

ϕ′ : B ′′ −→ B ′, b′′ = [Pb×B ′ ] �−→
[

(idb×ϕ)∗Pb×B ′
]= [ϕ∗Pb×B ′

]

. (†)

Due to the universal property of B ′ there is a canonical identification

(ϕ × idB)
∗PB ′×B =

(

idB ×ϕ′ ◦ ι
)∗
PB×B ′ .

Indeed, for a point b ∈ B we have that

ϕ∗PB ′×b = PB×[ϕ∗PB′×b] =
(

idB ×ϕ′ ◦ ι
)∗
PB×B ′ |B×b.

In the following we identify ι : B ˜−→B ′′ and write ϕ′ instead of ϕ′ ◦ ι.
Thus, if ϕ = ϕ′, then we have the identification

(idB ×ϕ)∗PB×B ′ = (ϕ × idB)
∗PB ′×B.

Then we obtain an isomorphism of symmetry ξ on (idB ×ϕ)∗PB×B ′

(idB ×ϕ)∗PB×B ′
ξ

(idB ×ϕ)∗PB×B ′ Pb1×ϕ(b2)

ξ

Pb2×ϕ(b1)

B ×B
τ

B ×B, (b1, b2) (b2, b1),

where τ flips the factors of B ×B .
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In the special case, where ϕ = ϕN : B→ B ′, b �→ τ ∗b N ⊗N−1 for a line bundle
N on B , one has the symmetry ϕ = ϕ′. Indeed, consider in (†) the universal point
b= idB . In this case

(idB ×ϕ)∗PB×B ′ =m∗N ⊗ p∗1N−1 ⊗ p∗2N−1 ⊗ 0∗N =:D2(N),

where m,p1,p2,0 : B × B → B are the group law, the projections and the zero
map. The symmetry is given by the canonical symmetry on D2(N). �

Corollary 6.1.11. Consider two Raynaud extensions

1→ T →E
q−→ B→ 1 =̂ φ′ :M ′ → B ′

1→ T ′ →E′ q
′
−→ B ′ → 1 =̂ φ :M→ B,

where B ′ is the dual of B . Let Λ : E → E′ be a homomorphism, which corre-
sponds to a couple of morphisms (λ :M→M ′, ϕ : B→ B ′) in the sense of Propo-
sition 6.1.9; i.e., φ′ ◦ λ= ϕ′ ◦ φ. Assume that ϕ = ϕ′ is symmetric.

Then, for every S-valued point σ : S→ E, the image Λ(σ) := Λ ◦ σ in E′ is
characterized by the formula

〈

m,Λ(σ)
〉= ξ
(〈

σ,λ(m)
〉)

for all m ∈M . Here the map ξ : (idB ×ϕ)∗PB×B ′ −→ (idB ×ϕ)∗PB×B ′ is the sym-
metry associated to the condition ϕ = ϕ′; cf. Remark 6.1.10.

Proof. Since the situation may look confusing, adopt the notation from Proposi-
tion 6.1.9; i.e., B1 = B , B2 = B ′, M ′

1 = M ′, M ′
2 = M , φ′1 = φ′ and φ′2 = φ. By

Proposition 6.1.9 we have the following commutative diagram

M ′ φ′
B ′

M

λ

φ

B.

ϕ′=ϕ

An S-valued point σ : S → E consists of a family of compatible morphisms
(σm′ : S→ PB×φ′(m′))m′∈M ′ . Due to Proposition 6.1.9 the morphism Λ : E→ E′
sends σ to the point Λ(σ)= (Λ(σ)m)m∈M , where

Λ(σ)m : S
σλ(m)

PB×φ′(λ(m)) = (idB ×ϕ)∗PB×B ′ |B×φ(m)
ξ

(idB ×ϕ)∗PB×B ′ |φ(m)×B
pr

Pφ(m)×B ′ .
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Note that ξ is an isomorphism of the fibers

ξ : Pq(σ)×ϕ(φ(m)) ˜−→Pφ(m)×ϕ(q(σ )).

Indeed, put m′2 =m in the proof of Proposition 6.1.9. Thus, we obtain
〈

m,Λ(σ)
〉=Λ(σ)m = ξ(σλ(m))= ξ

(〈

σ,λ(m)
〉)

for all m ∈M . �

Proposition 6.1.12. In the situation of Corollary 6.1.11 assume that there are mor-
phisms h :M→ E and h′ :M ′ → E′ such that φ = q ◦ h and φ′ = q ′ ◦ h′. Then a
morphism Λ= (λ,ϕ) :E→E′ sends M to M ′ in the sense that the diagram

M
h

λ

E

Λ

M ′ h′
E′

is commutative if and only if we have for all m1,m2 ∈M that
〈

m1, h
′ ◦ λ(m2)

〉= ξ
(〈

h(m2), λ(m1)
〉)

. (∗)

Proof. If we have the formula (∗), then we obtain for m2 ∈M that
〈

m1,Λ
(

h(m2)
)〉= ξ
(〈

h(m2), λ(m1)
〉)= 〈m1, h

′ ◦ λ(m2)
〉

for all m1 ∈ M1. Indeed, the first equation follows from Corollary 6.1.11 and
the second is the formula (∗). Since M is the character group of E′, we obtain
Λ(h(m2))= h′(λ(m2)) for all m2 ∈M . Thus, we see Λ ◦ h= h′ ◦ λ.

If the diagram is commutative, then we have that Λ(h(m2))= h′(λ(m2)) for all
m2 ∈M . Then Corollary 6.1.11 yields

〈

m1, h
′(λ(m2)

)〉= 〈m1,Λ
(

h(m2)
)〉= ξ
(〈

h(m2), λ(m1)
〉)

for all m1,m2 ∈M . �

Remark 6.1.13. The symmetry condition (∗) of Proposition 6.1.12 means that 〈_,_〉

(φ × (φ′ ◦ λ))∗PB×B ′ PB×B ′

M ×M

〈_,_〉

M ×M
φ×(φ′◦λ)

B ×B ′.

is a symmetric trivialization of the biextension (φ × (φ′ ◦ λ))∗PB×B ′ .
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6.2 Line Bundles

In this section we will study line bundles on Raynaud extensions. We will consider
a situation as introduced in Corollary 6.1.11. Note Convention 6.1.6. Let

1→ T →E
q−→ B→ 1 =̂ φ′ :M ′ → B ′

1→ T ′ →E′ q
′
−→ B ′ → 1 =̂ φ :M→ B,

(†)

be two Raynaud extensions, where B ′ is the dual of B . In addition, let

h :M −→E

be a homomorphism of groups such that φ = q ◦ h. Equivalent to these data is a
trivialization

t :M ×M ′ −→ (φ × φ′
)∗
PB×B ′ ,

(

m,m′
) �−→ 〈m,m′〉 := h(m)m′ ,

of the biextension. Then we will consider line bundles L on E equipped with an
M-linearization; cf. Definition 1.7.11. In the following we write τm :E→E for the
translation τh(m) : E→ E by h(m) and τq(m) : B→ B for the translation τq(h(m)) :
B→ B by q ◦ h(m). There is a fundamental example.

Example 6.2.1. In the above situation let (N, r(0)) be a rigidified line bundle on B ,
where r(0) ∈N0 is the rigidificator at the unit element 0 of B . Due to the Theorem
of the Square 7.1.6 we have the canonical homomorphism

ϕN : B −→ B ′, b �−→ ϕN(b) := τ ∗b N ⊗N−1,

which associates to a point b of B the isomorphism class of the translation invariant
line bundle τ ∗b N ⊗ N−1, where τb : B→ B is the translation by the point b. Let
L := q∗N be the pull-back of N to E which is rigidified by r(0) along the unit
section of E. We start with the following data:

r :M −→ φ∗N trivialization of the torsor φ∗N,

λ :M −→M ′ map of sets.

We will show how and under which conditions the data (r, λ) give rise to an M-
linearization of q∗N . For each m ∈M we have fixed the element r(m) ∈ Nφ(m).
Moreover, τ ∗φ(m)N ⊗N−1 is translation invariant. Due to the definition of ϕN there
is a canonical isomorphism

τ ∗φ(m)N ⊗N−1 ˜−→Nφ(m) ⊗N−1
0 ⊗ PB×ϕN (φ(m)),

where Nb is the pull-back of N under the constant map B → b ∈ B and the
identification is determined by the sending the rigidificator r(m) ⊗ r(0)−1 to
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r(m)⊗ r(0)−1 ⊗ 1. Thus, one can identify

Hom
(

N,τ ∗φ(m)N
)= τ ∗φ(m)N ⊗N−1 =Nφ(m) ⊗N−1

0 ⊗ PB×ϕN (φ(m)). (∗)

As a first condition we assume ϕN ◦ φ = φ′ ◦ λ.
An M-linearization on q∗N is a family (cm;m ∈M) of isomorphisms

cm : q∗N −→ τ ∗mq∗N

satisfying compatibility relations, which are discussed below. Such an isomorphism
cm corresponds to a trivialization of q∗PB×φ′(λ(m)). There is a trivialization given
by the canonical section of Notation 6.1.7

eλ(m) :E −→ PB×φ′(λ(m)) = PB×ϕN (φ(m)), z �−→
〈

z,λ(m)
〉

.

Thus, by using the identification (∗) an M-linearization c can be given by the data
(r, λ) in the following way:

cm : q∗N −→ τ ∗mq∗N, f �−→ r(m)⊗ r(0)−1 ⊗ eλ(m) ⊗ f.

In particular, r(0) is mapped to r(m).
Next we will discuss the compatibility condition. The family (cm;m ∈M) is an

M-linearization of q∗N if and only if we have

τ ∗m1
(cm2) ◦ cm1 = cm1+m2

for all m1,m2 ∈M . In terms of the data (r, λ) the compatibility condition can be
rephrased by the following conditions:

1. ϕN ◦ φ = φ′ ◦ λ,
2. λ :M→M ′ is a group homomorphism,
3. r(m1 +m2)⊗ r(m1)

−1 ⊗ r(m2)
−1 ⊗ r(0)= 〈m1, λ(m2)〉

for all m1,m2 ∈M . The factor 〈m1, λ(m2)〉 is taken into account, since the canoni-
cal section eλ(m) is not translation invariant if λ(m) is not trivial. Indeed, for m′ ∈M ′
and z ∈E there is the following relation

τ ∗mem′(z)= em′(m · z)=
〈

m · z,m′〉= 〈m,m′〉⊗ em′(z);
here “·” is the group law on E. Then it follows

τ ∗m1
(cm2) ◦ cm1 = r(m2)⊗

〈

m1, λ(m2)
〉⊗ r(m1)⊗ r(0)⊗−2 ⊗ eλ(m2) ⊗ eλ(m1)

cm1+m2 = r(m1 +m2)⊗ r(0)−1 ⊗ eλ(m1+m2).

So λ :M→M ′ is group homomorphism and r satisfies the condition 3.
Conversely, if all the conditions are fulfilled, then the couple (r, λ) gives rise to

an M-linearization on q∗N . Especially, when N is translation invariant and λ= 0,
then r :M → N is a group homomorphism from M to the torus extension of B
given by N . In this case we have that N = PB×b′ for some b′ ∈ B ′ and r is a point
of E′K ; cf. Remark 6.1.3.
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The main task of this section is to show that all important M-linearization on line
bundles on E are of the type discussed in Example 6.2.1. For this we need to know
that the line bundles under consideration can be written as pull-backs of formal line
bundles on B; i.e., we need informations on the trivialization of rigid analytic line
bundles on smooth formal R-schemes and on the descent of line bundles on E with
respect to q :E→ B .

As in the case of schemes, it is convenient to work with cubical structures; this
notion was invented by Breen [19]. The basic facts we need are reassembled from
[70] in Sect. A.3 and will be used here freely.

If L is a line bundle on a rigid analytic S-group space X over a rigid analytic
space S, we write as in Notation A.3.1

Dn(L) :=
⊗

∅
=I⊂{1,...,n}
μ∗IL⊗(−1)n+card(I )

,

where the tensor product runs through all non-empty subsets I of {1, . . . , n} and
where μI :Xn→X is the morphism

μI :Xn −→X, (x1, . . . , xn) �−→
∑

i∈I
xi .

A cubical structure on a Gm-torsor L consists of a section τ of the associated Gm-
torsor of D3(L), which satisfies a symmetry and a cocycle condition of Defini-
tion A.3.3. This can be interpreted as the structure of a symmetric biextension on
D2(L); cf. Proposition A.3.5.

A cubical line bundle is automatically rigidified and, conversely, every rigidified
line bundle on a connected proper group space like B has a canonical cubical struc-
ture due to the Theorem of the Cube 7.1.6. Over non-proper group spaces cubical
structures are useful to make rigidified line bundles even more rigid in the sense that
there are restrictions on automorphisms.

Viewing formal analytic spaces X over R as direct limits of schemes Xn over
Rn = R/Rπn+1, we can apply scheme-theoretic results about cubical line bundles
on each level Xn. Hereby we obtain a result on the descent of cubical line bundles
on formal group schemes. In particular, we can apply it to the formal situation

1→ T →E
q−→ B→ 1 (†)

which is associated to (†) of the beginning of this section.
In the following the subindex “K” indicates the rigid analytic space which is

associated to a formal R-scheme.

Lemma 6.2.2. Let L be a cubical rigid analytic line bundle on EK . Then L extends
to a formal cubical line bundle L on E.

For showing the representability of the Picard-functor and especially the asser-
tion of Theorem 6.3.2, we need a more general result than Lemma 6.2.2, which will
be dealt with in Proposition 6.2.5. We start the proof with preliminary statements.
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Lemma 6.2.3. Let Y = SpfB→X = SpfA be a smooth morphism of affine formal
R-schemes with connected fibers of relative dimension d . Let bK ⊂ BK be an ideal
associated to a relative Cartier divisor DK . Let b ⊂ B be a coherent ideal with
b ⊗R K = bK . Assume that B/b is flat over A. Then b induces a formal relative
Cartier divisor D which extends DK .

Proof. Since B/b is flat over A, the sequence

0→ b⊗A k(s)→ B ⊗A k(s)→ (B/b)⊗A k(s)→ 0

is exact for the residue field k(s) of every closed point s of SpecA. The flatness
of B/b over A implies that the relative dimension of (B/b) ⊗A k(s) is d − 1. If
b(s) := b⊗A k(s) has no embedded primes, then b(s) gives rise to a relative Cartier
divisor on the fiber Y(s) := Y ×X Speck(s), because Y → X is smooth. Since a
local generator of b(s) lifts to a local generator of b as b is a coherent ideal of B ,
we see that b induces a relative Cartier divisor on Y/X; i.e., on every level Yn/Xn

for all n ∈N.
Thus, it remains to show that b(s) has no embedded components. Therefore,

consider the canonical inclusion

j : b−→ b
∗∗ :=HomB

(

HomB(b,B),B
)⊂ B

from b to its reflexive closure b∗∗ ⊂ B . The B-module b∗∗ is regarded as a subset of
B via β �−→ β(ι), where ι : b ↪→ B is the inclusion. Since bK is locally principal,
j ⊗R K is an isomorphism. So b∗∗ can be multiplied by a power πn into b and
hence b∗∗/b is πN-torsion. Since B/b is flat over A, and hence flat over R, the
multiplication by π on B/b is injective. Then b→ b∗∗ is bijective, because b∗∗/b is
a submodule of B/b. Thus, we see that b is reflexive, and hence that b(s) is reflexive
as well. Therefore, b(s) has no embedded components. �

Lemma 6.2.4. Let q : Y → X be a smooth morphism of admissible formal R-
schemes with connected fibers of relative dimension d . Assume that Y is quasi-
compact. If LK is an invertible sheaf on YK , then there exists an admissible formal
blowing-up X′ → X such that LK extends to an invertible sheaf L′ on Y ′ where
Y ′ = Y ×X X

′.

Proof. There exists an admissible formal blowing-up X′ → X and a finite open
covering {Y 1, . . . , Y n} of Y ′ := Y ×X X′ such that LK |Y νK extends to an invertible
sheaf Lν on Y ν , which is isomorphic to relative Cartier divisor, for ν = 1, . . . , n.

Indeed, first consider an affine situation q : V = SpfB → U = SpfA, where
V ⊂ Y and U ⊂X are open and affine. Then we have a non-trivial global section f
of LK |VK , and hence LK |VK is isomorphic to a coherent sheaf JK of ideals on YK .
We see by Proposition 3.4.21 that there is a Zariski closed subset Z1

K of UK such
that JK gives rise to a relative Cartier divisor outside Z1

K . By altering the global sec-
tion f , one can find an open covering {X1

K, . . . ,X
n
K} of UK such that LK |q−1(Xi

K)
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is equivalent to a relative Cartier divisor for i = 1, . . . , n. By Theorem 3.3.4 there
exists an admissible formal blowing-up X′ →X such that {X1

K, . . . ,X
n
K} is induced

by a formal open covering of U ×X X′. So we may assume that LK |VK is already
given by an ideal bK of BK , which induces a relative Cartier divisor.

Then we choose a finitely generated ideal b⊂ B with b⊗R K = bK . Due to the
flattening technique of Theorem 3.3.7 there exists an admissible formal blowing-up
X′ → X such that the proper transform of OV /bOV becomes flat after the base
change by X′ → X. Then, it follows from to Lemma 6.2.3 that bK induces an in-
vertible sheaf B′ of ideals on V ′ := V ×X X′, which gives rise to a relative Cartier
divisor on V ′ over X′.

Since Y is quasi-compact, by Proposition 3.2.7(g) we can arrange this for an
open covering of Y . Summarizing, we see that LK |Y νK extends to an invertible sheaf
Lν
∼=OY · fν on Yν for ν = 1, . . . , n, where fν induces a relative Cartier divisor on

Y ν/X, as asserted.
Thus, the invertible sheaf is associated to the cocycle λμ,ν := fμ/fν . These func-

tions are invertible on the generic fiber and on an X-dense open subscheme of Y .
Since the fibers of Y →X are smooth and connected, we obtain by Lemma 3.4.17(a)
that the transition functions λμ,ν are invertible over Yμ ∩ Y ν . This shows that LK

extends to a formal invertible sheaf L on Y ×X X
′. �

For showing the representability of PicτAK/K
for a uniformized abeloid variety

AK as in Definition 6.1.5, one has to deal with line bundles not only on AK or EK

but also on products AK × SK , where SK is an affinoid space. Therefore, we will
consider a quasi-compact, separated rigid space SK in the following. Such spaces
admit formal R-models S which are admissible formal schemes; cf. Theorem 3.3.3.
As usual, we denote the associated rigid space of an admissible formal R-scheme S
by SK . To be precise we denote all objects on rigid space by an subindex “K”.

In the following we consider an Raynaud extension

1→ TK →EK
q−→ BK → 1 =̂ φ′ :M ′ → B ′K

and its associated formal extension

1→ T →E
q−→ B→ 1 =̂ φ′ :M ′ → B ′.

Proposition 6.2.5. In the above situation let S be a quasi-compact admissible
formal scheme with generic fiber SK . Let LK be a rigid analytic line bundle on
EK × SK .

(a) Then there exists an admissible formal blowing-up S′ → S such that the restric-
tion LK |EK×SK extends to a formal line bundle L on E ×S S

′.
(b) If LK is a cubical rigid analytic line bundle on EK × SK , then there exists an

admissible formal blowing-up S′ → S such that the cubical structure on LK
extends to a formal cubical line bundle on L on E × S′.

Proof. (a) This follows from Lemma 6.2.4.
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(b) By (a) we may assume that LK extends to a formal line bundle L on E × S.
Let r be the rigidificator of LK along the unit section 0S of E × S. Let I be the
invertible sheaf on S such that I ·r = 0∗SL, where L is the invertible sheaf associated
to L. Then I ⊗K is equal to OSK on the generic fiber. Now we replace L by the
line bundle associated to L⊗ I−1. Thus, we obtain a new R-model of LK , where
now the rigidificator r extends to a formal rigidificator along the unit section 0S of
EK × SK .

The cubical structure τ :E3
K × SK →D3(LK) of LK extends to a cubical struc-

ture of the new model L. Indeed, τ is defined on the generic fiber of E × S and on
an S-dense open such scheme of E × S because of the rigidificator; note that τ(0S)
equals the rigidificator. Then τ is section of the Gm-torsor D3(L), as follows from
Lemma 3.4.17. �

Corollary 6.2.6. In the situation of Proposition 6.2.5 let T S→ S be a split formal
torus and let LK be a line bundle on T SK . Then, there exists an admissible formal
blowing-up S′ → S such that LK extends to a formal line bundle L on T ⊗S S

′, and
there exists an open covering {Si; i ∈ I } of S′ such that L is trivial over T ⊗S Si .

Proof. Due to Proposition 6.2.5 the line bundle LK extends to a formal line bundle
L after a certain base change S′ → S. In addition we may assume that S = SpfA is
affine. As in the proof of Lemma 6.2.4 we may assume that L is given by an ideal
b of A〈ζ, ζ−1〉 inducing a relative Cartier divisor. Then there exists a filtration by
closed standard affine subschemes

Sn0 := S0 ⊃ Sn−1
0 ⊃ · · · ⊃ S−1

0 = ∅

with dimSν0 = ν such that for Uν
0 := Sν0 − Sν−1

0 the restriction

b⊗A OS

(

Uν
0

)

is principal for ν = n, . . . ,0. Indeed, the ring of regular functions of a torus over
a field is factorial and a global generator on the fiber over a point s ∈ S0 gener-
ates the ideal over an open dense subscheme of its closure s. Denote by Un the
open subscheme of S associated to Un

0 . Then every lifting bU of the generator
of b ⊗A OS(U

n
0 ) generates b ⊗A OS(U

n). Since Un
0 ⊂ S0 is standard affine; i.e.,

Un
0 = (S0)f for a regular function f ∈ A, one can consider the admissible open

subset

V n
K(c) :=

{

x ∈ SK ;
∣

∣f (x)
∣

∣≥ c
}

of SK for a constant c ∈ |K| with c < 1. Then one can approximate the generator
bU by an element bV of b⊗OSK (V

n
K), which is a generator over Un

K as well. By the
maximum principle we obtain that, after replacing c by a suitable element c′ < 1, the
element bV generates b⊗OSK (VK(c

′)) as well. Then we turn to the open subvariety

Sn−1
K := {x ∈ SK ;

∣

∣f (x)
∣

∣≤ c′
}

.
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Blowing up the ideal (f, γ ) with γ ∈ R and c′ = |γ | we obtain a formal scheme
S′ → S such that Sn−1

K is induced by an open subscheme of S′. Over the inverse
image V n−1

0 of Sn−1
0 in S′0 every lifting of a generator of the ideal b⊗OS′(V

n−1
0 )

is principal. Then one can proceed as before and obtain the asserted result after n
steps. �

The next lemma shows that the descent of a cubical line bundle LK on EK × SK

to a line bundle on BK × SK depends on the trivialization of LK over the torus
TK × SK .

Proposition 6.2.7. In the situation of Proposition 6.2.5 let LK be a cubical rigid
analytic line bundle on EK × SK equipped with a trivialization sT over TK × SK

which is compatible with the cubical structure.

(a) Then there exists an admissible formal blowing-up S′ → S such that (LK, sT )
descends to a cubical formal line bundle N on B × S′.

The line bundle NK :=N ⊗K is uniquely determined by (LK, sT ).
(b) If q∗NK is the trivial cubical torsor, the trivialization sT is a character m′ ∈M ′

and extends to a trivialization s : EK → q∗NK . More precisely, s ⊗ e−m′ de-
scends to a unique section σ : B × S′ → N ⊗ PB×φ′(−m′), where the section
em′ :EK → PBK×φ′(m′) is the canonical one defined in Notation 6.1.7.

Proof. (a) By Proposition 6.2.5 there exists an admissible formal blowing-up
S′ → S such that LK extends to a formal cubical line bundle L on E × S′. More-
over, the section sT induces a trivialization of the line bundle LK := LK |EK×SK
and extends to a trivialization sT of the formal line bundle L, as follows by a sim-
ilar reasoning as in the proof of Proposition 6.2.5(b). Due to Theorem A.3.8 the
couple (L, sT ) descends to the formal cubical line bundle N on B × S′. Thus, we
have an isomorphism χ : L ˜−→q∗N |E×S′ of cubical line bundles.

Now we will show that χ extends to an isomorphism χ : q∗NK → LK over EK .
ReplacingLK byLK⊗q∗N−1, we have to show that any section σ of the Gm-torsor
LK over EK × SK extends to a section σ of the Gm-torsor LK over EK × SK . The
cubical structure induces the structure of a symmetric biextension on D2(LK) by
Proposition A.3.5. In the following we write only EK in stead of EK × SK . Thus
we obtain a commutative diagram

LK ×LK LK (�1, �2) �1 % �2

EK ×EK EK (x1, x2) x1 · x2.
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The sections sT : TK → LK and σ :E→ L give rise to the diagram

LK |TK ×LK |E LK (s(t), σ (x)) sT (t) % σ (x)

TK ×E

sT σ

EK

σ

(t, x)

sT×σ

t · x

σ

which defines a trivialization of LK . Since sT is compatible with the cubical struc-
ture, the map σ(z) for z ∈ EK is independent of the choice of (t, x) with z = t · x.
This section is compatible with the cubical structure of LK , because the compati-
bility is satisfied over EK .

(b) If q∗NK is trivial, then sT is a character m′ and extends to a group homo-
morphism s : E→ N = PB×φ′(m′) via push-forward by Theorem A.3.9. Thus, we
see that s ⊗ e−m′ descends to a section σ : B→ N ⊗ PB×φ′(−m′) uniquely, as fol-
lows from Theorem A.3.8. The uniqueness of NK follows also from Theorem A.3.8
because of the fixed trivialization sT . �

Corollary 6.2.8. In the situation of Proposition 6.2.5 the category of cubical line
bundles on BK × SK is via the pull-back with respect to q equivalent to the cate-
gory of couples (LK, sT ), where LK is a cubical line bundle on EK and sT is a
trivialization of LK |TK×SK .

The set of all possible descent data for L is a principal homogeneous space under
the group of characters M ′ =Hom(TK,Gm).

Corollary 6.2.9. In the situation of Proposition 6.2.5 let N1,N2 be cubical line
bundles on B × S. If c : q∗N1 → q∗N2 is an isomorphism of cubical line bundles
on EK ×SK , then c|TK×SK is given by a unique character m′ ∈M ′, and the isomor-
phism

c⊗ e−m′ : q∗N1 −→ q∗N2 ⊗ q∗PB×φ′(−m′)
descends to an isomorphism N1 →N2 ⊗ PB×φ′(−m′).

Proof. The isomorphism c can be viewed as a trivialization of the cubical line bun-
dle q∗(N2 ⊗ N−1

1 ). By Proposition 6.2.7(b) the trivialization c|TK×SK is given by
a unique character m′ ∈M ′ and, moreover, the section c ⊗ e−m′ descends to the
canonical global section of N2 ⊗N−1

1 ⊗ PB×φ′(−m′). �

Due to Lemma 2.7.4 every line bundle on an affine torus is trivial. There is only
one cubical structure on the trivial line bundle, because every invertible function on
TK is a character times a constant by Proposition 1.3.4. Thus, every trivialization
is compatible with the unique cubical structure. Therefore the assumption on the
existence of sT is always fulfilled in the case SK = SpK .

Proposition 6.2.10. In the situation of Proposition 6.2.5 assume, in addition, that
the line bundle LK is cubical. Then we have the following results:
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(a) There exists an admissible formal blowing-up S′ → S with an open covering
{Si; i ∈ I } of S′ and a formal cubical line bundle Ni on B ×S S

i for each i ∈ I
such that there exists an isomorphism

χi : LK |EK×SS
i
K
˜−→q∗Ni ⊗K|EK×SS

i
K

of cubical line bundles; cf. Definition A.3.3. Each pair (Ni,χi) is uniquely de-
termined up to a tensor product with (PB×φ′(m′), em′); cf. Notation 6.1.7.

(b) Let M ⊂EK be a lattice of full rank. If LK is equipped with an M-linearization,
then the isomorphism χi extends to an isomorphism

χi : LK |EK×SS
i
K
˜−→q∗Ni ⊗K|EK×SS

i
K

of cubical line bundles for every i ∈ I .

Proof. (a) By Corollary 6.2.6 there exists an admissible formal blowing-up S′ → S

with a covering {Si; i ∈ I } by open subschemes such that there exists a trivializa-
tion σ i : T × Si → L|T×Si of the cubical line bundle L|T×Si . Then it follows from
Theorem A.3.8 that for every i ∈ I there exist a formal cubical line bundle Ni on
B ×S S

i and an isomorphism χi : L|E×SS
i ˜−→q∗Ni |E×SS

i of cubical line bundles.
The assertion about the uniqueness follows from Theorem A.3.8.

(b) This causes some trouble, since it is not clear that LK |TK×SiK is trivial. If
we had that, then the assertion would follow from Proposition 6.2.7. However, in
the case, where SK is a reduced point, then we are done by Lemma 2.7.4, because
every trivialization of a rigidified line bundle on TK is unique up to a character by
Proposition 1.3.4. Moreover a trivialization of a cubical line bundle on a torus of
units is also unique up to a character.

In the general case we may assume that Si = S and Ni =N . Moreover, we may
assume that N has rigidificators r(eρ) : Si→N along q(eρ), for a basis (e1, . . . , er )

of M . In the following we write EK instead of EK × SK .
The M-linearization yields a section cm : EK → τ ∗mLK ⊗L−1

K . Since τ ∗mLK |EK

has a formal model like LK |EK
and a trivialization over T K , we see by Theo-

rem A.3.8 that τ ∗mLK ⊗L−1
K |EK

= q∗PBK×φ(λ(m)), where λ :MSK →M ′
SK

is a map
with cm(z)= 〈z,λ(m)〉.

If s ∈ SK is point, then LK |TK×s is trivial by Lemma 2.7.4, and hence the
morphism χs extends to a morphism χs as we have seen above. Thus, the M-
linearization on LK |EK×s induces an M-linearization on q∗N |EK×s . As seen in
Example 6.2.1, this is presented by a couple (rs, λs). It is evident that λs = λ|M×s
for all points s ∈ SK . In particular, φ′ ◦ λ= ϕN ◦ φ over the reduced space SK,red.
Thus we can define a linearization (r, λ) on q∗NK over EK × SK,red inductively by
the rule

r(m1 +m2)= r(m1)⊗ r(m2)⊗ r(0)−1 ⊗ 〈m1, λ(m2)
〉

for all m1,m2 ∈M starting with the values of our basis (e1, . . . , er ) of M . Likewise
as in Example 6.2.1 we obtain an M-linearization of q∗NK .
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Then by Lemma 6.2.11 we see that χ extends to a morphism χ over EK×SK,red.
In particular, LK |TK×SK,red is trivial. Then it is also trivial over EK × SK , because a
trivializing section over TK × SK,red lifts to a trivializing section over TK × SK , be-
cause TK × SK is quasi-Stein; cf. [51, 2.4]. Thus, we may assume that LK |TK×SK is
the trivial Gm-torsor. Then the trivialization over T K ×SK of the cubical Gm-torsor
LK over T K × SK extends to a section over TK × SK . Finally again by Proposi-
tion 6.2.7 we obtain that χ extends to an isomorphism over EK × SK . �

Lemma 6.2.11. In the situation of Proposition 6.2.10(b) every section σ over
EK × SK of the cubical Gm-torsor LK extends to a section over EK × SK .

Proof. To verify the assertion, it is enough to show that LK is a trivial line bun-
dle over EK × SK . Indeed, every cubical structure on the trivial Gm-torsor over
EK × SK is given by a morphism τ : E3

K × SK → Gm, which is necessarily a
character. In fact, if SK is reduced, then this follows from Proposition 1.3.4. In the
case where SK is not reduced, use the cocycle condition for τ ; cf. Theorem A.3.9.
Furthermore, again by the cocycle condition we see that there exists a character χ
with D3(χ)= τ . In particular, every cubical structure on the trivial Gm-torsor over
EK × SK is isomorphic to the trivial cubical Gm-torsor via a character. Thus, for
our problem, we have just to show that LK is trivial, because σ is a character.

We fix a basis m′1, . . . ,m′r of the character group M ′ and consider the associated
product decomposition EK =Em′1 ×B . . .×B Em′r . Let | · |i be the absolute value on
Em′i := PB×φ′(mi). For m ∈M set

Fm :=
{

z ∈EK × SK ; |m|−1
i ≤ |z|i ≤ |m|i for i = 1, . . . , r

}

.

Then Fm is an admissible open subspace of E; it can be viewed as a polyannulus
over B . We claim that the restriction of LK to Fm is trivial for all m ∈M . To justify
this assertion, we proceed by induction and write Fm = F ′m ×B F

′′
m, where

F ′m :=
{

z ∈Em′1 ×B · · · ×B Em′r−1; |m|−1
i ≤ |z|i ≤ |m|i for 1≤ i ≤ r − 1

}

,

F ′′m :=
{

z ∈Em′r ; |m|−1
r ≤ |z|r ≤ |m|r

}

.

If |md | 
= 1, let

F+m :=
{

z ∈Em′r ; |z|d = |m|d
}

,

F−m :=
{

z ∈Em′r ; |z|d = |m|−1
d

}

be the two connected components of the “boundary” of the relative annulus F ′′m.
We can fill the “wholes” of F ′′m and hereby embed it into the P

1-bundles P ′′ over
B which is associated to Em′d . We know that LK is trivial on EK × SK and, due

to the M-action, on all M-translates of EK × SK . Using the induction hypothesis,
we may assume that LK is trivial on F ′m ×B F

+
m and on F ′m ×B F

−
m . Thus, we can

extend LK |F ′m×BF
′′
m

to a line bundle L′′ on F ′m×B P
′. Since Pic

P
1
K/K

is the constant
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sheaf Z, there is an n ∈ Z such that L′′ ∼= OF ′m×BP
′′(n). Thus, we see that L′′ and

hence LK are trivial on Fm = F ′m ×B F
′′
m.

Now consider an exhausting sequence F1 ⊂ F2 ⊂ · · · of EK × SK by domains
of type Fm. Since LK is trivial over all the Fj , we can find a section fj generating
LK over Fj . Then one can proceed as in the proof of Lemma 2.7.4 and show that
LK is trivial over EK × SK . �

In the following we consider the situation (†) introduced in the beginning of this
section. Let M ⊂EK be a lattice of full rank.

Now we will consider M-linearizations of cubical line bundles on EK ; i.e.,
M-linearizations, which respect the cubical structures. Associated to the morphism
h :M→EK there is a canonical trivialization t of the biextension (φ×φ′)∗PBK×B ′K
due to Proposition 6.1.8 which is given by

t :M ×M ′ −→ PBK×B ′K ,
(

m,m′
) �−→ 〈m,m′〉 := h(m)m′ .

The following statements of this section are also true in the general case EK × SK ,
where SK is a connected affinoid rigid space, and the proofs given for the base space
SK = SpK work in the general case as well. Of course one has to replace SpfR by a
formal R-model S or by an admissible blowing-up of S and an open covering of S;
the latter is due to Proposition 6.2.10. In order to keep things simple we do not make
this explicit in the following.

Proposition 6.2.12. In the above situation let N be a cubical line bundle on B

and ϕN : B→ B ′, b �→ τ ∗b N ⊗ N−1, the induced group homomorphism. Then the
following data are equivalent:

(a) M-linearizations on the cubical line bundle q∗N .
(b) Pairs (r, λ) consisting of a group homomorphism λ : M → M ′ satisfying

ϕN ◦ φ = φ′ ◦ λ and of a trivialization r :M→ φ∗N ⊗K of the cubical line
bundle φ∗N such that r is compatible with t ; i.e., such that the diagram

(φ × φ)∗D2(N) (φ × φ′)∗PBK×B ′K

M ×M

D2(r)

id×λ
M ×M ′

t

is commutative.

In the above situation, if an M-linearization c of q∗N is given, then the triv-
ialization r : M → q∗N is obtained by transporting the rigidificator of q∗N by
means of the M-action. In terms of sections, the isomorphism cm : q∗N→ τmq

∗N
corresponding to the action of m ∈M on q∗N can be presented by the mapping
f �−→ r(m)⊗ eλ(m) ⊗ r(0)−1 ⊗ f , as described in Example 6.2.1.
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Proof. Let us start with an M-action c = (cm;m ∈ M) on the cubical line bun-
dle q∗N . So c consists of a family of morphisms cm : q∗N→ τ ∗mq∗N for m ∈M ,
which are compatible with the cubical structure and satisfy certain compatibility
conditions.

By Corollary 6.2.9 there exists a unique character m′ = −λ(m) ∈M ′ such that

cm ⊗ e−λ(m) : q∗N −→ τ ∗mq∗N ⊗ q∗PB×−φ′(λ(m))

descends to an isomorphism of cubical line bundles

γm :N −→ τ ∗q(m)N ⊗ PB×−φ′◦λ(m).

Clearly, the just defined map λ :M→M ′ is a lifting of ϕN ; i.e., satisfies the condi-
tion φ′ ◦ λ= ϕN ◦ φ. The compatibility condition of the cm in the family shows that
λ :M→M ′ is a group homomorphism.

Next we define r :M→ φ∗N via transporting the rigidificator r(0) at 0 by the
M-action. Then the isomorphism cm can be written in the form

cm := q∗γm ⊗ eλ(m) : q∗N −→ τ ∗mq∗N, f �−→ r(m)⊗ eλ(m) ⊗ r(0)−1 ⊗ f, (∗)

which maps the rigidificator r(0) to r(m)= cm(r(0)); as explained in Exam-
ple 6.2.1.

The compatibility condition of the M-linearization means that the diagram

q∗N
cm1+m2

cm1

τ ∗m1+m2
q∗N

τ ∗m1
q∗N

τ∗m1
cm2

τ ∗m1
τ ∗m2

q∗N

is commutative. By the formula (∗) one sees that this is equivalent to

r(m1 +m2)⊗ eλ(m1+m2) = τ ∗m1
r(m2)⊗ τ ∗m1

eλ(m2) ⊗ r(m1)⊗ r(0)−1 ⊗ eλ(m1)

for all m1,m2 ∈M . This is equivalent to the rules

λ(m1 +m2)= λ(m1)+ λ(m2),

r(m1 +m2)⊗ r(m1)
−1 ⊗ r(m2)

−1 ⊗ r(0)= 〈m1, λ(m2)
〉

for all m1,m2 ∈M . These conditions combined with ϕN ◦φ = φ′ ◦ λ are equivalent
to our condition (b).

Conversely, a pair (r, λ) gives rise to morphisms cm : q∗N −→ τ ∗mq∗N of line
bundles by the formula (∗) for m ∈M . Indeed, by (b) we have ϕN ◦ φ = φ′ ◦ λ.
Thus, the line bundle τ ∗φ(m)N ⊗N−1⊗PB×−φ′◦λ(m) is trivial. Then we obtain mor-
phisms cm by the formula (∗). Since λ(m) is a character, one directly verifies that
cm respects the cubical structures. �
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In the situation of Proposition 6.2.12 let (Li, ci) be two M-linearized cubical line
bundles on EK corresponding to pairs (Ni, ri , λi) for i = 1,2. Then it is easy to see
that (L1 ⊗L2, c1 ⊗ c2) corresponds to (N1 ⊗N2, r1 ⊗ r2, λ1 + λ2).

An M-linearization of a cubical line bundle (L, c) on EK is translation
invariant if for every S-valued point x of EK there exists an isomorphism
ψ : (L, c) ˜−→τ ∗x (L, c). It is called trivial if there exists an isomorphism of (L, c) to
the trivial line bundle equipped with the trivial cubical structure.

Corollary 6.2.13. In the situation of Proposition 6.2.12 let (r, λ) be an M-
linearization of the cubical line bundle q∗N . Then the following conditions are
equivalent:

(a) The M-linearization of q∗N is translation invariant.
(b) N is translation invariant and λ is trivial.
(c) N is translation invariant and the M-linearization of q∗N is the pull-back of

an M-linearization of N .

Proof. (a) → (b): The character eλ(m) is translation invariant if and only if
λ(m)= 0. Indeed, look at the translation by points of the torus. Then we see from
Corollary 6.2.9 that every morphism c(x) : q∗N → τ ∗x q∗N of cubical structures
with c(x)|TK = 1 descends to an isomorphism c(x) :N→ τ ∗q(x)N . Thus, N is trans-
lation invariant.

(b)→ (c): It follows from Corollary 6.2.9.
(c)→ (a): If N is translation invariant, then N gives rise to a Gm-extension of B .

Every M-linearization on a translation invariant line bundle N is given by a multi-
plication N→ τ ∗φ(m)N with r(m)⊗ r(0)−1. The latter one is obviously translation
invariant and its pull-back to EK as well. �

Corollary 6.2.14. In the situation of Proposition 6.2.5 the following conditions are
equivalent:

(a) The M-linearization on q∗N is isomorphic to the trivial one.
(b) There is a character m′ ∈ M ′ such that there is a unique isomorphism

N ˜−→PB×φ′(m′) sending r(0) to 1 and r(m) �→ 〈m,m′〉 for m ∈M .

Proof. (a) → (b): From the assumption follows that q∗N is trivial. Thus, we see
by Proposition 6.2.7 that we can identify N = PB×φ′(m′) for a character m′ ∈M ′ as
rigidified line bundles, where q∗PBK×φ′(m′) is trivialized by the canonical section
em′ :EK → q∗PBK×φ′(m′). So the M-linearization is given by

r(m)⊗ r(0)−1 �−→ τ ∗mem′ ⊗ e−1
m′ =
〈

m,m′
〉

.

(b)→ (a): The section em′ :EK → q∗PBK×φ′(m′) induces an isomorphism from
the trivial cubical Gm,K -torsor to q∗PBK×φ′(m′) equipped with the cubical structure
(〈_,m′〉,0). �
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Proposition 6.2.15. In the situation of Proposition 6.2.12 let q ′ : E′ → B ′ be the
torus extension associated to the group homomorphism φ := q ◦h. The points of E′K
corresponds bijectively to the isomorphism classes of M-linearizations of cubical
line bundles on EK which are translation invariant.

A point x′ of E′K gives rise to the cubical line bundle PB×q ′(x′) on B; its M-
linearization is given by the multiplication

x′m : PBK×q ′(x′) −→ τ ∗q(m)PBK×q ′(x′), f �−→ f ⊗ 〈m,x′〉,
with 〈m,x′〉 ∈ Pφ(m)×q ′(x′), where q ′(x′) ∈ B ′ is viewed as a base space.

Proof. By the universal property of B ′K the points of B ′K are the translation invariant
line bundles on BK . Thus, a point x′ of E′K gives rise to a point b′ := q ′(x′) of B ′K
which represents the translation invariant line bundle PBK×b′ . Regarding B ′K as the
base space, the point x′ is equivalent to a family of points (x′m ∈ Pφ(m)×b′ ;m ∈M)

satisfying x′m1+m2
= x′m1

⊗ x′m2
, where “⊗” is the group law on PBK×B ′K with the

base space B ′K . �

Our next topic is the study of global sections of q∗N . Here it is more conve-
nient to work with invertible sheaves instead of line bundles. Therefore, we have to
dualize our setting.

Notation 6.2.16. If N is a line bundle, then we denote the associated invertible
sheaf N by the corresponding calligraphic letter; i.e., N associates to open subsets
U the O(U)-module

N (U) :=Hom
(

N
∣

∣

U
,A1

U

)

.

Thus, the canonical section

em′ :EK −→ PBK×φ′(m′)

gives rise to a global section em′ ∈ Γ (EK,q
∗PBK×φ′(−m′)); cf. Remark 1.7.2. Note

the change in the sign. In particular, we have the formula

τ ∗mem′ =
〈

m,m′
〉⊗ em′ .

A morphism α :N1 →N2 induces the morphism

α∗ :N2 −→N1, � �−→ α∗� := � ◦ α.
An M-linearization c = (cm;m ∈M) on q∗N , which is identified with (r, λ) in

the manner of Proposition 6.2.12, induces the morphism

c∗m : τ ∗mq∗N −→ q∗N , � �−→ �⊗ r(m)−1 ⊗ r(0)⊗ e−λ(m).

Therefore, the M-linearization of q∗N is defined by (c∗m;m ∈M), which is given
by (r−1,−λ).
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Lemma 6.2.17. Let N be a cubical line bundle on B and let N be the associated
invertible sheaf; cf. Notation 6.2.16. Then there is a canonical Fourier decomposi-
tion

q∗q∗N = ̂
⊕

m′∈M ′
(N ⊗PB×φ′(m′))⊗ em′

as a complete direct sum.

Proof. Every section f ∈ Γ (U,q∗q∗N ) over an open subset U of B can uniquely
be represented as a convergent Fourier series

f =
∑

m′∈M ′
am′ ⊗ em′ ,

with coefficients am′ ∈ Γ (U,N ⊗PB×φ′(m′)). Indeed, the coefficient am′ is a section
am′ :U→N−1⊗PB×φ′(−m′). Thus, am′ ⊗ em′ :U→N−1 is a section of N−1 and
hence an element of Γ (U,N ).

There exists also a covering of B by open subsets U1, . . . ,Un such that N |Ui is
trivial and E|Ui is a free G

r
m,K -torsor, then f |U∩Ui can be represented as a conver-

gent Laurent series, which is the restriction of the Fourier decomposition to U ∩Ui .
Thus, we obtain the representation as asserted. �

Lemma 6.2.18. Let N1, N2 be cubical line bundles on B with associated invertible
sheaves N1, N2. Let c : q∗N1 → q∗N2 be an isomorphism of cubical line bundles
on EK , where c|TK is given by a character n′. Then the induced mapping of their
associated invertible sheaves

q∗(c) : q∗q∗N2 −→ q∗q∗N1

is a homogeneous morphism of their Fourier decompositions of degree n′, whose
components for m′ ∈M ′ are given by

(N2 ⊗PB×φ′(m′−n′))⊗ em′−n′ −→ (N1 ⊗PB×φ′(m′))⊗ em′,

�⊗ em′−n′ �−→ (γ ⊗ idPB×φ′(m′) )
∗�⊗ em′,

where c⊗ e−n′ descends to γ :N1 →N2 ⊗ PB×φ′(−n′); cf. Corollary 6.2.9.

Proof. By Corollary 6.2.9 the isomorphism c⊗ e−n′ : q∗N1 → q∗N2⊗ q∗PB×φ′(n′)
descends to an isomorphism

γ :N1 −→N2 ⊗ PB×φ′(n′).

Then its dual is the mapping

γ ∗ :N2 ⊗PB×φ′(−n′) −→N1.
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On the homogeneous summand of degree m′ the morphism q∗(c∗) equals

γ ∗m′ := γ ∗ ⊗ idPB×φ′(m′) :N2 ⊗PB×φ′(m′−n′) ⊗ em′−n′ −→N1 ⊗PB×φ′(m′) ⊗ em′

which is the indicated morphism. �

Proposition 6.2.19. Let N be a cubical line bundle on B equipped with an M-
action c= (cm;m ∈M)= (r, λ) in the manner of Proposition 6.2.12, which is given
by the isomorphisms

cm : q∗N −→ τ ∗mq∗N, f �−→ r(m)⊗ r(0)−1 ⊗ f ⊗ eλ(m).

Then each c∗m : τ ∗mq∗N → q∗N as a map of the associated invertible sheaves is
homogeneous of degree λ(m) and its components are given by

τ ∗q(m)(N ⊗PB×φ′(m′−λ(m)))⊗ em′−λ(m) −→ (N ⊗PB×φ′(m′))⊗ em′,

�⊗ em′−λ(m) �−→
(

r(m)−1 ⊗ r(0)⊗ �
)⊗ em′ .

Let f ∈ Γ (EK,q
∗N ) be a global section with the Fourier decomposition

f =
∑

m′∈M ′
am′ ⊗ em′

and coefficients am′ ∈ Γ (BK,N ⊗PB×φ′(m′)). Then the section f is M-invariant if
and only if its coefficients satisfy the relations

τ ∗mam′+λ(m) =
〈

m,−λ(m)〉⊗ 〈m,m′〉−1 ⊗ r(m)⊗ r(0)⊗ am′ (∗)

for all m ∈M and m′ ∈M ′.

Proof. The first assertion follows from Lemma 6.2.18 because of c∗m(a)= a ◦ cm.
For the second assertion consider a global section f : EK → q∗N−1. Then by

using Notation 6.2.16 we obtain the following equations

f =
∑

m′∈M ′
am′ ⊗ em′,

τ ∗mf =
∑

m′∈M ′
τ ∗mam′ ⊗ τ ∗mem′ =

∑

m′∈M ′
τ ∗mam′ ⊗

〈

m,m′
〉⊗ em′,

c∗mτ ∗mf =
∑

m′∈M ′

〈

m,m′
〉⊗ r(m)−1 ⊗ r(0)⊗ τ ∗mam′ ⊗ em′−λ(m).

The M-invariance of f is equivalent to the relation c∗mτ ∗mf = f . Thus, we see that
the coefficients have to fulfill the relations

am′ =
〈

m,m′ + λ(m)
〉⊗ r(m)−1 ⊗ r(0)⊗ τ ∗mam′+λ(m)

= 〈m,m′〉⊗ r(m)−1 ⊗ r(0)⊗ 〈m,λ(m)〉⊗ τ ∗mam′+λ(m),
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for all m ∈M and m′ ∈M ′, and hence

τ ∗mam′+λ(m) =
〈

m,−λ(m)〉⊗ 〈m,m′〉−1 ⊗ r(m)⊗ r(0)−1 ⊗ am′

for all m ∈M and m′ ∈M ′, as required. �

Corollary 6.2.20. Let N be a cubical invertible sheaf on B and let (r, λ) be the
M-linearization on q∗N in the manner of Proposition 6.2.12 or Notation 6.2.16.
Then the following assertions are equivalent:

(a) λ is injective and there exists a global M-invariant section f of q∗N which is
non-trivial.

(b) For all m ∈M − {0} is |〈m,λ(m)〉| < 1 and there is an m′ ∈M ′ and a non-
vanishing global section am′ of N ⊗PB×φ′(m′).

Proof. This follows as in Theorem 2.7.12 by using the formula of Proposi-
tion 6.2.19. First, note the change of signs in the M-linearization data, when passing
from N to N ; cf. Notation 6.2.16. Thus, the formula of Proposition 6.2.19 looks as
in the proof of Theorem 2.7.12

τ ∗mam′−λ(m) =
〈

m,λ(m)
〉⊗ 〈m,m′〉−1 ⊗ r(m)−1 ⊗ r(0)⊗ am′ .

On the formal invertible sheaf N there is a well-defined absolute value; cf. Sect. 6.1,
where we assume |r(0)| = 1. Since a translation does not alter the absolute value,
one can proceed as in the proof of Theorem 2.7.12. Thus, iterating by m yields for
the absolute values

|am′−λ(i·m)| =
∣

∣

〈

m,λ(m)
〉∣

∣

i(i+1)/2∣
∣ · ∣∣r(m)∣∣−i · ∣∣〈m,m′〉∣∣−i · |am′ |.

Furthermore, one can prescribe an element am′ ∈ Γ (B,N ⊗ PB×φ′(m′)) in ev-
ery residue class of M ′/λ(M) in order to obtain an M-invariant global section of
q∗N . �

Remark 6.2.21. More generally, consider an invertible sheaf N on B and an M-
linearization (r, λ) on q∗N . Then we have the following formula

dimK Γ
(

EK,q
∗N
)M =

∑

m′∈(M ′/λ(M))

μm′ · dimK Γ (B,N ⊗PB×φ′(m′)),

where μm′ = 1 or 0. Only finitely many of the summands do not vanish. If the
invertible sheaf N is ample, then we will see in Theorem 6.4.4 that

dimK Γ
(

EK,q
∗N
)M = #
(

M ′/λ(M)
) · dimK Γ (B,N ).
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6.3 Duality

In the following we will apply the results of Sect. 6.2 to study the representability of
PicA/K for an abeloid variety A which admits a Raynaud representation; cf. Defini-
tion 6.1.5. We consider again the situation which was introduced at the beginning of
Sect. 6.1, and our Convention 6.1.6. We start with two free abelian groups M = Z

r

resp. M ′ = Z
r of rank r . Now we consider an extension of the generic fiber of a

formal abelian R-scheme B by a torus T = G
r
m and consider M ′ = X(T ) as the

character group of T . Such a torus extension

0→ T →E→ B→ 0 =̂ φ′ :M ′ → B ′

is equivalent to a group homomorphism φ′ from M ′ to the dual B ′ of B; cf. Theo-
rem A.2.8. Then, we introduce a lattice in E of rank r by choosing a group homo-
morphism h :M→E. Thus, we end up with the diagram

M

h

φ

T E
q

p

B =̂ φ′ :M ′ → B ′.

A :=E/M

Let φ := q ◦ h :M→ B be the induced map and p : E→ E/M the rigid analytic
quotient. These data are equivalent to a commutative diagram

PB×B ′

M ×M ′ φ×φ′

〈_,_〉

B ×B ′,

where 〈_,_〉 is a bilinear form, which trivializes of the pull-back of the Poincaré
bundle PB×B ′ , such that the absolute value |〈_,_〉| of the bilinear form is non-
degenerate; cf. Proposition 6.1.8. This diagram gives rise to a situation which is
dual to the one we started with:

M ′

h′
φ′

T ′ E′
q ′

p′

B ′ =̂ φ :M→ B = B ′′,

A′ :=E′/M ′
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where E′ is associated to the map φ :M→ B = B ′′. In such a situation the quotients
A = E/M and A′ = E′/M ′ exist as rigid analytic spaces and are abeloid varieties
in Raynaud representation; cf. Proposition 6.1.4.

Our objective in this section is the representability of the functor PicτA/K of trans-
lation invariant line bundles onA. As already mentioned at the beginning of Sect. 6.1
the functor PicτB/R of formal line bundles on the smooth formal scheme B is repre-
sentable by the smooth formal scheme B ′. Even more is true:

Proposition 6.3.1. Let B be a formal abelian variety and let B ′ its dual. Then, the
associated rigid space B ′K represents the functor PicτBK/K of translation invariant
line bundles on the associated rigid space BK .

Proof. This follows from Lemma 6.2.4 and the representability of PicτB/R by B ′. �

To show representability of PicτA/K requires to consider rigidified line bundles
of A×K S, where S is a connected affinoid space. Therefore, just from beginning
we replace A by A× S and consider A as an S-space. This has the advantage that
we can ignore every further base change. In fact, every consideration after base
change reproduce the setting we started with. Recall that we carefully developed
our preliminary results in Sect. 6.2 in such a general set up. Using the unit section
S→A as a support for a rigidificator of line bundles on A, we can identify PicA/S
with the rigidified Picard functor; cf. Definition 1.7.1 resp. [15, §8.1].

By the Theorem of the Cube 7.1.6 we can identify PicA/S with the functor

CubA/S : (Rigid S-Spaces)−→ (Sets),

which associates to a rigid space S′ → S over S the set of isomorphism classes
of cubical line bundles on A ×S S

′; cf. Proposition A.3.4. Using the method of
linearizations Sect. 1.7, to study CubA/S is equivalent to study the functor

CubME/S : (Rigid S-Spaces)−→ (Sets),

which associates to a rigid analytic space S′ → S over S the set of isomorphism
classes of cubical line bundles on E ×S S

′ with M-linearizations; see Corol-
lary 6.2.14. Indeed, there is a natural transformation

CubME/S ˜−→CubA/S, (L, c) �−→ L(c) := L/c,

cf. Proposition 1.7.14. Note that CubME/S is a sheaf. Locally on S with respect to the

Grothendieck topology, a section of CubME/S can be described in terms of data built
on B; cf. Proposition 6.2.10. We have the functor

CubME/B/S : (Rigid S-Spaces)−→ (Sets)

which associates to a rigid analytic space S′ → S over S the set of isomorphism
classes of couples (N, c), where N is a cubical line bundle on B ×S S

′ and c is
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an M-linearization on q∗N . An isomorphism from (N1, c1) to (N2, c2) is a iso-
morphism ϕ : N1 → N2 of cubical line bundles such that q∗ϕ is compatible with
the linearizations. Thus, CubME/B/S is a sheaf of abelian groups with respect to the
Grothendieck topology, where the group law is the tensor product. Due to Proposi-
tion 6.2.10 the morphism

CubME/B/S −→ CubME/S = PicA/S, (N, c) �−→ (q∗N,c)∼= q∗N(c),

is an epimorphism of sheaves with respect to the Grothendieck topology and its
kernel is given by the character group M ′ = Hom(T ,Gm). Indeed, the character
group M ′, viewed as a constant sheaf, injects into CubME/B/S via

M ′ =Hom(T ,GM)−→ CubME/B/S, m′ �−→ (PB×φ′(m′), εm′),

where εm′ is the M-linearization on PB×φ′(m′)

εm′,m : PB×φ′(m′) −→ τ ∗PB×φ′(m′), � �−→
〈

m,m′
〉⊗ �.

The canonical section em′ yields a trivialization of (q∗PB×φ′(m′), εm′), and hence the
couple (PB×φ′(m′), εm′) induces the trivial line bundle on A. Moreover, if a couple
(N, c) induces the trivial line bundle on A, then there exists a character m′ ∈M ′
such that (N, c) = (PB×φ′(m′), εm′) due to Corollary 6.2.14. Thus, we obtain an
exact sequence of sheaves

0→M ′ → CubME/B/S→ CubME/S→ 0.

Next we want to have a closer look at the forgetful functor

CubME/B/S −→ CubB/S = PicB/S, (N, c) �−→N.

The translation invariant M-linearizations of the trivial line bundle on B are repre-
sented by the torus T ′ :=Hom(M,Gm) which injects into CubME/B/S in a canonical
way. Indeed, for a point x ∈ T ′ the M-linearization on the trivial line bundle is de-
fined by the multiplication with x(m) for m ∈M . Actually it is a closed and open
subfunctor of the kernel.

The forgetful functor does not need to be an epimorphism of sheaves, since for a
cubical line bundle N on B , which is not translation invariant, there does not nec-
essarily exist an M-linearization on q∗N . Indeed, it can happen that ϕN : B→ B ′
does not admit a lifting λ :M →M ′, as it is necessary for an M-linearization of
q∗N . But on translation invariant line bundles PB×b′ there exist M-linearizations,
because ϕN is trivial in this case.

Finally we have the following sequence of sheaves

0→ T ′ =Hom(M,Gm)→ CubME/B/S→ PicB/S→ 0.

The sequence is exact if one restricts to translation invariant line bundles and M-
linearizations, cf. Proposition 6.2.15. In Sect. 6.2 we have worked out the identifi-
cation of the M-linearizations of q∗N . Thus, we have the following result:
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Theorem 6.3.2. The canonical morphisms

CubME/B/S /M
′ ˜−→CubME/S ˜−→PicA/S

are isomorphisms of sheaves with respect to the Grothendieck topology.
If S′ is a connected rigid analytic S-spaces, then every element of CubME/B/S(S

′)
can be presented by a triple (N, r, λ), where

N is a rigidified line bundle on B ×S S
′,

λ :M→M ′ is a group homomorphism,

r :M→ φ∗N is a trivialization,

satisfying

φ′ ◦ λ= ϕN ◦ φ,
r(m1 +m2)⊗ r(m1)

−1 ⊗ r(m2)
−1 ⊗ r(0)−1 = 〈m1, λ(m2)

〉

for all m1,m2 ∈M , where D2(N) = (idB ×ϕN)∗PB×B ′ are canonically identified
in the last equality.

In particular, a couple (L, sT ) consisting of a rigidified line bundle L on A and a
trivialization sT of the cubical line bundle p∗L|T corresponds to a triple (N,λL, r)
in a unique way. Here the couple (N, r) depends on the section sT whereas the
homomorphism λL depends only on L, but not on the section.

Now we will concentrate on line bundles which are translation invariant. Due to
Corollary 6.2.13 a triple (N, r, λ) is translation invariant if and only if N is transla-
tion invariant and λ is trivial. Then the condition on the section r is equivalent to the
condition that r is an S′-valued point of E′ by Proposition 6.2.15. Thus, the open
and closed subfunctor of CubME/B/S representing translation invariant line bundles
is represented by E′.

Theorem 6.3.3. The quotient A′ :=E′/M ′ is the dual of A=E/M .
The Poincaré bundle PA×A′ is induced by the (M×M ′)-linearization on the line

bundle (q × q ′)∗PB×B ′ which is given by the couple (R,Λ), where

Λ :M ×M ′ −→M ′ ×M,
(

m,m′
) �−→ (m′,m),

R :M ×M ′ −→ (q × q ′
)∗
PB×B ′ ,

(

m,m′
) �−→ 〈m,m′〉.

In terms of mappings, it is given by

C(m,m′)
(

z, z′
) : PB×B ′ −→ PB×B ′ , ω �−→

(〈

z,m′
〉

%
〈

m,m′
〉)⊗ (〈m,z′〉 % ω),

for ω ∈ Pq(z)×q ′(z′) and (z, z′) ∈E. Here “%” and “⊗” are the group laws on PB×B ′
when B ′ and/or B are viewed as parameter space.
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Proof. Recall that the dual of B ×S B
′ is given by B ′ ×S B . One easily shows that

(R,Λ) satisfies the condition of Theorem 6.3.2. Thus, it gives rise to a line bundle
PA×A′ , which is rigidified along A× 0′ and 0×A′.

Now we want to show the universal property. After performing a base change,
it suffices to consider line bundles on A. Thus, start with a rigidified line bundle L
on A, which is invariant under translation. Since we can work locally with respect to
the Grothendieck topology, we may assume that L is isomorphic to q∗N/c, where
N is a rigidified line bundle on B and where c is an M-linearization on q∗N , cf.
Proposition 6.2.10. Let (r, λ) be the couple associated to c. Due to Corollary 6.2.13
the line bundle N is translation invariant and λ :M→M ′ is the trivial one. Thus,
the rigidified line bundle N is given by a point b′ : S→ B ′; i.e., there is a canonical
isomorphism

N ˜−→(idB ×b′
)∗
PB×B ′

due to the universal property of PB×B ′ . The action c is induced from the left
translation on N given by a section r : M → φ∗N ; i.e., a group homomorphism
r :M→ PB×b′ which is a lifting of φ :M→ B; cf. Proposition 6.2.15. Such data
bijectively correspond to an S-valued points z′ of E′, because E′ is defined by the
group homomorphism φ :M→ B = B ′′; cf. Remark 6.1.3.

Now consider the pull-back of ((q × q ′)∗PB×B ′ ,C) under the maps
(

idE×z′
) :E × S −→E ×S E

′,

(idM,λ) :M ×M −→M ×M ′.

Since λ is trivial, the pull-back is isomorphic to the given data (q∗N,c). If we define
a′ := p′ ◦ z′, then we have that (idA×a′)∗PA×A′ ∼= L. �

Corollary 6.3.4. The morphism p : E→ A is the universal covering in the sense
that every morphism S′ →A from a rigid analytic space S′ to A with H 1(S′,Z)= 0
to A factorizes through p.

Proof. Since A is the dual of A′ and E is the dual of E′, it suffices to show that
every morphism S′ →A′ factorizes through p′. After a base change we may assume
S′ = S. A morphism σ : S→ A′ is equivalent to a rigidified line bundle L on A

which is translation invariant. As explained above, the canonical M-linearization on
p∗L gives rise to local sections σ̂i : S→E′ lifting σ . The differences σ̂i ◦ σ̂−1

j give

rise to a cocycle with values in M ′. Since H 1(S,M ′) vanishes, one can arrange the
liftings σ̂i in such a way that they define a morphism σ̂ : S→E′. Thus, we see that
p′ :E′ →A′ is the universal covering. �

6.4 Algebraization

In this section we want to show that the universal covering ̂A of an abelian variety
is induced by an algebraic R-scheme; i.e., ̂A is a algebraic torus extension of an



6.4 Algebraization 287

abelian R-group scheme. In the following keep the notations of Sect. 6.3. At first
we will study morphisms between uniformized abeloid varieties.

Proposition 6.4.1. Let Ai = Ei/Mi be uniformized abeloid varieties, where the
Raynaud extension qi : Ei → Bi corresponds to a morphism φ′i :M ′

i → B ′i as in
Proposition 6.1.9. Moreover, let Mi be a lattice in Ei , and set φi := qi |Mi

:Mi→ Bi
for i = 1,2.

(a) Then there is a canonical bijection

Hom(A1,A2) ˜−→Hom
(

(E1,M1), (E2,M2)
)

, ϕA �−→ ϕE =
(

λ′, ϕB
)

,

where ϕE is a lifting of ϕA sending M1 to M2.
Due to Proposition 6.1.9 a morphism ϕE : E1 → E2 is equivalent to a pair

(λ′, ϕB) of morphisms λ′ :M ′
2 →M ′

1 and ϕB : B1 → B2 with φ′1 ◦λ′ = ϕ′B ◦φ′2.
A morphism ϕE :E1 →E2 maps M1 to M2 if and only if for all m1 ∈M1 and

m′2 ∈M ′
2 holds 〈ϕE(m1),m

′
2〉 = pr(〈m1, λ

′(m′2)〉), where pr is the projection
PB1×φ′1(λ′(m′2))→ PB2×φ′2(m′2).

(b) Using the notations of Theorem 6.3.3 the dual map

ϕ′A :A′2 =E′2/M ′
2 −→A′1 =E′1/M ′

1

associated to ϕA : A1 → A2 is equivalent to a morphism ϕ′E : E′2 → E′1
with ϕ′E(M ′

2) ⊂ M ′
1, which is equivalent to a pair (λ,ψB ′) of morphisms

λ :M1 →M2 and ψB ′ : B ′2 → B ′1 with φ2 ◦ λ=ψ ′
B ′ ◦ φ1.

The map ψB ′ equals the dual map ϕ′B of ϕB and λ = ϕE |M1 if one regards
Mi as the lattice of Ei for i = 1,2. Thus φ2 ◦ ϕE |M1 = ϕB ◦ φ1.

(c) Let A1 = A and A2 = A′ be the dual of A. Identify M1 with M , M2 with M ′,
M ′

2 with M , and M ′
1 with M ′. Then we have:

The morphism ϕA : A→ A′ from A to its dual A′ is equivalent to a couple
(λ′ :M→M ′, ϕB : B→ B ′) satisfying φ′ ◦ λ′ = ϕ′B ◦ φ.

If ϕE : E→ E′ is the lifting of ϕA, then the dual morphism ϕ′A of ϕA is
equivalent to a couple (ϕE |M,ϕ′B) satisfying φ′ ◦ ϕE |M = ϕ′B ◦ φ.

The map ϕA is symmetric in the sense that ϕ′A = ϕA if and only if ϕE |M = λ′
and ϕB = ϕ′B . The condition ϕE |M = λ′ is equivalent to

〈

m1, λ(m2)
〉= ξ
(〈

m2, λ(m1)
〉)

for all m1,m2 ∈M.

Proof. (a) The restriction of ϕA to E1 yields a morphism ϕE : E1 → E2 due to
Proposition 5.4.6. The restriction of ϕE to the formal torus T 1 gives rise to a mor-
phism between T 1 and T 2 which is equivalent to a morphism λ′ between their char-
acter groups, so it extends to a morphism from T1 to T2 and hence ϕE extends to a
lifting ϕE :E1 →E2 of ϕA. In particular, ϕE maps M1 into M2. Conversely, every
morphism ϕE :E1 →E2 sending M1 to M2 gives rise to a morphism ϕA :A1 →A2

by taking quotients. Thus, we obtain the asserted bijection. Due to Proposition 6.1.9
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the map ϕE is equivalent to a pair of maps ϕB : B1 → B2 and λ′ :M ′
2 →M ′

1 with
φ′1 ◦ λ′ = ϕ′B ◦ φ′2. The last asserted condition follows from Proposition 6.1.9(b).

(b) Due to (a) the dual map ϕ′A is equivalent to a couple of morphisms (λ,ψB ′),
where λ :M1 →M2 is a homomorphism of the character groups of the E′i ’s, and
where ψB ′ : B ′2 → B ′1 is a morphism of the dual abelian varieties B ′i of Bi satisfying
φ2 ◦ λ=ψ ′

B ′ ◦ φ1.
Every translation invariant line bundle L on A corresponds to a triple (N, r,0) in

the manner of Theorem 6.3.2, then ϕ∗AL corresponds to the triple (ϕ∗BN,ϕE |∗M1
r,0).

Thus, we see ψB ′ = ϕ′B and λ= ϕE |M1 .
(c) Follows from (b) and Proposition 6.1.12. �

There is also an analog of Remark 2.7.9 concerning the morphism ϕL.

Proposition 6.4.2. Let A := E/M be a uniformized abeloid variety and L a line
bundle on A. According to Proposition 6.4.1 the morphism

ϕL :A−→A′, a �−→ τ ∗a L⊗L−1,

corresponds to a couple (λ′, ϕB). According to Theorem 6.3.2 the line bundle L

corresponds to a triple (N, r, λL). Then we have that ϕB = ϕN and λ′ = λL.

Proof. The M-linearization associated to (N,λL, r) is given by

cm : q∗N −→ τ ∗mq∗N, f �−→ f ⊗ r(m)⊗ r(0)−1 ⊗ eλL(m).

If z ∈E, then the M-linearization of τ ∗z (N,λL, r) has the form

τ ∗z cm : τ ∗z q∗N −→ τ ∗z τ ∗mq∗N, f �−→ f ⊗ r(m)⊗ r(0)−1 ⊗ τ ∗z eλL(m).

Since τ ∗z q∗N = q∗τ ∗q(z)N and τ ∗z eλL(m) = 〈z,λL(m)〉 · eλL(m), we see that

τ ∗z cm⊗ c−1
m : q∗(τ ∗q(z)N ⊗N−1)−→ τ ∗mq∗

(

τ ∗q(z)N ⊗N−1), f �−→ f ⊗ 〈z,λL(m)
〉

.

Thus, we obtain that ϕB = ϕN and λ′ = λL. �

Corollary 6.4.3. As in Proposition 6.4.1 consider two uniformized abeloid vari-
eties Ai = Ei/Mi for i = 1,2 and a homomorphism ϕA : A1 → A2 which corre-
sponds to a couple (λ′, ϕB). Let L2 be a line bundle on A2 which corresponds to
data (N2, r2, λ2) in the sense of Proposition 6.2.12. Then the pull-back ϕ∗AL corre-
sponds to a triple (N1, r1, λ1) which is given in the following way:

(i) N1 := ϕ∗BN2,
(ii) r1 := r2 ◦ ϕE |M1 :M1 −→ φ∗1N1, m1 �−→ r2(ϕE(m1)),

(iii) λ1 := λ′ ◦ λ2 ◦ ϕE |M1 :M1 →M ′
1.
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Proof. As already discussed in the proof of Proposition 6.4.1(b), the line bundle
ϕ∗AL2 is associated to the triple (ϕ∗BN2, ϕE |∗M1

r, λ1). In particular, one obtains that
N1 = ϕ∗BN2 and r1 := r2 ◦ϕE |M1 . So it remains to show λ1 = λ′ ◦λ2 ◦ϕE |M1 . Since
φ′2 ◦ λ2 = ϕN2 ◦ φ2, we obtain by Proposition 6.4.1 the commutative diagram

M1

ϕE |M1

φ1

M2

λ2

φ2

M ′
2

λ′

φ′2

M ′
1

φ′1

B1

ϕB

B2

ϕ′N2

B ′2
ϕ′B

B ′1.

To determine λ1 consider the composition ϕA′ ◦ ϕL2 ◦ ϕA, which is equal to ϕϕ∗A1
L2 .

This implies the equality λ1 = λ′ ◦ λ2 ◦ ϕE |M1 for the homomorphisms of their
character groups by Propositions 6.4.1 and 6.4.2. �

Theorem 6.4.4. Let A be a uniformized abeloid variety over a non-Archimedean
field K . Let L an rigidified invertible sheaf on A and let (N , r, λ) be the associated
data via Theorem 6.3.2. Then the following conditions are equivalent:

(a) L is ample in the sense of Definition 1.7.3.
(b.1) N is ample in the sense of Definition 1.7.3 and
(b.2) 〈·, λ(·)〉 is positive definite on M ×M .

If the conditions are satisfied, we have the following formula

dimH 0(A,L)= #
(

M ′/λ(M)
) · dimH 0(B,N ).

Proof. Consider the mapping

ϕL :A−→A′, x �−→ τ ∗xL⊗L−1.

Due to Proposition 6.4.1(c) the lifting ϕE : E→ E′ of ϕL corresponds to a couple
(λ′, ϕB). Then we have that ϕB = ϕN and λ′ = λ by Proposition 6.4.2.

By Lemma 7.1.9 an invertible sheaf I on A or B is ample if and only if I has a
non-trivial global section and ϕI is an isogeny. Thus, the equivalence of (a) and (b)
becomes a question about global sections of L and N on the one hand, about ϕL
and (λ,ϕN ) on the other hand. Obviously, ϕL is an isogeny if and only if (λ,ϕN )

is an isogeny; i.e., λ is injective and ϕN is an isogeny. The existence of a non-
trivial global section of L is equivalent to the positivity of the form 〈·, λ(·)〉 and the
existence of a non-trivial global section of N due to Corollary 6.2.20. Note that an
ample sheaf on an abelian variety has always a non zero section, because the Euler
characteristic of L given by χ(L) = dimΓ (A,L) which is positive; cf. [74, §16
and §17].

The formula for the dimensions follows from the proof of Remark 6.2.21. �
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Definition 6.4.5. Let E be a Raynaud extension and M ⊂ E a lattice of full rank
and character group M ′. A polarization of (E,M) consists of

(i) a group homomorphism λM :M→M ′,
(ii) a polarization ϕB : B→ B ′

such that the following conditions are satisfied:

(a) φ′ ◦ λM = ϕB ◦ φ,
(b) 〈m1, λM(m2)〉 = ξ(〈m2, λM(m1)) for all m1,m2 ∈M ,
(c) 〈·, λM(·)〉 is symmetric and positive definite on M ×M ,

where ξ is the flipping of the factors in the sense of Remark 6.1.10.

If ϕB is a polarization, then ϕB = ϕ′B is symmetric and the morphism ϕB⊗K K is
of the form ϕN for an ample invertible sheaf N on B⊗K K , where K is an algebraic
closure of K ; cf. [72, Chap. VI, §2, Def. 6.2].

Theorem 6.4.6. In the situation of Definition 6.4.5 let A= E/M be the quotient.
Then there is a one-to-one correspondence between the set of polarizations ϕA of A
and the set of polarizations (λM,ϕB) of (E,M).

The degrees are related by the formula degϕA = (degλM)2 · degϕB .

Proof. Let us start with a polarization ϕA : A→ A′. The morphism ϕA has a lift-
ing ϕE :E→E′ with ϕE(M)⊂M ′. Due to Proposition 6.4.1, the morphism ϕE is
equivalent to a couple (λM,ϕB) satisfying φ′ ◦λM = ϕB ◦φ. To verify the conditions
of Definition 6.4.5, we may assume that ϕA = ϕL is given by an ample invertible
sheaf L. Now L corresponds to a triple (N , r, λ) in the manner of Theorem 6.3.2.
By Proposition 6.4.2 the couple (λM,ϕB) equals the couple (λ,ϕN ). Thus, we see
by Theorem 6.4.4 that the invertible sheaf N is ample and hence ϕB is a polariza-
tion and that the condition (c) is fulfilled. Since ϕL is symmetric as explained in
Remark 6.1.10, the condition (b) follows from Proposition 6.1.12.

Conversely, a couple (λ,ϕB) with φ′ ◦ λM = ϕ′B ◦ φ induces a morphism
ϕE :E→E′. The symmetry condition (b) of Definition 6.4.5 implies ϕE(M)⊂M ′
by Proposition 6.1.12. Thus, ϕE induces a morphism ϕA :A→A′ on the quotients.
Now assume that ϕB = ϕN with an ample invertible sheaf N on B . Then the map
ϕA is induced by an invertible sheaf L on A if there is a trivialization r :M→ q∗N
which is compatible with λM in the sense of Theorem 6.3.2. One defines the map
r : M → q∗N by choosing r(mi) ∈ Nq(mi) for a basis m1, . . . ,mr of M and by
extending it as prescribed by the formula in Theorem 6.3.2. In fact, use the form
and the canonical isomorphism D2(N )= (idB ×ϕ∗N )PB×B ′ . Then, it follows from
Theorem 6.4.4 that the invertible sheaf associated to the data (N , r, λM) is ample,
and hence λA is a polarization.

The formula for the degrees follows from Theorem 6.4.4. Indeed, ϕA is given by
an invertible sheaf L on A corresponding to a triple (N , r, λM). Then ϕB is given by
ϕN and ϕA corresponds to (λM,ϕN ). Now we have that dimΓ (B,N )2 = degϕN
and dimΓ (A,L)2 = degϕA due to [74, Sect. 16]. Thus, the formula follows from
Theorem 6.4.4. �
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Proposition 6.4.7. In the situation of Theorem 6.4.6 we have the following:

(a) If ϕA = (λM,ϕB) is a polarization on A, then L := (idA,ϕA)∗PA×A′ is ample,
and hence A is the analytification of an abelian variety. The morphism ϕL is
associated to (2λM,ϕN ) with N := (idB,ϕB)∗PB×B ′ .

(b) If ϕA = ϕF in (a) with an ample sheaf F , then L=F ⊗ [−1]∗AF in (a).

Proof. (b) Since F is ample, A is an abelian variety by Proposition 7.1.10. Then the
assertion follows from [72, Chap. VI, §2, Prop. 6.10].

(a) This can be checked after base change to an algebraic closure of K , and then
it follows from (b), because ϕA is of the form ϕF . Moreover, the morphism ϕL
is associated to the couple (2λM,ϕN ), where N := (idB,ϕB)∗PB×B ′ by Proposi-
tion 6.4.2. �

Theorem 6.4.8. In the situation of Theorem 6.4.6, if A is an abelian variety, then
B is an abelian variety with good reduction and E is an algebraic torus extension
of B .

Proof. If A is an abelian variety, then there exists an ample invertible sheaf L on A.
By Theorem 6.3.2 the invertible sheaf L is associated to a triple (N , r, λ). By Theo-
rem 6.4.4 the invertible sheaf N is ample, and hence B is an abelian variety. Since E
is associated to an r-tuple of formal line bundles E1, . . . ,Er , the extension E→ B

is algebraic if and only if the line bundles E1, . . . ,Er are algebraic. The latter is true
due to the GAGA Theorem 1.6.11. �

Corollary 6.4.9. Let XK be a smooth projective curve with semi-stable reduction.
Then its Jacobian JK := Jac(XK) admits a Raynaud representation JK = ̂JK/M ,
where M ⊂ ̂JK is a lattice and ̂JK is an algebraic torus extension of an abelian
variety with good reduction.

In the next section we will discuss the canonical polarization of Jac(XK).

6.5 Polarization of Jacobians

In Sect. 2.8 we constructed the Jacobian TK/M of a Mumford curve by using
automorphy factors. This approach intrinsically creates a polarization of Defini-
tion 2.8.1; i.e., a morphism λ :M→M ′ from the lattice M of TK to the character
group M ′ of TK . The associated pairing 〈m1, λ(m2)〉 for m1,m2 ∈M is just the
evaluation of the characters at the points of the lattice. Therefore, this polarization
is called the canonical one in Definition 2.8.1.

Due to Corollary 2.9.16 of Riemann’s vanishing theorem the canonical polar-
ization coincides with the theta polarization. Since automorphy factors are closely
related to linearizations, a similar approach for the Jacobian JK of a curve XK with
not necessarily split reduction ˜X should work as well.
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For simplicity we assume in the following that the base field K is algebraically
closed and that XK is a connected smooth projective curve with a semi-stable re-
duction ˜X, whose irreducible components are smooth. To start with we reassemble
our results on the Jacobian JK of XK in order to point out the features used in the
following.

In Proposition 5.2.3 there is an explicit presentation of ˜J := Jac˜X as a torus
extension

1→ ˜T → ˜J → ˜B→ 1 =̂ ˜φ′ :H1(˜X,Z)→ ˜B ′, (˜†)

where H1(˜X,Z) :=H1(Γ (˜X),Z) is the first homology group of the graph Γ (˜X) of
coincidence of the irreducible components of ˜X. Here ˜B = Jac˜X′ is the Jacobian of
the normalization ˜X′ → ˜X of ˜X and ˜B ′ is the dual of ˜B . In particular, H1(˜X,Z) is
regarded as the character group of ˜J .

Let p̃X : ̂˜X→ ˜X be the universal covering of ˜X, which resolves the circuits in
the configuration of the irreducible components of ˜X and let Γ := Deck(̂˜X/˜X) be
its deck transformation group. Moreover, we fix a smooth point̂x̃0 ∈ ̂˜X with image
x̃0 ∈ ˜X0. Then there is a canonical morphism Γ →H1(˜X,Z) given by

Γ −→H1(˜X,Z), γ �−→ cγ :=̂x̃0, γ (̂x̃0),

where cγ is the image of the path from ̂x̃0 to γ (̂x̃0). The map is surjective and
represents H1(˜X,Z) as the maximal abelian quotient of Γ . We denote the residue
class map by

h̃′ :H := Γab := Γ/[Γ,Γ ] ˜−→H1(˜X,Z), γ �−→ cγ ,

and hence we obtain the geometric interpretation of ˜φ′

˜φ′ :H1(˜X,Z)−→ ˜B ′, c �−→−ϕ
˜Θ(c),

where ϕ
˜Θ : ˜B→ ˜B ′ is the theta polarization on ˜B; cf. Proposition 5.2.3. Later on

we will see that ϕ
˜Θ is the reduction of the theta polarization ϕΘ on JK . In this way

H1(˜X,Z) is viewed as the character group ˜M ′ of ˜T .
In Sect. 5.3 we defined an admissible open subgroup JK of JK := JacXK which

admits a smooth formal R-model J with reduction ˜J . The formal scheme J is a
formal torus extension

1→ T → J → B→ 1 =̂ φ′ :M ′ → B ′, (†)

where M ′ = Hom(T ,Gm,R) is the character group of the formal torus T and B ′
is dual of the formal abelian R-scheme B . Due to Corollary 5.5.6 the canonical
morphism M ′ → ˜M ′ is bijective; i.e., every character ˜J → P

˜B×˜φ′(m′) uniquely lifts

to a character J → PB×φ′(m′). The extension (†) is a lifting of the extension (˜†).
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Thus, the diagram

M ′ :=Hom(T ,Gm,K)
φ′

B ′

˜M ′ :=Hom(˜T ,Gm,k)

˜φ′
˜B ′

is commutative. In particular, we obtain an isomorphism

h′ :H :=H1(˜X,Z) ˜−→M ′ :=Hom(T ,Gm,K).

Lemma 6.5.1. The isomorphism h̃′ :H −→ ˜M ′ factorizes through

h′ :H :=H1(˜X,Z) ˜−→M ′ :=Hom(T ,Gm,K).

In particular, the reduction of φ′(h′(γ )) coincides with −ϕ
˜Θ([cγ ]); cf. Proposi-

tion 5.2.3.

The TK -extension

1→ TK → ̂JK → BK → 1 =̂ φ′ :M ′ → B ′K, (†)

of BK fits into a commutative diagram

T K TK

JK ̂JK.

Thus, the group of characters can be identified in the following way

M ′ :=Hom(T K,Gm,K)=HomB(JK,PB×B ′)=HomB(̂JK,PB×B ′),

where PB×B ′ is the Poincarè bundle on B ×B ′. The second and third identification
are defined by the push-forward; cf. Sect. A.2.

For the set of K-valued points of ̂JK there is a canonical identification

̂JK ˜−→HomB ′
(

M ′,PB×B ′
)

, t �−→ [m′ �−→m′(t) ∈ PB×φ′(m′)
]

,

where M ′ is regarded as a B ′-space via φ′; cf. Notation 6.1.7.
In Definition 4.6.4 we introduced the universal covering pX : ̂XK → XK . The

reduction of ̂XK is given by ̂˜X and its deck transformation group is canonically
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identified with Γ . Thus, we have the commutative diagram

̂XK

ρ̂

pX

̂
˜X

p̃X

XK

ρ
˜X

and Γ acts on it equivariantly. Furthermore, we fix a point x̂0 ∈ ̂X with ρ̂(̂x0)=̂x̃0
and set x0 = pX(̂x0). Due to Corollary 6.3.4 there is a canonical commutative dia-
gram

̂XK

pX

ι̂
̂JK

pJ

x̂ ι̂(̂x)

XK

ι

JK pX(̂x) [pX(̂x)− x0]

depending on the base points. The map pJ : ̂JK → JK is surjective and its kernel is
a lattice; cf. Theorem 5.5.11.

Lemma 6.5.2. In the above situation we have for every γ ∈ Γ :

(i) ι̂(γ (z)) · ι̂(z)−1 = ι̂(γ (z0)) · ι̂(z0)
−1 for all z, z0 ∈ ̂XK .

(ii) ι̂(γ (z))= ι̂(z) ·mγ with mγ := ι̂(γ (̂x0)) for all z ∈ ̂XK .
(iii) The map h :H → ̂JK,γ �−→mγ := ι̂(γ (̂x0)), is a homomorphism.

Proof. (i) The images of both sides of the equation under pJ are the unit element
of JK . Since the fibers of pJ : ̂JK → JK are discrete and ̂XK is connected, the
assertion is clear.

(ii) Consider the image under pJ . Then it follows from (i)

pJ ◦ ι̂ ◦ γ (z) =
[

pX
(

γ (z)
)− pX(̂x0)

]

= [pX
(

γ (z)
)− pX(z)

] · [pX(z)− pX(̂x0)
]

= [pX
(

γ (̂x0)
)− pX(̂x0)

] · [pX(z)− pX(̂x0)
]

= pJ
(

ι̂
(

γ (̂x0)
)) · pJ
(

ι̂(z)
)

.

Thus, we obtain ι̂(γ (z))= ι̂(z) · ι̂(γ (̂x0)) ·m for some m ∈KerpJ . Since the fibers
of pJ : ̂JK → JK are discrete and ̂XK is connected, the last equation is valid for all
z ∈ ̂XK and hence m is independent of z. Inserting z= x̂0 shows that m= ι̂(̂x0)= 0,
and hence ι̂(γ (z))= ι̂(z) ·mγ .

(iii) This follows from (ii), because

mαβ = ι̂
(

αβ(̂x0)
)= ι̂
(

β(̂x0)
) ·mα =mβ ·mα.
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Since ̂JK is commutative, the map Γ → ̂JK factorizes through its maximal abelian
quotient. Thus, it induces a homomorphism from H to ̂JK . �

Lemma 6.5.2(ii) yields the following commutative diagram

̂XK

ι̂

γ

pX

̂XK

pX

ι̂ XK

ι̂JK

mγ

pJ

̂JK
pJ

JK

(∗)

for every deck transformation γ ∈ Γ , where the lower horizontal map mγ is the
multiplication by mγ . Thus, we obtain the group homomorphisms

Γ H1(˜X,Z)
h

̂JK

q

BK

γ γ mγ := ι̂(γ (̂x0)) q(mγ ).

The map h is injective. Indeed, otherwise the rank of h(H) is less than the dimension
of the torus part TK of ̂JK and hence the variety ̂JK/h(H) is not proper. So the
Abel-Jacobi map (̂X/Γ )(g) → ̂JK/h(H)→ JK could not be surjective, because
(̂X/Γ )(g) =X(g) is proper.

Lemma 6.5.3. In the above situation we have an isomorphism

h :H ˜−→M :=KerpJ ⊂ ̂JK.

Proof. The map h maps H into KerpJ , since for every γ ∈ Γ the point

pJ
(

ι̂
(

γ (̂x0)
))= [pX

(

γ (̂x0)
)]− pX(̂x0)= [x0 − x0]

is the unit element of JK . Since h is injective, the rank of h(M) is equal to the rank
of H . As the rank of H is equal to the torus part of ̂JK , it is equal to the rank of M .
Thus, the index of h(H) in M is finite, and hence h(H) is a lattice of full rank in ̂JK .
Furthermore, we obtain a surjective morphism

ϕ : ̂JK/h(H)−→ ̂JK/kerpJ
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of connected proper rigid analytic groups. By reason of dimensions the map ϕ is
finite. Moreover, ϕ is étale. Thus, the fibers of ϕ consists of finitely many reduced
points. There is a commutative diagram departing from the symmetric product

̂X(g)
pX

X(g)

ψ

̂JK/h(H)
ϕ

̂JK/M.

The fibers of ψ are connected, as they are projective spaces; cf. [68, 3.14]. There-
fore, the fibers of ϕ are connected. So ϕ is an isomorphism. �

By Proposition 6.1.8 the lattice M ⊂ ̂JK gives rise to a bilinear form

〈_,_〉 :M ×M ′ −→ PB×B ′ ,
(

m,m′
) �−→ 〈m,m′〉.

Due to Theorem 6.3.3 the dual J ′K of JK is the quotient ̂J ′K/M ′ of the affine torus
extension

T ′K → ̂J ′K → B ′K =̂ φ′ :M→ B = B ′′K
by the lattice M ′, where M ′ is canonically embedded into ̂J ′K via the map

M ′ −→ ̂J ′K,m′ �−→
[

m′ :M→ PB×B ′
m �−→ 〈m,m′〉

]

.

The character mγ of T ′K induced by ι̂(γ (̂x0)) sends t ′ ∈ T ′K to the multiplier of the
M-linearization of A1

̂JK
over the action of mγ on ̂JK .

Next, let us recall the theta polarization of JK . Associated to the morphism
ι :XK −→ JK,x �−→ [x − x0], for every n ∈N we have the morphism

ι(n) :X(n) −→ JK, x1 + · · · + xn �−→ [x1 − x0] ⊗ · · · ⊗ [xn − x0].

Let g ≥ 1 be the genus of XK . Then ι(g) is birational and the image Θ of ι(g−1) is
an effective divisor on JK . We call Θ the theta divisor.

The divisor Θ ⊂ JK gives rise to the morphism

ϕΘ : JK −→ J ′K, a �−→
[

τ ∗aOJK (Θ)⊗OJK (−Θ)
]

.

Due to Theorem 5.1.6(e) the map −ϕΘ is the inverse of the autoduality map

ϕ′ : J ′K −→ JK, a
′ �−→ [ι∗PJ×a′

]

.
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These maps give rise to a commutative diagram of isomorphisms

H 1(J ′K,Z)
∼

H 1(JK,Z)
∼

H 1(X,Z)

Hom(Gm,K,J
′′
K) Hom(Gm,K,JK)

In the upper row the morphisms are defined via the pull-backs by ϕ∗−Θ and ι∗, where
the first is bijective. The identification in the lower row is due to the identification of
JK and its bi-dual. The vertical identifications are induced by the universal proper-
ties of J ′′K and JK , because every cocycle n inH 1(J ′K,Z) and inH 1(X,Z) gives rise
to line bundle on J ′K ×Gm,K and on XK ×Gm,K , respectively; cf. Corollary 5.5.6.

The map ϕΘ admits a lifting

ϕ̂Θ : ̂JK −→ ̂J ′K
of their uniformizations. By Proposition 6.1.9 the map ϕ̂Θ is equivalent to a couple
(λΘ,ϕB), where

λΘ :M =X
(

̂J ′K
)−→M ′ =X(̂JK)

is a homomorphism of their character groups and ϕB : B→ B ′ is a morphism from
B to its dual B ′ such that the diagram

M
λΘ

φ

M ′

φ′

B = B ′′
ϕ′B=ϕB

B ′

is commutative. Viewing M as the lattice of ̂JK and M ′ as the lattice of J ′K , one
knows ϕ̂Θ |M = λΘ by Proposition 6.4.1(c). Due to Corollary 6.1.11 the image
ϕ̂Θ(m1) of m1 ∈M is given by the point

〈

m, ϕ̂Θ(m1)
〉= ξ
(〈

m1, λΘ(m)
〉)

for m ∈M
where ξ is the symmetry on the pull-back (idB ×ϕB)∗PB×B ′ over B × B; i.e., the
canonical morphism ξ : Pb1×ϕB(b2) ˜−→Pb2×ϕB(b1) for all points b1, b2 ∈ B . Espe-
cially, we obtain the following formula.

Remark 6.5.4. In the above situation we have the following formula
〈

m1, λΘ(m2)
〉= ξ
(〈

m2, λΘ(m1)
〉)

for all m1,m2 ∈M.

Let us summarize the results which we obtained so far; cf. Corollary 6.4.9.
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Theorem 6.5.5. In the above situation we have the following results:

(o) The cycle group H1(˜X,Z) admits two canonical isomorphism; on the one hand
h :H ˜−→M ⊂ ̂JK to the lattice of ̂JK and on the other hand h′ :H ˜−→M ′ =
HomB(̂JK,PB×B ′) to the character group of ̂JK .

In particular, M ′ can also be regarded as the lattice of ̂J ′K .

(i) The quotient ̂JK/M = JK is the Raynaud representation of JK .
(ii) The quotient ̂J ′K/M ′ is the Raynaud representation of the dual J ′K .

(iii) The abelian part B is an abelian R-scheme and the torus extension ̂JK is the
analytification of an affine torus extension of B ⊗R K .

One can also write down the universal sheaf on XK × JK , but this requires more
information on the Poincaré bundle on JK×J ′K and on the auto-duality of Jacobians
as well.

Remark 6.5.6. In the situation of Theorem 6.5.5 every closed point of ̂JK repre-
sents an isomorphism class of a pair (LK, c), where LK is a line bundle on ̂XK ,
which admits a formal extension on the formal model ̂X of ̂XK with degree 0 on
each irreducible component of the reduction of ̂X and where c is a Γ -linearization
on LK .

Such a pair (LK, c) induces the trivial line bundle on XK if and only if there
exists an γ ∈ H such that LK ∼= ι̂∗q∗PBK×q ′◦λΘ(h(γ )) and c is the canonical
Γ -linearization of its trivialization by ελΘ(h(γ )) := ι̂∗eλΘ(h(γ )); i.e., the equality
c(α)= 〈h(α),λΘ(h(γ ))〉 for α ∈ Γ .

Proof. Due to Corollary 5.1.7(c) every line bundle LK of degree zero on XK is
a pull-back ι∗PJK×a′ for a unique point a′ ∈ J ′K . Moreover, PJK×a′ is induced by
an M-linearization (r, λ) on q∗PB×b′ for a unique b′ := q ′(a′) ∈ B ′ due to The-
orem 6.3.2. Since PJK×a′ is translation invariant, we have that λ = 0, and hence
r :M→ PBK×b′ is a group homomorphism. Therefore, the pull-back ι̂∗q∗PBK×b′ is
a formal line bundle on ̂XK and its reduction has degree zero on every irreducible
component of ̂˜X. The Γ -linearization c is induced by the M-linearization r via the
residue map and h : H →M ; note that the absolute value |r(m)| can be different
from 1.

The Γ -linearization induces the trivial line bundle on XK if and only if b′ lies in
φ′(M ′) and c is given by some m′ ∈M ′. Then one can write m′ = λΘ(h(γ )) for a
unique γ ∈H . �

In the following we will compute the absolute value |〈h(α),h′(β)〉| of the pairing
in terms of data of the semi-stable reduction of the curve XK . Therefore we fix the
situation for the following.

Notation 6.5.7. Let XK be a connected smooth projective curve of genus g ≥ 1.
Let ρ : XK → ˜X be a semi-stable reduction such that its irreducible components
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are smooth. Let ˜X′ → ˜X be the normalization of ˜X and z̃1, . . . , z̃N the double
points of ˜X. Let r be the rank of the torus part of ˜J and assume that the first points
z̃1, . . . , z̃r are chosen in such a way that ˜X−{z̃1, . . . , z̃r} is a tree-like configuration
of irreducible components. Every cycle c ∈H1(˜X,Z) can be written in the form

c=m1z̃1 + · · · +mNz̃N

with integers m1, . . . ,mN ∈ Z as in Proposition 5.2.3. Let Zi := ρ−1(z̃i ) be the
open annulus above z̃i for i = 1, . . . ,N . Fix an orientation on the graph Γ (˜X) of
coincidence of the irreducible components of ˜X; cf. Definition 5.2.2. Let z̃′ ∈ ˜Xμ be
the point on the source and z̃′′ ∈ ˜Xν be the point on the target of the edge associated
to the double point z̃ of ˜X. Let ζi : Zi →Gm,K be a coordinate function respecting
the orientation; i.e., its absolute value function |ζi | increases by moving through Zi
from z̃′i to z̃′′i . Let ε(z̃i) be the height of the annulus Zi for i = 1, . . . ,N .

Lemma 6.5.8. The morphism ϕΘ |JK : JK → J
′
K induces a morphism ϕ̃Θ : ˜J → ˜J ′

of their reductions, and hence a morphism ϕ̃B : ˜B→ ˜B ′ of their abelian parts af-
ter dividing out the tori. Moreover, ϕ̃B is the canonical morphism ϕ

˜Θ : ˜B → ˜B ′
associated to the theta divisor ˜Θ of ˜B; cf. Proposition 5.2.3.

Proof. Go back to the construction of JK in Sect. 5.3. In the following we adapt
the notation of Lemma 5.3.1. There are introduced subdomainsAρ ⊂ Zρ ⊂XK with
base points a0

ρ for ρ = 1, . . . , r which are isomorphic to annuli of height 1. There are

subdomainsWj ⊂X
(gj )

K with base pointsw0
j :=w0

j,1+· · ·+w0
j,gi

, wherew0
j,i ∈XK

for j = 1, . . . , s and i = 1, . . . , gj , where gj is the genus of the component ˜Xj .
Then putA :=A1×· · ·×Ar andW :=W1×· · ·×Ws . These have smooth formal

R-models, which we denoted by the same symbols. Then the product (A×W)K is
embedded into JK under the Abel-Jacobi map defined with respect to the chosen
base points. The group JK was constructed by gluing translates of (A×W)K .

Next we consider the translate of the theta divisor Θ := ι(g−1)(X
(g−1)
K )

Θa,w := τκ(Θ) with κ :=
r
⊗

ρ=1

[

a0
ρ − x0
]⊗

s
⊗

j=1

gj
⊗

i=1

[

w0
j,i − x0

]

.

Then Θa,w ∩ (A×W)K is the set of all points (a,w) ∈ (A×W)K ⊂ JK which can
be represented in the form

(

r
⊗

ρ=1

[

aρ − a0
ρ

]⊗
s
⊗

j=1

gj
⊗

i=1

[

wj,i −w0
j,i

]

)∨
,

where in the tensor product one term [. . .] collapses to 1. The intersection
Θa,w ∩ (A×W)K is a Cartier divisor of (A × W)K . Since (A × W)K admits a
smooth formal R-model A×W , the divisor Θa,w ∩ (A×W)K extends to a relative
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Cartier divisor on the R-model A×W in the evident way. Moreover, Θa,w ∩ JK is
a Cartier divisor on JK and extends to a relative Cartier divisor Θa,w on J due to
Lemma 6.2.4. Since A×W is immersed into J as an formal open subvariety of J ,
the divisor Θa,w ∩ (A×W) coincides with the constructed one on A×W .

Thus, we have a well-defined reduction ˜Θa,w ⊂ ˜J , which splits into a sum

˜Θa,w = ˜E1 + · · · + ˜Er + ˜DW,

where ˜E� is the divisor induced by ˜W ×∏ρ 
=� ˜Aρ × {a0
�} and ˜DW is the part in-

duced by the symmetric products on the components of genus gj ≥ 1. The invertible
sheaves O

˜J (
˜Eρ) are pull-backs from line bundles P

˜B×[c̃′ρ ] on ˜B which define the
torus extension

1→ ˜T → ˜J → ˜B→ 1 =̂ H1(˜X,Z)→ ˜B ′, c̃ρ �→
[

c̃′ρ
] := −ϕ

˜Θ

([c̃ρ]
)

,

where c̃1, . . . , c̃r is the canonical basis of H1(˜X,Z) associated to the double points
z̃1, . . . , z̃r ; cf. Notation 6.5.7. The line bundle [c̃ρ] on ˜X is induced by the simple
cycle passing through z̃ρ for ρ = 1, . . . , r in the sense of Proposition 5.2.3.

The map ϕΘ is equal to the map ϕΘa,w , since Θ and Θa,w differ by a translation.
The map ϕΘ : JK → J ′K induces commutative diagrams

J
ϕΘ

q

J
′

q ′

B
ϕB

B ′

and ˜J
ϕ̃Θ

q̃

˜J ′

q̃ ′

˜B
ϕ̃B
˜B ′.

More precisely, the morphism ϕΘ is associated to the couple (λΘ,ϕB), where
λΘ :M →M ′ is a group homomorphism satisfying φ′ ◦ λΘ = ϕ′B ◦ φ, and ϕ̃Θ is
associated to (λΘ, ϕ̃B). Due to Proposition 6.4.2 we have ϕB = ϕN for an invertible
sheaf N on B such that q∗N =OJ (Θa,w).

For the reduction one obtains that ϕ̃Θ is associated to the couple (λΘ,ϕ ˜N ). More-
over, the pull-back q̃∗ ˜N is isomorphic to O

˜J (
˜Θa,w). The invertible sheaf O

˜J (
˜Eρ)

is the pull-back of the invertible sheaf P
˜B×[c̃′ρ ], which is translation invariant. Thus,

we see that ϕ
˜B is associated to the invertible sheaf O

˜B(
˜DW). The latter coincides

with the theta divisor ˜Θ of ˜B . �

Lemma 6.5.9. Keep the notations of Notation 6.5.7. If γ ∈ Γ = Deck(̂X/X) is a
deck transformation of ̂X→X, then denote by cγ in H1(˜X,Z) the homology class
of the associated cycle

̂x̃0, γ (̂x̃0)=m1z̃1 + · · · +mNz̃N

with integers mi ∈ Z which is image of the path from̂x̃0 to γ (̂x̃0). Let Zi := ρ−1(z̃i )

be the annulus of height ε(z̃i) above z̃i viewed as a subset of ̂XK . Consider the
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morphism

fγ := h′(γ ) ◦ ι̂ : ̂X −→ ̂JK −→ PB×φ′(h′(γ )).

Then we have the following results:

(a) fγ |Zi = h′(γ )((ϕi ◦ ζi) · ui · fi), where ϕi :Gm,K → ̂JK is a group homomor-
phism, ζi : Zi → Gm,K is a coordinate function, ui maps to the formal fiber
J+(e) at the unit element and fi ∈ ̂JK is a K-valued point.

(b) The slope of |fγ | along the path from x̂0 to γ (̂x0) is non-constant only when
passing the annuli above double points of the reduction of ̂X which belong to
the path from x̂0 to γ (̂x0).

Over such a double point x̃ the slope of |fγ | is log-linear of order ±1 and its
total amount over such a point is ε(z̃i)±1.

The slope of |fγ | along the path from x̂0 to γ (̂x0) it is strictly increasing or
strictly decreasing.

The numbers mi indicate how often (respecting the orientation) the path passes
a double point x̃ above a given double point z̃i of ˜X.

Proof. We may assumed that cγ is a simple path; i.e., mi ∈ {0,±1}, without back-
trackings and meets only one of the points (z̃1, . . . , z̃r ). Put c′γ := −ϕ˜Θ([cγ ]).

(a) By Proposition 5.4.8 the map ι̂|Zi can be represented in the form
(ϕi ◦ ζi) · ui · fi . The map ui maps to J+(e), because its reduction is a map from a
rational variety to an abelian variety and the torus part is captured by ϕi ◦ ζi .

(b) We view fγ as a section of the Gm,K -torsor ι̂∗q∗PB×φ′(h′(γ )). Since
PB×φ′(h′(γ )) is a translation invariant formal line bundle, the pull-back of its re-
duction to every irreducible component of ˜X has degree 0. Therefore, every section
of the reduction has as many zeros as poles on every irreducible component of ˜X.
Since fγ has neither poles nor zeros, after adjusting the norm of fγ on the irre-
ducible component, the reduction f̃γ of fγ can have zeros or poles only at the
points z̃′i or z̃′′i . Thus, if f̃γ has a zero on a component, then it is the only one and of
order 1.

Indeed, we may subdivide Zi by a concentric annulus Zi of height 1. The reduc-
tion of fγ |Zi

behaves like the pull-back of the tautological section of q̃∗P
˜B×c′γ by

Proposition 5.2.3. Since cγ is a simple circuit which passes through exactly one z̃ρ
of the double points z̃1, . . . , z̃r , we obtain that for Zi = Zρ the morphism Zρ ↪→ JK
is a closed immersion. Since the reduction ˜Zρ is rational, the induced map to ˜B is
constant to a point b̃. Therefore, the reduction of the restriction fγ onto Zρ behaves
like the tautological section ˜Zρ → P

b̃×c′ρ ; cf. Proposition 5.2.3. This implies that

f̃γ has a simple pole at z̃′ρ and a simple zero at z̃′′ρ and no other zeros or poles. For

ρ′ 
= ρ the reduction of the restriction fγ onto Zρ′ is constant. Since a zero of a
section of line bundle of degree zero on a component ˜Xi implies also a pole on ˜Xi ,
we see that the slope of |fγ | behaves as asserted. The absolute value of the total
amount follows from Corollary 4.3.3. The indeterminacy in the sign is due to the
freedom of choosing the orientation of the graph. Along the path from x̂0 to γ (̂x0) it
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is strictly increasing or strictly decreasing, because the path follows the consecutive
sequence of zeros and poles. �

Corollary 6.5.10. Keep the notations of Notation 6.5.7. For α,β ∈ Γ consider the
associated cycles

cα =m1z̃1 + · · · +mNz̃N , cβ = n1z̃1 + · · · + nN z̃N .

Then the absolute value of the pairing 〈h(α),h′(β)〉 is given by

∣

∣

〈

h(α),h′(β)
〉∣

∣=
N
∏

i=1

ε(z̃i )
mi ·ni .

In particular, the pairing |〈m1, λ(m2)〉| form1,m2 ∈M with λ := h′ ◦h−1 is positive
definite.

Proof. The absolute value |〈h(α),h′(β)〉| is exactly the total amount of the slope of
fβ along the path x̂0, α(̂x0). Note that h(α)= ι̂(α(̂x0)); cf. Lemma 6.5.2. Thus, the
assertion follows from Lemma 6.5.9. �

Next we want to compare λ and λΘ . Let c1, . . . , cr ∈ H be the simple cycles
and γ1, . . . , γr ∈ Γ such that the path x̂0, γρ (̂x0) induces cρ for ρ = 1, . . . , r . Then
cρ gives rise to a character m′ρ on TK and ι̂ ◦ γρ(̂x0) to a character mρ of T ′K .
Then (m1, . . . ,mr) and (m′1, . . . ,m′r ) are basis of M and M ′, respectively. The map
ϕ̂Θ : TK → T ′K corresponds to λΘ :M →M ′. Then we have that λΘ(mρ) = m′ρ .
Indeed, consider the autoduality map ϕ̂′ : ̂J ′K → ̂JK . This map sends the line bun-
dle (A1

̂JK
, t ′) with M-action t ′ ∈ T ′K to a line bundle (A1

̂XK
, t) with Γ -action. The

Γ -action is given by (t1, . . . , tr ) with respect to the basis (m′1, . . . ,m′r ) of M ′ and
tρ :=mρ(t

′)−1. The inverse appears here, because of the relation between line bun-
dles and invertible sheaves. So we obtain λ= λΘ by Theorem 5.1.6(e).

Theorem 6.5.11. In the situation of Notation 6.5.7 let XK be a connected smooth
projective curve with semi-stable reduction ˜X and assume that the irreducible com-
ponents ˜X1, . . . ,˜Xn of ˜X are smooth. Let Θ be the theta divisor of JK := Jac(XK);
i.e., the image of X(g−1)

K in JK under ι(g−1) with respect to some K-rational
point x0 ∈XK . The line bundle L := Hom(OJK (Θ),OJK ) is associated to a triple
(N, r, λΘ) in the sense of Theorem 6.3.2. Then we have the following results:

(i) ϕΘ := ϕL : JK → J ′K is equivalent to (λΘ,ϕB)= (λΘ,ϕN).
(ii) ϕN : B→ B ′ reduces to the theta polarization of ˜B =∏n

i=1 Jac(˜Xi).
(iii) λΘ = λ where λ= h′ ◦ h−1.

The morphism ϕΘ : JK → J ′K is a polarization of abelian varieties and (λΘ,ϕB) is
a polarization in the sense of Definition 6.4.5.
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Proof of Theorem 6.5.11. The assertion (i) follows from Propositions 6.1.9
and 6.4.2. The assertion (ii) follows from Lemma 6.5.8 and (iii) was explained
above. �

The summary of this section is that the following diagram is commutative

M

φ

ϕ̂Θ |M=λΘ=λ
M ′

φ′̂JK

q

ϕ̂Θ
̂J ′K

q ′

B
ϕB=ϕN

B ′

˜B
ϕ
˜Θ

˜B ′

6.6 Parameterizing Degenerating Abelian Varieties

Let us return to the subject announced in the preface concerning the uniformization
and construction of abelian varieties over a non-Archimedean field K . First, we
summarize the main results of this chapter.

In Theorem 6.4.8 we saw that an abelian variety A over K having semi-abelian
reduction can be uniformized in the sense that A is a quotient of a semi-abelian
R-group scheme E by a lattice M of periods. Thus, combining this with the re-
sults of Theorem 6.4.6 and Proposition 6.4.1, we obtain an equivalence between the
categories (ppAbVar) and (ppDegData).

Here (ppAbVar) is the category whose objects are principally polarized abelian
varieties (A,ϕA) over a non-Archimedean field K having semi-abelian reduction
over the valuation ring R of K and whose morphisms are morphisms of abelian
varieties respecting the polarizations.

Here (ppDegData) is the category of principally polarized degeneration data
whose objects are pairs ((E,M), (ϕB,λM)), where E is a semi-abelian R-group
scheme with abelian generic fiber and where M is a lattice in the generic fiber
Eη =E ⊗R K . The pair (ϕB,λM) is a principal polarization in the sense of Defini-
tion 6.4.5. The morphisms are the morphism of R-group schemes respecting lattices
and polarization.

The compatibility of this equivalence with the construction of their duals is
shown in Theorem 6.3.3. We recapitulate the results by the following theorem.
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Theorem 6.6.1. The Raynaud uniformization constitutes a functor

RC : (ppAbVar)−→ (ppDegData), (A,ϕA) �−→
(

(E,M), (ϕB,λM)
)

,

which is an equivalence of categories. The inverse functor

MC : (ppDegData)−→ (ppAbVar),
(

(E,M), (ϕB,λM)
) �−→ (E/M,ϕE/M),

is usually called Mumford construction. By passing to duals, one obtains

(ppAbVar)

RC

(ppAbVar)

RC

(ppDegData) (ppDegData)

(A,ϕA) (A′, ϕ′A)

((E,M), (ϕB,λM)) ((E′,M ′), (ϕ′B,ϕE |M))

Anticipating the main result of Corollary 7.6.2 of the next chapter, the last theo-
rem is also true without polarization data. Hereby, one has to replace (ppAbVar) by
the category of abeloid varieties defined over algebraically closed non-Archimedean
field K and whose morphisms are the morphism of abeloid varieties. The category
(ppDegData) is replaced by the category of pairs (E,M), where E is a Raynaud
extension of a formal abelian R-scheme B and a lattice M ⊂ E of periods. The
morphism are morphisms of rigid analytic group varieties respecting lattices.

Finally let us briefly discuss the approach of Chai and Faltings to the uniformiza-
tion and construction of principally polarized abelian varieties as contained in [27,
Chaps. 2 and 3] and relate it to the method presented in this book. They work more
generally over a normal Noetherian ring R which is complete with respect to an
ideal a, whereas the rigid analytic methods allow only to work over a valuation
ring or an admissible formal scheme over a valuation ring. Using the notions of this
book, the program of [27, Chaps. 2 and 3] is to establish a correspondence

{

classes of [A,ϕA]
} ⇐⇒ {

classes of
[

(E,M), (λM,ϕB)
]}

.

On the left-hand side, A is a semi-abelian scheme over R of relative dimension g

with abelian fiber Aη and ϕA is a principal polarization of Aη. The special fiber
As :=A⊗R R/a is an extension of an abelian R/a-scheme Bs of dimension g − r

by a split torus Ts of rank r .
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On the right-hand side, E is an extension of an abelian R-scheme B over R of
relative dimension g − r by a split torus of constant rank r and M is a constant R-
group scheme ZrR such that its generic fiber Mη is a lattice in Eη. The pair (λM,ϕB)
is a principal polarization of (E,M) which corresponds to our Definition 6.4.5,
where principal means that λM and ϕB are isomorphisms. The positivity can be
rephrased by asking 〈m,λM(m)〉 ∈ aPB×B ′ for all m ∈M − {0}.

Using the above correspondence, it is plausible how to construct formal charts
of a toroidal compactification of the moduli stack of principally polarized abelian
varieties. Indeed, the data on the right-hand side can be parameterized by a family
of data varying over the moduli stack of principally polarized abelian varieties of
dimension g − r ; cf. [27, Chap. 4.3]. Thus, these data variety are parameterized by

M symmetric lattice in E =̂ r(r + 1)/2 points in q∗(idB,ϕB)∗PB×B
E universal Gr

m-extension of B =̂ r points in the dual of B

B universal abelian scheme over =̂ relative dimension (g − r) over

Ag−r mod. space of p.p. ab. var. =̂ dimension (g − r)(g − r + 1)/2 over Z

where q : E→ B is the canonical morphism, ϕB : B→ B ′ is the polarization and
PB×B ′ is the Poincaré bundle. Of course, in the first row we mean points in an open
cone in q∗(idB,ϕB)∗PB×B . The dimension count

(g − r)(g − r + 1)

2
+ r(g − r)+ r(r + 1)

2
= g(g + 1)

2

shows that the parameter space has the right dimension. In the absence of a polar-
ization, as discussed above for a valuation ring R, one has to ignore the polarization
and, in particular, the symmetry of the periods. Therefore, the universal lattices are
parameterized by r points in an open subset of E. Moreover, the universal abeloid
varieties with good reduction depends on (g − r)2 modules. Thus, the dimension
count yields

(g − r)2 + r(g − r)+ rg = g2.

Let us start with the description of how Chai and Faltings proceed with the map
from the left to the right. As usual denote by M ′ the character group of Ts . Due to
the lifting of tori, one associates to A the Raynaud extension on the formal level

0→ T →A→ B→ 0, (†)

where A is the formal completion of A with respect to the special fiber and where
B is a formal abelian R-scheme defined by the quotient of A by T . Let Lη be an
ample symmetric line bundle on Aη.

By a result of Raynaud [81, Théorème XI, 1.13] Lη extends to a line bundle
L on A, which is relatively ample over S := SpfR. Using the descent of cubical
sheaves, the pull-back L of L to A descends to a relatively ample line bundle on B .
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This shows that B is an abelian R-group scheme. Thus, one gets in fact an algebraic
Raynaud extension over R

0→ T →E→ B −→ 0 =̂ φ′ :M ′ → B ′, (†)

whose formal completion along the special fiber is the given (†), where M ′ is the
character group of T and where φ′ is a homomorphism from M ′ to the dual B ′ of B .

In our case the corresponding Raynaud extension is the analytification of Eη,
which was constructed as a push-out via the open analytic embedding of T η into
the torus Tη. Note that Chai and Faltings do not have the lattice Mη ↪→ Eη at this
stage. Thus, in order to define the dual extension, they cannot use the induced map
φ :Mη→ Bη as we do. Instead they use the dual A′η of Aη . Since A′η is a quotient
of Aη with respect to a finite group scheme, one can show that A′η extends to a
semi-abelian group R-scheme A′. As above they arrive at a second extension

0→ T ′ →E′ → B ′ → 0 =̂ φ :M→ B ′′. (†′)

They show that B ′ is, in fact, the dual of B and hence B ′′ is isomorphic to B . Fur-
thermore, the polarization ϕA on the generic fiber uniquely extends to a morphism
from A to A′ and hence determines a pair (λM,ϕB).

The key point in [27, Chap. 2] is to find the lattice Mη ↪→ Eη. In our approach
the lattice comes in via the uniformization of Aη, as explained in Theorem 5.6.5.
Indeed, we show that the map Aη → Aη extends to a surjective map Eη → Aη

and obtain the lattice as the kernel of this map. Then we prove the formula (∗) of
Proposition 6.2.19 for Mη-invariant sections on the pull-back p∗Lη for line bundles
Lη on Aη by using the Mη-action and the descent for cubical line bundles from E

to B .
Knowing the formula (∗) of Proposition 6.2.19 for Mη-invariant sections, it is

clear that the lattice is encoded in the Fourier coefficients of the formal expansion
on every non-trivial section of the line bundle Lη on Aη . Indeed, as one can see from
the formula, one can recover the part 〈m,m′〉 for every pair (m,m′) ∈M×M ′. This
is equivalent to the embedding Mη ↪→ Eη; cf. Proposition 6.1.8. We remind the
reader that for stating the formula of Proposition 6.2.19 for Mη-invariant sections it
is only necessary to know the line bundle Nη and the map λ :M→M ′ satisfying
the condition ϕN ◦ φ = φ′ ◦ λ, which can be deduced from the map ϕL as explained
in Proposition 6.4.2. Also it is not necessary to explicitly mention the Mη-action
on Nη, because one is only interested in Mη-invariant sections. Indeed, the set of
such sections coincides with the set of global sections of Lη; see Remark 6.2.21.
Therefore, one can replace Γ (E,q∗N)M by Γ (Aη,Lη).

The approach in [27] is based on this fact. Indeed, take any ample line bundle L
on A and let L be the pull-back of L to A. By the descent of cubical line bundles,
L descends to a line bundle N on B . Now consider a non-trivial section f of L and
look at the Fourier expansion of the pull-back of f |A. Since they derive the maps
λ :M →M ′ and ϕN : B → B ′ from ϕL : A→ A′, they can state the formula of
Proposition 6.2.19 for sections of L. In order to verify it, it suffices to establish it
only after a base change by a “large” discrete valuation ring dominating the given
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ring R. The remaining proof in [27, Chap. 2] consists in showing the following facts,
where R is now a discrete valuation ring:

(a) There exists a Fourier coefficients 0 
= am′ ∈ Γ (B,N ⊗ PB×φ′(m′)).
(b) am′ and τ ∗mam′+λ(m) are proportional on the generic fiber.

These facts are shown by using addition formulas for theta series.
Now let us say a few words of how to obtain the map from the right to the left,

usually, referred to as Mumford construction of degenerating abelian varieties. The
construction is somehow contained in our results of Theorems 6.4.4 and 6.4.6 for
special cases, where the base consists of a complete discrete valuation ring. One
starts with a Raynaud extension

0→ T →E
q−→ B→ 0 =̂ φ′ :M ′ → B ′

of an abelian R-scheme B by a split torus T corresponding to a homomorphism
from the character group M ′ = Z

r of T ′ to the dual B ′ of B . Let M be the constant
group R-group scheme Z

r and consider an injective homomorphism ̂φ :Mη→ Eη

on the generic fiber. The latter will play the role of a “lattice” on the generic fiberEη;
the discreteness of Mη will be imposed later by the requirement of the existence of
a polarization. Furthermore, assume that there is a polarization (λM,ϕB) on (E,M)

similarly as we do. The existence of a polarization is as good as an ample line bundle
N on B and a map λ :M→M ′ such that λ is compatible with ϕN : B→ B ′ in the
sense ϕN ◦ φη = φ′η ◦ λ, where φη :Mη → Bη is the homomorphism induced by
̂φ and λ satisfies a symmetry condition. Thus, one obtains an Mη-linearization of
q∗Nη on Eη similarly as we do in the proof of Theorem 6.4.6.

The key point now is the construction of the quotient E/M . This is done by using
formal geometry. One has to extend all objects to objects over R, which have to sat-
isfy certain completeness conditions. The key is the notion of a relatively complete
model (P,L) of E associated to (N,λ).

Firstly, P is a B-scheme of locally finite type. This should be thought of as an
R-model of Eη such that all K ′-valued points of Eη specialize on it, where K ′ is
the field of fractions of a discrete valuation ring R′ dominating R with center over
the “closed point” V (a). This model is as close as possible to E. One asks that E is
an open subscheme of P and that the M-action on P coincides on the generic fiber
with the Mη-action induced by the Eη-action via the inclusion Mη ↪→Eη on P .

Secondly, L is an ample line bundle on P extending the line bundle q∗Nη. It is
of the form L(P/B)⊗p∗N , where the line bundle L(P/B) is trivial on the generic
fiber Eη and is relatively ample with respect to P → B; here p : P → B is the struc-
tural morphism. Moreover, one requires that the Eη-linearization on the trivial line
bundle OEη = Lη ⊗ p∗N−1

η given by the translation extends to an E-linearization

of L(P/B)= L⊗ p∗N−1.
Such relatively complete models exist and they are used to construct the quotient,

which is obtained by the smooth part of P/M . Note that a priori P/M is a formal
scheme over R, but the M-linearization on the ample line bundle L gives rise to an
ample line bundle L/M over P/M . Therefore, P/M is algebraic and its smooth
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locus part E/M is, in fact, an algebraic R-group scheme, which has to be viewed as
the quotient. The completeness condition forces the quotient to be proper over the
open part of SpecR, where the schematic closure of the lattice ̂φ(Mη) in E has the
full rank.

Now let us compare this approach with the construction of this book. The com-
pletion P of P with respect to its closed fiber is a formal analytic structure on
Eη which is compatible with the M-action on Eη. The formal completion L of L
is a formal line bundle with M-action. Since it is impossible to extend the Mη-
linearization given by λ and r to the formal line bundle q∗Nη on P , one has to
introduce the line bundle L(P/B), which is trivial on the generic fiber; its role is to
produce certain norms in order to make the extension of the Mη-linearization on Lη
possible.

In our approach we perform the quotient Eη/Mη as a rigid analytic space. Since
we do not keep track of the R-model structure, already given on E, the construction
of the quotient is easy in our case and the construction of the relatively complete
model has disappeared. In order to show the algebraicity of the quotient, we have
to produce an ample line bundle on Eη/Mη; this is the point, where we use the
polarization data. If we want to obtain the good R-model structure of Eη/Mη, we
have to define a formal model P of Eη with Mη-action and Eη-action, where Eη is
the formal completion of E with respect to it special fiber.

Such a model can be obtained in the following way: Take a basic cell Λ of the
lattice ̂φ(Mη) and UΛ be the associated relative polyannulus associated to Λ. Then
glue the translates of UΛ under the Mη-action along the neighboring faces. So we
get a formal structure P on Eη such that M acts on P . Then P/M yields a formal
model of Eη/Mη such that E survived as a formal open part of P/M . Thus, we
obtain a good formal model of Aη. For getting the good algebraic R-model it would
also require an ample line bundle on P/M or, equivalently, an ample line bundle on
P with Mη-linearization. The latter is not so easy to produce and would lead to the
consideration of a relatively complete model as used in Mumford’s construction.

Let us conclude with some remarks. If one is only interested in the toroidal com-
pactification of the moduli of principally polarized abelian varieties, it is not neces-
sary to study analytic tori or abeloid varieties of type E/M , because one only uses
the functorial equivalence of the above correspondence. Therefore, it is enough to
work just from the beginning with polarizations and to do the minimum. Hereby one
avoids the consideration of rigid analytic tori or their counterparts in the mixed case
which are not algebraic. Thus, as we see from the method of Chai and Faltings, it is
not necessary to go back to the geometry which is behind the construction. Hope-
fully, our approach could disclose the geometric ideas behind the constructions.



Chapter 7
Abeloid Varieties

Every connected compact complex Lie group of dimension g can be presented as
a quotient Cg/Λ of the affine vector group C

g by a lattice Λ of rank 2g. From the
multiplicative point of view, it can be presented as a quotient Gg

m,C
/M of the affine

torus G
g

m,C
by a multiplicative lattice M of rank g. In the rigid analytic case the

situation is more complicated because of the phenomena of good and multiplicative
reduction, which in general occur in a twisted form. For example look at the rigid
analytic uniformization of abelian varieties in Theorem 5.6.5.

The fundamental example of a proper rigid analytic group AK is the analytic
quotient AK =EK/MK in Raynaud representation; cf. Definition 6.1.5, where EK

is an extension of a proper rigid analytic group BK with good reduction by an affine
torus TK , where MK is a lattice in EK of rank equal to dimTK ; cf. Proposition 6.1.4.
The main result of this chapter is that every smooth rigid analytic group, which is
proper and connected, is of the form EK/MK after a suitable extension of the base
field. This is a generalization of Grothendieck’s Stable Reduction Theorem [42, I,
Exp. IX, 3.5] as well as of the rigid analytic uniformization of abelian varieties.

The proof requires advanced techniques; it mainly relies on the stable reduction
theorem for smooth curve fibrations which are not necessarily proper. In Sect. 7.5
we compactify such a curve fibration by using the Relative Reduced Fiber Theo-
rem 3.4.8 and approximation techniques provided in Sect. 3.6. Then we can apply
the moduli space of marked stable curves. Therefore, one can cover the given group
AK by a finite family of smooth curve fibrations with semi-stable reduction.

In a second step one deduces from such a covering the largest open subgroup
AK which admits a smooth formal R-model A by well-known techniques on group
generation dating back to A. Weil; cf. Sect. 7.2. The formal group A is a formal
torus extension of a formal abelian R-scheme B . The prolongation of the embed-
ding T ↪→ A of the formal torus to a group homomorphism TK → AK of the as-
sociated affine torus TK follows by the approximation theorem and a discussion on
the convergence of group homomorphisms; cf. Sect. 7.3.

Thus, the group homomorphism AK → AK extends to a group homomorphism
from the push-out ̂AK := TK �T A to AK . The surjectivity of the map ̂AK → AK

is shown by an analysis of the map from the curve fibration to AK . In fact, the
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whole torus part is induced by the double points in the reduction of the stable curve
fibration; cf. Sect. 7.4.

So far we are concerned only with the case, where the base field is algebraically
closed. But it is not difficult to see that the whole approach can be done after a
suitable finite separable field extension if one starts with a non-Archimedean field
which is not algebraically closed.

If the non-Archimedean field in question has a discrete valuation, there is a notion
of a formal Néron model. Then our result implies a semi-abelian reduction theorem
for such Néron models. As a further application one can deduce that every abeloid
variety has a dual; i.e., the Picard functor of translation invariant line bundles on AK

is representable by an abeloid variety.

7.1 Basic Facts on Abeloid Varieties

In this section we gather some basic results on abeloid varieties which are analogous
to facts on abelian varieties; cf. [74, pp. 43–44]. In the following we assume that K
is a non-Archimedean field.

Definition 7.1.1. An abeloid variety is a rigid analytic group variety, which is
proper, smooth and connected. Usually we will write its group law “+” additively
and the inverse map by “−”.

We will need the theorem of the cube for invertible sheaves on abeloid vari-
eties A. Since A is proper over SpK , we can apply to A the cohomology theory for
proper rigid analytic spaces as provided by Kiehl [50]; cf. Theorem 1.6.4. In partic-
ular, we have the semi-continuity theorem for coherent sheaves; cf. [52, §5]. Then
one can conclude as in [74, Sect. 10] that the rigidity lemma and hence the theorem
of the cube are valid for invertible sheaves on A or on the generic fiber of formal
abelian R-schemes B . In the following we mean by a rigid analytic variety a rigid
analytic space, which is geometrically reduced.

Lemma 7.1.2 (Rigidity lemma). Let X be an irreducible proper rigid analytic va-
riety with a rational point x0, let Y and Z be any rigid analytic varieties, where Y
is irreducible. If f :X×Y →Z is a morphism such that for a rational point y0 ∈ Y
the set f (X×{y0})= {z0} is a single point, then there exists a morphism g : Y → Z

such that f = g ◦ p2, where p2 :X× Y → Y is the projection.

Proof. Define g : Y → Z by g(y) = f (x0, y). To show f = g ◦ p2 it suffices to
verify that these morphisms coincide on some non-empty open subset of X × Y ,
since X × Y is irreducible and reduced. Let U be an admissible affinoid neigh-
borhood of z0 in Z. Since X is proper, there exists an affinoid neighborhood V

of y0 in Y such that f (X × V ) ⊂ U . For each y ∈ Y the proper variety X × {y}
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is mapped by f into the affinoid variety U . Since the image is proper by Corol-
lary 1.6.5, it is a single point of U . So, if x ∈ X,y ∈ V , then we have that
f (x, y)= f (x0, y)= g ◦ p2(x, y). �

The rigidity Lemma 7.1.2 implies the following facts.

Corollary 7.1.3. If X and Y are abeloid varieties and f : X→ Y is any mor-
phism, then f (x) = h(x) + a, where h is a homomorphism from X to Y and
a := f (eX) ∈ Y , where eX is the unit element of X.

Proof. Replacing f by f −f (eX), we may assume f (eX)= eY . Then f is a homo-
morphism. Indeed, consider the morphism F :X×X→X defined by F(x1, x2)=
f (x1+x2)−f (x2)−f (x1). Now we have that F(X×{eX})= F({eX}×X)= {eY }.
Thus, we see by Lemma 7.1.2 that F = eY is constant on X×X; i.e., f is a homo-
morphism. �

Corollary 7.1.4. Every abeloid variety is commutative.

Proof. The inversion map X→X,x �→ x−1, is a group homomorphism by Corol-
lary 7.1.3; i.e., X is commutative. �

Proposition 7.1.5. Assume that K is algebraically closed. Let f : X→ Y be a
morphism of rigid analytic varieties, where X is an abeloid variety. For each x ∈X
denote by Fx the connected component of f−1(f (x)) which contains x. Then there
is a closed connected subgroup F of X such that Fx = x + F .

Proof. We follow the proof [74, p. 88]. Consider the morphism

φ :X× Fx −→ Y, φ(z,u)= f (z+ u).

Since Fx is proper and connected and φ({e} × Fx)= f (x), the rigidity lemma im-
plies φ(z,u)= φ(z, x) for all z ∈X,u ∈ Fx . In particular, f (z−x+Fx)= f (z) for
all z ∈X. Since z− x + Fx is connected, z− x + Fx is contained in Fz. Reversing
the positions of x, z ∈X, we actually have Fz = z− x+Fx for all z, x ∈ Fx . In par-
ticular, if F = Fe , then Fz = z+ F for all z ∈ F , so it only remains to show that F
is a subgroup of X. Let u ∈ F . Then F−u =−u+F and hence e ∈ F−u. Therefore,
F−u = Fe = F . Thus, we see F −u= F for each u ∈ F , so F is a subgroup of X. �

Theorem 7.1.6. Let f :A→ S be a proper smooth rigid analytic group space over
a rigid analytic S with connected fibers.

(a) [Theorem of the Cube] Let L be a rigidified line bundle on A. Then D3L is
canonically trivial as a rigidified line bundle on A3 and the trivialization gives
rise to a cubical structure on L; cf. Sect. A.3.
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(b) [Theorem of the Square] For every line bundle L on A and all S-valued points
x and y of A, there is a line bundle N on S such that

(

τ ∗x L⊗L−1)⊗ (τ ∗y L⊗L−1)∼= (τ ∗x+yL⊗L−1)⊗ f ∗N,

where τa :A→A is the left translation by an S-valued point a of A.

Proof. This follows from Lemma 7.1.2 in the same manner as shown in [74, p. 59]
if S is a variety. In the case, where S is not geometrically reduced, one can follow
the proof in [74, Chap. 3, §10]; cf. Proposition A.3.4. �

Corollary 7.1.7. Let A be an abeloid variety and let L be an invertible sheaf on A.
If L admits a non-trivial section, then L⊗2 is generated by its global sections.

Proof. Since cohomology commutes with flat base change, we may assume that K
is algebraically closed. For every closed point a there is an isomorphism

ρ : τ ∗aL⊗ τ ∗−aL ˜−→L⊗2

due to Theorem 7.1.6(b). Since there is a non-trivial global section f of L, the
sections ρ(τ ∗a f ⊗ τ ∗−af ) for a ∈A(K) generate L⊗2. For showing this, consider the
dense open subset U := {z ∈ A;f (z) 
= 0}. Then for a closed point x ∈ A consider
the intersection (−x+U)∩ (x −U), which is not empty, as U is dense in A. Thus,
there exists a point a ∈ (−x + U) ∩ (x − U). Then τ ∗a f (x) = f (x + a) 
= 0 and
τ ∗−af (x) = f (x − a) 
= 0, and hence ρ(τ ∗a f ⊗ τ ∗−af )(x) 
= 0. Thus, we see that
L⊗2 is generated by its global sections. �

Proposition 7.1.8. Let A be an abeloid variety of dimension g. If M(A) is the field
of its meromorphic functions, then we have the results:

(a) The degree of transcendency of M(A) over K is less or equal to g.
(b) The degree of transcendency of M(A) over K is equal to g if and only if A is

an abelian variety.

Proof. We may assume that K is algebraically closed.
(a) This follows as in the complex analytic case by using blowing-ups, the proper

mapping Theorem 1.6.4 and GAGA in Theorem 1.6.11; cf. [37, Chap. 10, §6.4].
(b) Let f1, . . . , fg be a basis of transcendency of M(A) and let D ⊂ A be the

pole divisor of f1 · . . . · fg . Let L :=OA(2D). Due to Corollary 7.1.7 the invertible
sheaf L is generated by its global sections. If h0, . . . , hN is a basis of Γ (A,L), then
this gives rise to a proper morphism

h := (h0, . . . , hN) :A−→ P
N
K,

because A is proper. The image of h is a closed algebraic subset due to the closed
image theorem in Corollary 1.6.5. By Corollary 1.6.12 we see that h(A) is projective
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algebraic. It has dimension g = dimA, because the functions f1, . . . , fg would be
algebraically dependent otherwise. So the general fibers of h have dimension 0.
Thus, there exists a dense open set U ⊂ h(A) such that

h|h−1(U) : h−1(U)−→U

is finite due to the semi-continuity of the fiber dimension [52, 3.6]. Then, we can
use translations as in the proof of Corollary 7.1.7 to move the subset h−1(U) around
in A, in order to show that L⊗2 has a basis h̃ such that h̃ gives rise to a morphism

h̃ : A→ P
Ñ
K with finite fibers everywhere. This implies that A is algebraic. Indeed,

h̃ is finite, as A is proper. The “if-part” is well-known, since an algebraic variety of
dimension g has always g independent rational functions. �

Lemma 7.1.9. Let A be an abeloid variety. Let L be an invertible sheaf on A.
Assume that there is a non-trivial section of L and that there are only finitely many
closed points x ∈ A such that τ ∗xL⊗ L−1 ∼= OA is trivial. Then L is ample in the
sense of Definition 1.7.3.

Proof. We may assume that K is algebraically closed. Due to Corollary 7.1.7 the
invertible sheaf L⊗2 is generated by global sections. A basis θ0, . . . , θn of the global
sections of Γ (A,L⊗2) gives rise to a morphism

θ :A−→ P
n
K, x �−→

(

θ0(x), . . . , θn(x)
)

.

Next we want to show that the fibers of θ are finite. To verify this, we have to make
use of the assumption that the group

H := {x ∈A(K); τ ∗xL⊗L−1 ∼=OA

}

is finite. Since L has a section, L is equal to OA(D), where D is an effective divisor
on A. By the Theorem of the Square 7.1.6 the divisor

Da := τaD + τ−aD ∼ 2D

is linearly equivalent to 2D for every a ∈ A(K). Thus, there exists a meromorphic
function θa on A with

div θa =Da − 2D.

Now consider the fiber Θ := θ−1(θ(e)) of the unit element e of A and let F be the
irreducible reduced component of Θ with e ∈ F . Since θa is a global section of L⊗2,
it can be represented as a linear combination

θa = λ0θ0 + · · · + λnθn with λi ∈K.
Since F is contained in the fiber of θ(e), there is a non-vanishing holomorphic
function λ : F →Gm,K such that

(

θ0(x), . . . , θn(x)
)= λ(x) · (θ0(e), . . . , θn(e)

)
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for all x ∈ F . Since F is proper and connected, λ(x) is a constant c ∈K . Thus, we
see

θa(x)= (λ0, . . . , λn) ·
(

θ0(x), . . . , θn(x)
)t = c · θa(e)

for all x ∈ F . Thus, F ⊂ Da in the case θa|F = 0 or F ∩ Da = ∅ otherwise. We
may assume D 
= [−1]D; otherwise replace D by a translate τzD for some z ∈ A.
Consider a point a ∈ D with a /∈ [−1]D. Now look at the function θa as defined
above with

div θa = τaD + τ−aD− 2D.

Then F is a closed subgroup of A by Proposition 7.1.5. Since e = τ−a(a) ∈ τ−aD
and e /∈ τaD, the component F of the fiber Θ satisfies F ⊂ τ−aD by what we have
shown above. Thus, we have F + a ⊂ D. The latter is true for all a in a dense
open subset of D. Therefore, it follows F + D ⊂ D by continuity. Thus, we see
that F is a subset of H and hence finite by assumption. Furthermore, it is shown
in Proposition 7.1.5 that the connected component of every fiber θ−1(θ(x)) which
contains x is of the form x + F . This shows that all the fibers of θ are finite. Since
θ is proper, it is finite and hence, L is ample. �

Proposition 7.1.10. Let A be an abeloid variety. Then the following conditions are
equivalent:

(a) There exists an ample line bundle L on A.
(b) A is the analytification of an abelian variety.

Proof. (a)→ (b): Since L⊗n for an n ≥ 1 gives rise to a closed embedding of A
into a projective space, A is the analytification of an algebraic group variety by the
GAGA Theorem 1.6.11, and hence A is an abelian variety.

(b) → (a): Since an abelian variety is projective, there exists an ample sheaf
on A. �

7.2 Generation of Subgroups by Smooth Covers

We start with a result on the extension of formally rational maps to group varieties
in the style of the classical theorem of A. Weil. In the following we assume that K
is a non-Archimedean algebraically closed field.

Theorem 7.2.1. Let S be an admissible formal R-scheme assumed to be normal
with generic fiber SK and geometrically reduced special fiber S ⊗R k.

Let GK → SK be a quasi-compact rigid analytic SK -group variety. Let G→ S

be a separated smooth admissible formal S-group scheme with connected fibers
such that its generic fiber GK is an admissible open subvariety of GK . Let
p : X→ S be a separated morphism of admissible formal R-schemes, which is
smooth and surjective. Let U ⊂X be an R-dense open subscheme.
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Let uK :XK →GK be an SK -morphism such that uK(UK)⊂GK . Assume that
the morphism uK := uK |UK : UK →GK extends to a morphism u : U →G. Then
consider the formal rational morphism

v :X×S X ���G, (x1, x2) �−→ u(x1) · u(x2)
−1,

where “·” denotes the group law on GK .

(a) If U is S-dense in X, then uK extends to a morphism u :X→G.
(b) If the geometric fibers of X/S are connected, v is defined everywhere.

Before we start the proof, let us consider a special case.

Lemma 7.2.2. Keep the situation of Theorem 7.2.1. Let e : S → G be the unit
element of G and G+(e) the subset of GK consisting of all points which specialize
into the unit section ẽ of G0. Then vK(x1, x2) ∈ G+(e) for every S-valued point
(x1, x2) ∈ (X×S X)K if the points x1 and x2 have the same reduction x̃ in X0 → S0.

Proof. Consider a closed point x̃ ∈ X0 with image s̃ ∈ S0. It suffices to show the
assertion in a formal neighborhood of s̃. Let H ⊂G be an affine formal open subset
of G which contains ẽ. We may assume that u maps U to H , eventually after shrink-
ing U . Since X is smooth over S, eventually after shrinking X there exists a system
of coordinates ξ1, . . . , ξd such that dξ1, . . . , dξd generate Ω1

X/S at x̃, where d is
the relative dimension of X/S. Since the problem is local, we may assume that X is
affine and that dξ1, . . . , dξd generateΩ1

X/S over all of X. Then put ζi := p∗1ξi−p∗2ξi
for i = 1, . . . , d , where pi :X×S X→X is the i-th projection for i = 1,2.

There exists a formal open subscheme Y ⊂ X ×S X such that the locus
V (ζ1, . . . , ζd)∩ Y coincides with the diagonal ΔX/S of X×S X.

For an element c ∈ |K×| with |c|< 1 set

Δ(c) := {y ∈ YK ;
∣

∣ζi(y)
∣

∣≤ c for i = 1, . . . , d
}

.

Now we assert that vK(Δ(c))⊂HK for every c ∈ |K×| with |c|< 1.
This follows from the extension properties of holomorphic functions. Indeed,

since HK is open and vK is continuous, there exists an ε ∈ |K×| with 0 < ε ≤ c

such that vK(Δ(ε))⊂HK . Since uK maps UK to HK , the map vK maps Δ(ε)∪WK

into HK , where

WK :=Δ(c)∩ (U ×U)K =Δ(c)∩ (X×U)K.

Since HK is affinoid, it suffices to show that every holomorphic function on
WK ∪Δ(ε) is a restriction of a holomorphic function on Δ(c).

This follows similarly as exercised in Proposition 5.4.5. Indeed, the map

(ζ,p2) :Δ(c)−→ B
d
K(c)×K XK

is an isomorphism for every c ∈ |K×| with c < 1, because (ζ1, . . . , ζd) is a system
of coordinates on the formal fiber (X ×S s)+(x) for every x ∈ XK , where s ∈ S is
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the image of x ∈XK . By [89, III-20, Thm. 2] there exists a Noether normalization
ϕ̃ : X̃→A

n
k such that ϕ̃(X̃− Ũ )⊂ V (η̃n), where η̃1, . . . , η̃n are the coordinate func-

tions on A
n
k . Let ϕ :XK → B

n be a lifting of ϕ̃. Thus, we obtain a finite morphism

(ζ,ϕ ◦ p2) :Δ(c)−→ B
d
K(c)×K B

n
K.

The components of a point (x1, x2) ∈Δ(c) reduce to the same point x̃1 = x̃2 in X̃.
Therefore, |(ζ,ϕ)∗ηn(y)| = 1 for all y ∈ WK . We can view vK as an N -tuple of
functions with N := d + n.

We have to verify that a function f on Δ(ε) ∪ WK is defined on Δ(c). This
follows from the fact that every holomorphic function on the union

VK :=
(

B
d
K(ε)×B

n
K

)∪ {z ∈ B
d
K(c)×B

n
K ;
∣

∣ηn(z)
∣

∣= 1
}

is a restriction of a holomorphic function on B
d
K(c) × B

n
K by Proposition 5.4.5.

Choose a maximal linearly independent system (b1, . . . , br ) in the A-module
B := OXK×SXK

(Δ(c)) over A = O
B
d+n
K

(BdK(c) × B
n
K). There exists an element

a ∈A− {0} with aB ⊂Ab1 + · · · +Abr . We can represent af = a1b1 + · · · + arbr
uniquely, where ai is holomorphic function on VK , and hence ai ∈ A for all
i = 1, . . . , n due to Proposition 5.4.5. Thus, we see that f belongs to the field of
fractions of B . Now consider the characteristic polynomial of f over the field of
fraction of A. By the same reasoning as above we see that its coefficients belong
to A. Since B is normal, we obtain that f belongs to B . Thus, we obtain that vK
maps Δ(c) to HK .

Since HK ⊂ GK was an arbitrarily open neighborhood of e, we can avoid ev-
ery point g ∈ G which does not belong to the formal fiber at e. Thus, we see
vK(ΔK) ⊂ G+(e), where ΔK is the set of points of (X ×S X)K which specialize
into the diagonal of (X×S X)0. �

Proof of Theorem 7.2.1. (a) We may assume that S and X are affine admissible
formal R-schemes. Set Y :=X×S X. As above let

ΔK ⊂ YK := (X×S X)K

be the set of points of YK which specialize into the diagonal of (X×S X)0. Consider
the map

vK : YK −→GK, (x1, x2) �−→ uK(x1) · uK(x2)
−1.

Let H ⊂ G be an affine open formal neighborhood of the unit section. In the fol-
lowing we denote by the subindex “0” the objects obtained by base change with
R→R/Rπ , for all formal objects.

We know that vK maps the subset ΔK into HK by Lemma 7.2.2. Due to The-
orem 3.3.4 there exists an R-model G of GK such that HK is induced by an open
affine subscheme H of G. Let A0 := G0 − H0 be the complement of the reduc-
tion H0 in G0. Choose an admissible formal blowing-up ϕ : Z→ Y such that vK
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is induced by a formal morphism w : Z→G; cf. Theorem 3.3.4. Since the points
of ΔK are mapped to HK under vK , the pre-image ϕ−1(Δ0) of the diagonal Δ0 is
disjoint from w−1(A0). Thus, ϕ(w−1(A0)) is closed, since ϕ0 is proper, and disjoint
from Δ0.

Let V ⊂ Y be the open subscheme associated to Y0 − ϕ(w−1(A0)). Therefore
VK is mapped to HK . Then vk extends to a formal morphism v : V → H . Indeed,
H is affine and OH (H) and OY (V ) are the rings of power bounded functions on
HK and VK , respectively, because their special fibers are geometrically reduced; cf.
Proposition 3.4.1.

Thus, we see that v : Y ���H is defined on a formally open neighborhood ofΔK .
Now let V ⊂ Y be the largest open subscheme, where vK is defined as a formal
morphism. Since U ⊂ X is S-dense, V ∩ (X ×S U) 
= ∅. Thus, for every x1 ∈ XK

there exists a point x2 ∈XK such that (x1, x2) ∈ VK and x2 ∈UK . Since

uK(x1)= vK(x1, x2) · uK(x2) ∈GK,

we see that uK maps XK to GK . Then, uK : XK →GK extends to a formal mor-
phism u :X→G, as seen by a descent argument as in [15, 2.5/5]; cf. the end of the
proof of Lemma 5.4.7.

(b) We have already seen that vK is defined in an open neighborhood U ⊂ Y of
the diagonal Δ. Since the fibers of Y/S are connected and hence irreducible, U is
S-dense in Y . Then it follows from (a) that vK extends to a formal S-morphism
v : Y →G. �

Theorem 7.2.3. Let GK be a smooth commutative rigid analytic group. Let X
be a smooth admissible formal R-scheme, which is separated, quasi-compact and
connected.

Let o ∈ Xrig be a rational point and let uK :Xrig →GK be a rigid analytic flat
morphism sending the point o to the unit element of GK .

Then X generates a smallest open subgroup HK of GK via uK , which admits a
smooth formal R-model H such that uK factorizes through HK .

In particular, uK extends to a formal morphism u :X→H . If d is the dimension
of GK , the multiplication map u2d :X2d →H is surjective.

If X0 is a rational variety, the reduction of H is a linear algebraic group.
If X is a formal ball BdR , then H has unipotent reduction and the underlying

variety of HK is isomorphic to a ball.

Remark 7.2.4. Actually the assumption on the flatness of uK in Theorem 7.2.3
can be avoided. In the proof given below the flatness is used to know that the image
of uK is an admissible open subdomain of GK due to Corollary 3.3.8(d). If we re-
place Corollary 3.3.8(d) by Proposition 3.3.9 which is much deeper, one has enough
information on the image of uK and one can proceed in a similar way as we will do.

In a first step we show that there exists a dense open subscheme U ⊂ X2d such
that the image of u2d

K (UK) is an admissible open affinoid subvarietyZK with smooth
R-model Z and the group law of GK induces a birational formal group law on Z.
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Definition 7.2.5. Let Z be a separated smooth admissible formal R-scheme as-
sumed to be geometrically connected. A birational formal group law is a formal
rational morphism

m : Z×R Z ���Z, (x, y) �−→ xy,

i.e., m is defined on a dense open subscheme, such that the maps

Φ : Z×R Z −→ Z×R Z, (x, y) �−→ (x, xy),

Ψ : Z×R Z −→Z×R Z, (x, y) �−→ (xy, y),

are birational in the formal sense; i.e., Φ and Ψ are isomorphisms on dense open
parts, and m is associative; i.e., m(xy, z) = m(x,yz), whenever both sides are de-
fined.

Proposition 7.2.6. Let Z be a separated admissible formal R-scheme, which is
smooth and geometrically connected. Let m be a birational formal group law on Z.
Then there exists a smooth formal R-group scheme 〈Z〉 of topologically finite type
with group law m together with an R-dense open subscheme Z′ ⊂ Z and an open
immersion Z′ ↪→〈Z〉 such that

(i) the image of Z′ is R-dense in 〈Z〉 and
(ii) m restricts to m on Z′ ×Z′.

Proof. First, we know that m induces a k-birational group law on the reduction Z̃.
This gives rise to an associated smooth group scheme 〈Z̃〉 with similar properties as
asserted; cf. [15, 5.1/5]. The group 〈Z̃〉 is obtained by gluing copies of a dense open
part Z̃′ of Z̃ by translation. This construction lifts to every formal level and hence
yields our result. �

Now we come to the proof of Theorem 7.2.3. We keep the notation of Theo-
rem 7.2.3.

Lemma 7.2.7. In the situation of Theorem 7.2.3 assume, in addition, that X is
symmetric; i.e., there is a formal birational map ξ : X ��� X with the property
uK(ξ(x))= uK(x)

−1, whenever ξ is defined at x ∈XK .
Then there exists an admissible open affinoid subvariety ZK ⊂ GK with

smooth formal R-model Z contained in the image of u2d
K : X2d

K → GK such that
(u2d

K )−1(ZK) is formally dense open in X2d
K and such that the group law of GK

induces to a birational formal group law on Z.

Proof. We are allowed to replace X by a dense open subscheme by Theorem 7.2.1.
By Corollary 3.3.8(d) the image is a finite union of open affinoid subvarieties ofGK .
Then, by Proposition 3.1.12 we may assume that XK is affinoid and the image
ZK ⊂GK of uK is an open affinoid subvariety.
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The map uK :XK → ZK induces a surjective map of their canonical reductions.
Since XK has a smooth irreducible canonical reduction, the reduction of ZK is ir-
reducible as well. After a further shrinking we may assume that ZK is the generic
fiber of a smooth formal R-scheme Z. Indeed, the special fiber Zk of Z is geometri-
cally reduced, because it is dominated by the special fiber Xk which is geometrically
reduced. Thus, we can replace XK by ZK and may assume that uK is an open im-
mersion, whenever we start with a flat morphism uK :XK →GK .

For every integer n≥ 1 we have the morphism

unK :Xn
K −→GK, (x1, . . . , xn) �−→ uK(x1) · . . . · uK(xn).

Let d be the dimension of GK and consider the map

vK := u2d
K :X2d

K −→GK.

As discussed above, vK induces a rational dominant formal map

v :X2d ���Z,

where Z is a smooth formal R-scheme whose generic fiber is an open subvariety
of GK . Let U(2d)⊂X2d be a dense open subscheme such that the map vK extends
to a surjective morphism v :U(2d)→ Z.

For every n ∈ {1, . . . ,2d − 1} consider the projection

pn+1,...,2d :X2d −→X2d−n

onto the last components and set

W(2d − n) := pn+1,...,2d
(

U(2d)
)⊂X2d−n.

For every y = (yn+1, . . . , y2d) ∈W(2d − n) the map

Xn ���Z, x �−→ v(x, y),

is formally rational. In particular, we have now p(W(2d − n))⊂W(2d −m) for
all n≤m, where p :X2d−n −→X2d−m is the projection onto the last components.

Then one can look at the schematic closure Z̃(n, y) of the image under the rational
mapping

Xn ���X2d ���Z→ ˜Z, x �−→ ṽ(x, y),

for every y := y(n) ∈W(2d − n). These subschemes are contained in each other

˜Z
(

n,y(n)
)⊂ ˜Z
(

n+ 1, y(n+ 1)
)

where y(n+ 1) := p(y(n)). By reason of dimensions there exists an integer n ≤ d

with

˜Z
(

n,y(n)
)= ˜Z
(

n+ 1, y(n+ 1)
)
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for all y(n) ∈W(2d−n) in the formal dense open subscheme W(2d−n) of X2d−n.
Thus we obtain that

˜Z
(

n,y(n)
)= ˜Z
(

n+ 2, y(n+ 2)
)= Z̃(2d).

It suffices to show the first equality. Every general point in ˜Z(n+ 2, y(n+ 2)) can
be written in the form

z̃1z̃2 . . . z̃nz̃n+1z̃n+2ỹn+3 . . . ỹ2d = z̃′1z̃′2 . . . z̃′nz̃′n+1ỹn+2ỹn+3 . . . ỹ2d

where z̃i is the reduction of a point uK(xi) for xi ∈ X and similarly z̃′i . The latter

product is an element of ˜Z(n+ 1, y(n+ 1)). This implies that

Z×Z ���Z, (z1, z2) �−→ z1 · z2,

is birational. The associativity of the birational law is clear, since it is a restric-
tion of a group law. Since X is symmetric, Z is symmetric in the formal birational
sense. Therefore, the maps Φ and Ψ of Definition 7.2.5 are birational in the formal
sense. �

Proof of Theorem 7.2.3. Due to Theorem 7.2.1 we are allowed to replace X by an
R-dense open subscheme. Now we replace X by X ×X and uK by vK defined by
vK(x1, x2) := uK(x1)uK(x2)

−1. Thus, vK is also flat and its image is symmetric in
the formal birational sense.

By Lemma 7.2.7 there exists an open admissible subvariety ZK of GK with
smooth connected formal model Z such that the group law on GK restricts to a
birational formal group law on Z and vK : XK → GK restricts to a formal ratio-
nal map XK ��� ZK . Due to Proposition 7.2.6 the birational group law gives rise
to an admissible open subgroup HK of GK which admits a smooth formal model
H and Z can be viewed as a dense open part of H . The map vK : XK →GK ex-
tends to a formal morphism v :X→H due to Theorem 7.2.1. Therefore, we obtain
uK(x1)uK(x2)

−1 ∈HK for all x1, x2 ∈ XK . Since the image of the distinguished
point uK(o) is the unit element, we see that uK(x) ∈HK , and hence that uK maps
XK to HK .

The assertion concerning the surjectivity of u2d :X2d →G is clear by reasons of
dimension. If X is a rational variety, then G has linear reduction due to the structure
theorem of Chevalley; cf. [15, 9.2/1]. If XK is a ball, the assertion follows from the
theorem of Lazard [23, IV, §4, no. 4, 4.1]. �

Definition 7.2.8. In the situation of Theorem 7.2.3 we denote by 〈X,u〉 the formal
R-group scheme, whose generic fiber is an open subgroup of GK generated by the
morphism uK :XK →GK . In our notation we do not indicate the chosen base point
o ∈ XK , since the group does not depend on it. Although we have not introduced
a base point explicitly, we will refer to 〈X,uK 〉 as the subgroup generated by the
smooth cover uK :XK →GK .
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Theorem 7.2.1 has an important consequence.
Let S be an admissible formal R-scheme with geometrically reduced fibers such

that its generic fiber SK is normal. Let X→ S be a flat admissible formal morphism
with geometrically reduced equidimensional fibers of dimension d ≥ 1. Let

X be the smooth part of X/R,

Y be the smooth part of X/S.

Then X is R-dense in X and Y is S-dense in X.
Let GK be a smooth rigid group and let

uK :XK −→GK

be a flat rigid analytic morphism. Then X gives rise to a smooth formal R-group
scheme 〈X,uK 〉 via uK by Theorem 7.2.3 such that 〈X,uK〉rig is an open admissible
rigid analytic subgroup of GK .

Corollary 7.2.9. In the above situation of above we have that

uK(x1) · uK(x2)
−1 ∈ 〈X,uK 〉

for all points x1, x2 ∈XK if x1, x2 belong to the same connectedness component of
Y ×S s for any R-valued point s of S.

Proof. Set H = 〈X,uK 〉. After an étale base change S′ → S we may assume that Y
is marked by S-valued points σi : S→ Y for i = 1, . . . , r such that

Y = Y(σ1)∪ · · · ∪ Y(σr),
where Y(σi) is the union of the connected components of the fibers of Y/S which
meet σi ; cf. [39, IV3, 15.6.5]. Now consider a component Z = Y(σi); in particular,
Z has geometrically connected fibers over S. Now look at the rigid analytic Srig-
group GK ×K SK and consider the morphism

vK : ZK −→GK ×K SK ; x �→ uK(x) · uK
(

σi
(

f (x)
))−1

induced by uK , where f :X→ S is the structural map. In this situation we can apply
Theorem 7.2.1(b), because X ∩ Z is R-dense in Z. Thus, we obtain the extension
v :Z −→H ×R S. The projection to H yields the claim. �

7.3 Extension of Formal Tori

In the following let GK be a smooth commutative rigid analytic group.
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Proposition 7.3.1. Let ϕ : Gm,K → GK be a homomorphism of rigid analytic
groups such that ϕ factorizes through an admissible open subgroup HK of GK ,
which admits a smooth formal R-model H .

If the image of ϕ is relatively compact in GK ; cf. Definition 3.6.1, then ϕ extends
to a homomorphism ϕ :Gm,K →GK in a unique way.

Proof. The assertion concerning the uniqueness is evident. So we may assume that
K is algebraically closed. The reduction ˜H ofH is an extension of an abelian variety
˜B by a linear group ˜L. The linear commutative group ˜L is a product of a torus ˜T
and a unipotent group ˜U .

Let ξ̃1, . . . , ξ̃r be a system of coordinates of ˜B at the unit element. Let ξi be a
lifting of q∗ξ̃i , where q : ˜H → ˜B is the canonical map. For an element c ∈ |K×|
with |c|< 1 consider the open subset

L(c) := {x ∈HK ;
∣

∣ξ1(x)
∣

∣≤ c, . . . ,
∣

∣ξr (x)
∣

∣≤ c
}

.

For a suitable c < 1 the map ϕ maps Gm,K to L(c) and L(c) admits a smooth R-
model with linear reduction. Thus, we may replace HK by L(c), and hence we may
assume that H has linear reduction. The reduction ˜H is a product Gt

m,k ×G
s
a,k . So

the formal fiber of the rigid analytic space HK at the unit element is isomorphic to
an (s + t)-dimensional open ball.

Since HK is relatively compact in GK , we see by Theorem 3.6.7 that we can
approximate ϕ by a morphism

α :Gm,K −→HK

with reduction α0 = ϕ0 such that α extends to a morphism

α :Gm,K

(

ε2)−→GK

for some π ∈K× with ε := |π |< 1, where

Gm,K(ε) :=
{

t ∈Gm,K ; ε ≤ |t | ≤ ε−1}.

Now consider the morphism

u := α · ϕ−1 :Gm,K −→HK.

We can choose the approximation such that u factorizes through the formal fiber
of H at the unit element. Thus, there exists a closed ball Bs+tK in this formal fiber
such that u factorizes through it. The ball Bs+tK generates an admissible open sub-
group UK with a smooth formal model U which has unipotent reduction; cf. Theo-
rem 7.2.3. As a rigid analytic space UK is isomorphic to a ball BdK with d = s + t .
In particular, in our situation the reduction of u :Gm,K →U is constant and equals
the unit element.

Next consider the morphism

w :Gm,K(ε)×Gm,K(ε)−→GK,
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where w is defined by

w(x1, x2)= α
(

x−1
1 x−1

2

) · α(x1) · α(x2)

for x1, x2 ∈Gm,K(ε). Denote by w the restriction of w to Gm,K ×Gm,K . Since ϕ is
a homomorphism of groups, we have

w(ξ1, ξ2)= u
(

ξ−1
1 ξ−1

2

) · u(ξ1) · u(ξ2).

Thus, we see that w factorizes through the formal fiber of U at the unit element.
After enlarging ε, we may assume that w factorizes through UK . Since UK

∼= B
d
K

is isomorphic to a ball with the unit element as center, we can write the map u in
terms of a d-tuple of Laurent series

u(ξ)=
∑

ν∈Z
uνξ

ν ∈ (R〈ξ, ξ−1〉)d,

where ξ is a coordinate on Gm,K .
We want to show that u converges on Gm,K(ε

2). It suffices to show

|uν | ≤ ε2|ν| for all ν ∈ Z. (7.1)

For this we need a consideration of formal group laws. Let

F :U ×U −→U

be the formal group law on U . Then F is of the following type

F(X,Y )=X+ Y + q(X,Y ) ∈R〈X,Y 〉d ,
where q(X,Y ) ∈ R〈X,Y 〉d is a d-tuple power series in X = (X1, . . . ,Xd) and
Y = (Y1, . . . , Yd), where every monomial with non-zero coefficient is at least of
quadratic total order. Indeed, it is divisible at least by a product XiYj for some
i, j ∈ {1, . . . , d}. For the composition of three factors we obtain

F
(

X,F(Y,Z)
) = F
(

X,Y +Z+ q(Y,Z)
)

= X+ (Y +Z+ q(Y,Z)
)+ q
(

X,Y +Z+ q(Y,Z)
)

= X+ Y +Z +Q(X,Y,Z),

where Q(X,Y,Z) is a d-tuple of power series in X,Y,Z, where every monomial is
at least of quadratic order. Thus, we obtain the following:

For x, y, z ∈ πλU := B
d
K(|π |λ) there exist u ∈U and w ∈U such that

x · y = x + y + π2λu, (7.2)

x · y · z = x + y + z+ π2λw, (7.3)
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where “·” denotes the group law on U and where “+” denotes the usual group law
on B

d
K given be the addition of components.

Now we apply these rules to the d-tuple of Laurent series

w(ξ1, ξ2)=
∑

μ,ν∈Z
wμ,νξ

μ
1 ξ

ν
2 ∈
(

R〈πξ1,π/ξ1,πξ2,π/ξ2〉
)d
.

Because of ε = |π |, the absolute values of the coefficients satisfy

|wμ,ν | ≤ ε|μ|+|ν| for all μ,ν ∈ Z. (7.4)

Furthermore, if u(Gm,K)⊂ πλU for some λ ∈ N with λ ≥ 1, Eq. (7.3) implies the
following congruence of Laurent series:

w(ξ1, ξ2) = u
(

ξ−1
1 ξ−1

2

) · u(ξ1) · u(ξ2)

≡
∑

ν∈Z

(

uνξ
−ν
1 ξ−ν2 + uνξ

ν
1 + uνξ

ν
2

) (

mod π2λ).

Comparing the coefficients shows

wν,ν ≡ u−ν mod π2λ.

Thus, we obtain by (7.4) that

u(Gm,K)⊂ πλU =⇒ |uν | ≤ ε2·min{λ,|ν|} for all ν ∈ Z. (7.5)

Moreover, we need an elementary calculation: Consider Laurent series

a(ξ) =
∑

ν∈Z
aνξ

ν ∈R〈ξ, ξ−1〉 with |aν | ≤ ε2·|ν| for all ν ∈ Z,

b(ξ) =
∑

ν∈Z
bνξ

ν ∈R〈ξ, ξ−1〉 with |bν | ≤ ε2·|ν| for all ν ∈ Z.

Then, for every i, j ∈N we have for the product

a(ξ)ib(ξ)j =
∑

ν∈Z
cνξ

ν ∈R〈ξ, ξ−1〉 with |cν | ≤ ε2·|ν| for all ν ∈ Z. (7.6)

Now we start the proof of the assertion (7.1). After enlargingUK , we may assume
u(Gm,K)⊂ πU so that |uν | ≤ ε for all ν ∈ Z. It suffices to show by induction on λ
that

|uν | ≤ ε2·min{λ,|ν|} for all ν ∈ Z and all λ ∈N.

The case λ= 1 follows from (7.5), because u factorizes through πU . Now let λ≥ 1
and assume that the induction hypothesis is satisfied for λ. Thus, we can consider
the map

u :Gm,K

(

ε2)−→UK
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given by the Laurent series

u(ξ)=
∑

|ν|≤λ
uνξ

ν =
∑

ν∈Z
uνξ

ν.

The latter is a definition for the coefficients uν ; i.e., uν = 0 for |ν|> λ. Due to the
induction hypothesis the coefficients satisfy

|uν | ≤ ε2|ν| for all ν ∈ Z. (7.7)

In particular, because of λ≥ 1 we know

u|
Gm,K

≡ u|
Gm,K

(

mod πλ+1). (7.8)

Then we can consider the map

β := α · u−1 :Gm,K

(

ε2)−→GK.

Set β := β|
Gm,K

. Then we have that

v := β · ϕ−1 = u · u−1 :Gm,K −→UK.

By (7.8) the map v sends Gm,K to πλ+1U . By (7.5) the coefficients of the power
series

v(ξ)=
∑

ν∈Z
vνξ

ν ∈ (R〈ξ, ξ−1〉)d

satisfy the estimate

|vν | ≤ ε2·min{λ+1,|ν|} for all ν ∈ Z. (7.9)

Then consider

u= v · u= v+ u+ q(v,u).

Modulo π2(λ+1) we have to estimate the coefficients qν of

q(v,u)=
∑

i,j∈Nd

qi,j v
iuj =
∑

ν∈Z
qνξ

ν ∈ (R〈ξ, ξ−1〉)d .

We see by (7.6) that

|qν | ≤ ε2·min{λ+1,|ν|} for all ν ∈ Z

because of (7.7) and (7.9). Thus, we obtain

|uν | ≤ ε2·min{λ+1,|ν|} for all ν ∈ Z

by using (7.7) and (7.9) again, and hence the assertion (7.1) is verified.
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Thus, we have shown that the homomorphism ϕ :Gm,K →GK extends to a rigid
analytic map ψ := α · u−1 :Gm,K(ε

2)→GK . Obviously, ψ satisfies the functional
equation

ψ(ξ1) ·ψ(ξ2)=ψ(ξ1 · ξ2) for all ξ1, ξ2 ∈Gm,K(ε).

Finally we obtain a homomorphism ϕ :Gm,K →GK by setting

ϕ
(

πnξ
) := ϕ(π)n ·ψ(ξ) for ξ ∈Gm,K(ε) and n ∈ Z.

This finishes the proof. �

7.4 Morphisms from Curves to Groups

In this section we will study morphisms uK : CK → GK from a curve CK to a
commutative smooth rigid analytic group GK , where CK has a semi-stableR-model
C over its valuation ring R. The statement requires a result on the group generated
by the smooth part C of CK in the style of Theorem 7.2.3. Since we have shown
the group generation only for morphisms uK which are flat; cf. Theorem 7.2.3, we
are limited to the case of relative curve fibrations CK → SK and flat morphisms
uK : CK →GK .

Let us fix the notation for this section. Let GK be a commutative quasi-compact
smooth rigid analytic group of dimension d and GK a connected open subgroup
of GK , which admits a smooth formal R-model G. Let CK be a connected smooth
rigid analytic curve, which admits a semi-stable formal R-model C with precisely
one singular point x̃0 ∈ ˜C on the reduction ˜C. Let ξ : CK →Gm,K be a rigid analytic
morphism which restricts to a coordinate function on the formal fiber C+(x0), where
x0 ∈ CK is a lifting of x̃0. Denote by C the smooth part of C.

Consider a rigid analytic morphism uK : CK →GK such that uK(x0) is equal to
the unit element e of GK . Assume that uK : CK →GK is generically unramified.
Here a morphism of smooth rigid analytic spacesψ :XK → YK is called generically
unramified if the canonical morphism ψ∗Ω1

YK/K
→Ω1

XK/K
is surjective outside a

thin closed analytic subvariety of XK .

Theorem 7.4.1. In the above situation assume, in addition, that

uK(x1) · uK(x2)
−1 ∈GK

for all pairs of points x1, x2 belonging to the same connectedness component
of CK . Then there exists a rigid analytic group homomorphism ϕ :Gm,K →GK

with ϕ(Gm,K)⊂GK such that u factorizes into

u= (ϕ ◦ ξ) · u,
where u : CK →GK is a rigid analytic morphism.
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Before we start the proof, we provide some preparations. We may assume that K
is algebraically closed and that ξ gives rise to an isomorphism

ξ : C+(x0) ˜−→
{

z ∈Gm,K ;α < |z|< 1/α
}

for some α ∈ |K×| with ξ(x0)= 1. For a ρ ∈ |K×| with α ≤ ρ ≤ 1 put

C+(x0)⊃A(ρ) := ξ−1
({

z ∈Gm,K ;ρ ≤ |z| ≤ 1/ρ
})

,

C+(x0)⊃A(ρ)+ := ξ−1
({

z ∈Gm,K ; |z| = 1/ρ
})

,

C+(x0)⊃A(ρ)− := ξ−1
({

z ∈Gm,K ; |z| = ρ
})

.

Since GK is smooth, there exists a closed subvariety DK of an open neighbor-
hood of the unit element of GK with e ∈DK , where DK is isomorphic to a (d− 1)-
dimensional ball Bd−1

K , such that the morphism

ψK : CK ×DK −→GK, (x, y) �−→ uK(x) · y,
is generically unramified. In particular, the map ψ is étale outside a thin closed
analytic subvariety of CK ×DK due to the Jacobian criterion, and hence flat. Since
GK is open, we may assume DK ⊂GK .

Lemma 7.4.2. For every ρ ∈ |K×| with α < ρ ≤ 1 the maps

ψ :A(ρ)± ×DK −→GK, (x, y) �−→ uK(x) · y,
generate an open subgroup H(ρ)K := 〈A(ρ)± × DK,ψ〉 ⊂ GK which admits a
smooth formal R-model H(ρ). The reduction of H(ρ) is linear.

Proof. A(ρ)+ × DK has a smooth formal R-models. Since ψ is generically un-
ramified, there exists a dense open formal subscheme Z(ρ) of A(ρ)+ ×DK such
that ψ :Z(ρ)→GK is flat. Then Z(ρ) generates an open subgroup H(ρ)K , which
admits a smooth formal R-model with linear reduction by Theorem 7.2.3. Up to a
translation the map ψ maps A(ρ)+ ×DK into H(ρ)K due to Theorem 7.2.1. Like-
wise one deals with A(ρ)− ×DK . The union of both generates a group H(ρ)K as
required. �

We need a lemma on the domain of convergence of Laurent series.

Lemma 7.4.3. Let X = SpB be an irreducible and reduced affinoid space and U
a non-empty open subvariety of X. For ρ ∈ |K×|, ρ < 1, set

A := {z ∈Gm,K ;ρ ≤ |z| ≤ 1/ρ
}

,

A− := {z ∈Gm,K ; |z| = ρ
}

,

A+ := {z ∈Gm,K ; |z| = 1/ρ
}

.
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Let f be a holomorphic function on (X × A−) ∪ (U × A) ∪ (X × A+). Then f

extends to a holomorphic function on X×A.

Proof. Let ξ be the coordinate function of A and consider the Laurent series expan-
sions

f |X×A− =
∑

ν∈Z
b−ν ξν ∈ B〈ξ/ρ,ρ/ξ 〉,

f |X×A+ =
∑

ν∈Z
b+ν ξν ∈ B〈ρξ,1/ρξ 〉.

The condition of the convergence is given by

lim
ν→±∞ρν

∣

∣b−ν
∣

∣= 0 and lim
ν→±∞ρ−ν

∣

∣b+ν
∣

∣= 0.

Since f is defined on U × A, it follows bν := b+ν = b−ν for ν ∈ Z. Thus, we get
lim|ν|→∞ρ|ν||bν | = 0. This implies the extension of f to X×A. �

Lemma 7.4.4. In the above situation, for ρ ∈ |K×| with 1≥ ρ > α, let

H(ρ)= 〈(A(ρ)− ∪A(ρ)+)×DK,ψK
〉

be the smooth formal R-group scheme generated by the smooth formal part of
A(ρ)×DK via ψK and H(ρ)K the induced open subgroup of GK . Then we have
the following results:

(a) H(ρ1)K ⊂H(ρ2)K for all 1≥ ρ1 ≥ ρ2 > α.
(b) H(ρ)K ⊂GK for all ρ ∈ |K×|, 1≥ ρ > α.
(c) If the reduction of H(ρ) is unipotent, then uK(A(ρ))⊂H(ρ)K .
(d) If the reduction of H(1) is unipotent, then H(ρ) has unipotent reduction for all

ρ ∈ |K×| with 1≥ ρ > α.
(e) If the reduction of H(1) is unipotent, then uK(A(ρ))⊂GK .

Proof. (a) Fix some ρ ∈ |K×| with α < ρ ≤ 1. The group H(ρ) has linear reduction
by Lemma 7.4.2, and hence the underlying rigid analytic variety is an open affinoid
subvariety of GK . Then consider the morphism

v :Gm,K ×
(

A(ρ)+ ∪A(ρ)−)−→GK, (z, x) �−→ uK(zx) · uK(x)−1,

where zx := ξ−1(zξ(x)). In particular, one has that v(1, x) = e for all x ∈A(ρ).
Since H(ρ)K is an open subdomain of GK , there exists an open neighborhood
U ⊂Gm,K of 1 with v(U ×A(ρ))⊂H(ρ)K . Thus, v(Gm,K ×A(ρ)) is contained
in H(ρ)K by Lemma 7.4.3 and hence (a) is clear.

(b) Similarly as in the proof of Proposition 3.6.6 one constructs a filter (Ui; i ∈N)

of neighborhoods consisting of admissible open subsets Ui of GK such that

GK �GK
Ui and

⋂

i∈N
Ui =GK.
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By reasons of continuity, for every i ∈N there exists an integer j ∈N such that the
group law

U2d
j −→Ui, (x, y) �−→ x1 · y−1

1 · . . . · x2d · y−1
2d ,

maps to Ui , where d is the dimension of GK . For every j ∈ N there is a radius
ρj ∈ |K×|, ρ > ρj > α, with uK(z1) · uK(z2)

−1 ∈Uj for all pairs z1, z2 in A(ρj )+
or in A(ρj )

−. Thus, we see that H(ρj )K ⊂ Ui , because every element of H(ρj )K

is a 2d-fold product of pairs in u(A(ρj )+) and u(A(ρj )−), up to an element of GK

induced by DK . Now it follows from (a) that H(ρ)K ⊂H(ρj )K ⊂ Ui for all i ∈N

and hence H(ρ)K ⊂GK .
(c) Since H(ρ) has unipotent reduction, the underlying variety H(ρ) is isomor-

phic to a d-dimensional ball BK , which is relatively compact in GK . Due to Corol-
lary 3.6.18 there exists a ball B ′K in GK such that BK � B ′K . Then B ′K generates an
open subgroup H ′

K which has a smooth formal R-model with unipotent reduction
due to Theorem 7.2.3. For δ ∈ |K×| put

Δ(δ) := {(x, y) ∈A(ρ)×A(ρ); δ ≤ ∣∣ξ(x)∣∣/∣∣ξ(y)∣∣≤ 1/δ
}

.

Then consider the morphism

v :Δ(δ)−→GK, (x, y) �−→ uK(x) · uK(y)−1.

Due to (a) one has H(�)K ⊂ H(ρ)K for all � ∈ |K×| with 1≥ � ≥ ρ. Thus, we
have v(Δ(1))⊂H(ρ)K . Since H(ρ)K �H ′

K , there exists a element δ ∈ |K×| with
δ < 1 such that v(Δ(δ))⊂H ′

K .
Now consider two points x, y in A(ρ). Then there exists a finite sequence

x0 := x, x1, . . . , xn = y such that (xi−1, xi) ∈Δ(δ) for i = 1, . . . , n. Thus, we obtain

uK(x) · uK(y)−1 = v(x0, x1) · v(x1, x2) · . . . · v(xn−1, xn) ∈H ′
K,

because H ′
K is a subgroup of GK . Since we can choose H ′

K arbitrarily close to
H(ρ)K , we see that uK(A(ρ))⊂H(ρ)K .

(d) Assume the contrary. The reduction of H :=H(ρ) is a linear group, because
the reduction of A(ρ) is rational. Since we assumed that the residue field k is al-
gebraically closed, the canonical reduction ˜H of H is a product of a torus ˜T and a
unipotent group ˜U by the theorem of Chevalley.

Then denote by Ω the subset of HK consisting of all the points which special-
ize in ˜H outside {ẽT } × ˜U , where ẽT ∈ ˜T is the unit element of ˜T . The preimage
u−1
K (Ω) ⊂ A(ρ) is a quasi-compact subdomain of A(ρ)K . Since H(1) has unipo-

tent reduction, A(1) is disjoint from u−1
K (Ω). Due to the maximum principle the

assumption implies that there exists a maximal β ∈ |K×| with 1 > β ≥ ρ such that
uK(A(β))∩Ω 
= ∅.

So the reduction ˜H(β) contains a torus. Indeed, otherwise we would have
uK(A(β)) ⊂ H(β)K due to (c) and hence uK(A(β)) would not meet Ω , because
the reduction ˜H(β) would be contained in {ẽT } × ˜U . Thus, the reduction map
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˜H(β)→ ˜H(ρ)→ ˜T followed by the projection onto the torus is not constant. In
particular, the reduction map ˜A(β)→ ˜T is not constant.

We may assume that its restriction to A(β)+ is not constant; otherwise, con-
sider A(β)−. The reduction of A(β)+ is isomorphic to Gm,k and hence the mor-
phism of the reductions is given by a multiplicative group homomorphism ϕ̃ up to
a constant of ˜H(ρ). Due to Proposition 5.6.7 the map ϕ̃ lifts to a homomorphism
ϕ : Gm,K → H(β)K . Then it follows from Proposition 7.3.1 that ϕ extends to a
group homomorphism ϕ :Gm,K →GK . Thus, we can write

uK =wK · (ϕ ◦ ξ) :A(ρ)−→GK

such that wK |A(β)+ has a reduction, which maps to the unipotent part ˜U . In partic-
ular, wK |A(β)+ generates a subgroup H ′

K with smooth formal R-model H ′, which
has unipotent reduction. The underlying rigid analytic variety is a d-dimensional
polydisc, so we can enlarge H ′

K by a polydisc D′K with H ′
K � D′K due to Corol-

lary 3.6.18. Since D′K generates an open subgroup H ′′
K , which has a smooth for-

mal R-model with unipotent reduction due to Theorem 7.2.3, we see that there is a
γ > β such that wK |A(γ )+ generates a similar subgroup with unipotent reduction.
Thus, uK |A(γ )+ generates a subgroup with a non-trivial torus part which is induced
by (ξ ◦ ϕ)|A(γ )+ . This implies a contradiction to the maximality of β .

(e) Due to (b) it suffices to show u(A(ρ)) ⊂ H(ρ)K for all ρ ∈ |K×| with
1 ≥ ρ > α. Since the reduction of H(ρ) is unipotent by (d), the assertion follows
from (c). �

Proof of Theorem 7.4.1. The group H(1) := 〈A(1), u〉 has linear reduction. If
the reduction ˜H(1) of H(1) is unipotent, the map uK maps CK into GK by
Lemma 7.4.4(e), and hence the assertion is true.

If the reduction of H(1) is not unipotent, it contains a non-trivial maximal torus
part ˜T . By the theorem of Chevalley, ˜H(1) splits into a product of ˜T and a unipotent
group ˜U ; cf. [15, 9.2/2]. Then the reduction map

ϕ̃ :Gm,k

ξ̃−1

˜A(1)
ũ
˜H(1)

p
˜T

followed by the projection is not constant and hence a non-trivial group homo-
morphism, because uK(x0) = e and ξ(x0) = 1. Due to Proposition 5.6.7 the map
lifts to a group homomorphism ϕ : Gm,K → H(1)K . Since A(1) � CK , the image
uK(A(1))�GK is relatively compact in GK . Thus, it extends to a group homomor-
phism ϕ :Gm,K →GK by Proposition 7.3.1. Now consider the map

wK := uK · (ϕ ◦ ξ)−1 : CK −→GK, x �−→ uK(x) · ϕ
(

ξ(x)
)−1

.

The group 〈A(1),wK 〉 has unipotent reduction and 〈A(1),wK 〉 ⊂H(1)K , because
ϕ(Gm,K)⊂H(1)K . Thus, it follows from Lemma 7.4.4(e) that wK maps CK to GK

as discussed before. �
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7.5 Stable Reduction of Relative Curves

In this section we will show the stable reduction of rigid analytic curve fibrations. As
before let K be a non-Archimedean field with valuation ring R and SK be a normal
quasi-compact rigid analytic space. By a smooth rigid analytic curve fibration we
mean a quasi-compact, separated, smooth rigid analytic morphism fK : CK → SK
with purely 1-dimensional fibers. We say a model f : C→ S over SpfR of such a
fibration has semi-stable reduction if f is flat and if its geometric fibers are reduced
and have at most ordinary double points as singularities. The geometric meaning
of such singularities for the rigid analytic fibers is completely clarified in Proposi-
tion 4.1.12. For the existence of such models one has to allow certain extensions of
the base SK . Therefore, we introduce the following notions.

Definition 7.5.1. Let fK : XK → SK be a morphism of quasi-compact, separated
rigid analytic spaces. We say fK admits locally for the rigid analytic topology or
for the rigid analytic étale topology, respectively, on SK a model with a certain
property if there exists a quasi-compact surjective morphism S′K → SK which is
locally with respect to the rigid analytic topology on S′K an open immersion or
étale, respectively, such that fK ×SK S

′
K has a model with that property. Sometimes

it is necessary, in addition, to localize XK after such a base change, then we will
call it locally (étale locally) on SK and locally on XK .

For proper smooth curve fibrations the existence of semi-stable models follows
from the compactness of the moduli space of stable curves.

Theorem 7.5.2. Let SK be an affinoid space and fK : CK → SK a smooth projec-
tive rigid analytic curve fibration with connected geometric fibers. Let s1, . . . , sn :
SK → CK be sections of fK for some n≥ 3, which do not meet each other.

Then, étale locally on SK , there exists a semi-stable model f : C→ S of fK such
that the sections s1, . . . , sn extend to sections σ1, . . . , σn : S→ C, which factorize
through the smooth locus of C/S and do not meet each other.

Actually, one can choose f : C→ S as an n-marked stable curve with respect to
the sections σ1, . . . , σn; cf. Definition 4.4.2.

Proof. We deduce the assertion from the existence of the algebraic stack which
classifies n-marked stable projective curves.

Deligne and Mumford have shown in [21, Theorem 5.2] that there exists the
moduli space Mg classifying stable curves of genus g for g ≥ 2 as an algebraic
stack which is smooth and proper over SpecZ. Later Mumford and Knudsen proved
in [54, 77] and [53] that there exists a moduli space Mg,n classifying n-marked
stable curves if 2g + n ≥ 3 as an algebraic stack which is smooth and proper over
SpecZ; cf. [53, II, Theorem 2.7]. The moduli space Mg classifying smooth curves
of genus g is a dense open substack of Mg , likewise for Mg,n.

In our application we perform the base change SpecR → SpecZ and con-
sider the algebraic stack Mg,n only over SpecR. There exists an étale cover-
ing U →Mg,n and a “universal” n-marked stable curve C → U over U , where
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U is a smooth R-scheme of finite type equipped with an “equivalence relation”
R = Isom(p∗1C,p∗2C) = U ×

Mg,n
U −→ U × U , which is a finite and unramified

morphism of schemes and whose projections R→ U are étale surjective; cf. [21,
1.11].

With these tools our assertion can be verified in the following way. We choose
an admissible R-algebra A with AK = A ⊗R K . Then we put S = SpfA and
S = SpecA. We can view SK as the set of closed points in the complement S − S0,
where S0 := SpecA/Aπ . Due to the GAGA-principle in Theorem 1.6.11 the curve
CK → SK is induced by a smooth projective n-marked curve CK → SK , where
SK = Spec(A⊗R K). So our morphism fK and our sections give rise to a mor-
phism SK →Mg,n.

Then we obtain the étale cover p1 : S1
K := SK ×Mg,n

U→ SK and the morphism

p2 : S1
K → U . The pull-back p∗1CK and the pull-back p∗2C of the universal curve

C→ U become isomorphic over S1
K .

Now we choose an affinoid subdomain S′K in S1
K which is étale surjective

over SK . In fact, since S1
K is of finite type over SK , we can consider this as a rigid

analytic space over SK . Since SK is quasi-compact, there exists a finite collection
of open affinoid subschemes which cover SK , and hence the disjoint sum of these
subdomains is an affinoid space S′K which maps étale surjective to SK . For the fol-
lowing we replace SK by S′K .

Next we choose some R-model S of SK . Then we can consider the schematic
closure Γ ⊂ S ×R U of the graph of p2 : SK → U . The projection p1 : Γ → S is an
isomorphism over SK . By the flattening technique there exists a blowing-up S′ → S

with center in the special fiber S0 such that the strict transform p′1 : Γ ′ → S′ is
flat. Then p′1 is an open immersion, and hence an isomorphism, because the moduli
space Mg,n is proper over SpecZ and R→ U × U is finite. Thus, we see that the
pull-back p∗2C of the universal curve C under the projection p′2 : Γ ′ → U gives rise
to an extension of CK to an n-marked stable curve over S′ which extends the given
curve CK and its n sections. �

Remark 7.5.3. (a) The essential ingredient in the proof of Theorem 7.5.2 is the
result of Deligne and Mumford. One can avoid to use the stack Mg,n but one has to
worry about combinatorial problems.

In fact, if g = 0 and n= 3 there is nothing to show, because CK ∼= P
1
SK

and the
three points are identified with the points 0,1,∞.

If n ≥ 4, then one adds the points one by one. To add a point one refines the
base space SK with respect to rational coverings and introduces relative annuli in
the manner of Lemma 2.4.5 if the distance of two sections comes below a certain
value, which is identified by the sections already treated.

In the case g ≥ 1 the result of Deligne and Mumford provides a stable model
C→ S of CK → SK . If g = 1, then one has n ≥ 1 and their result works as well.
Now if n ≥ 1, one faces similar combinatorial problems as in the case g = 0. On
the one hand one has to introduce blowing-ups in the relative singular locus. On the
other hand one has to blow-up the locus where two sections specialize to the same
point.
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(b) One can also avoid the complicated use of stacks by the following idea of
Gabber; cf. [20, §3]. Let g ≥ 1 and 2g−2+n≥ 1. As in the proof of Theorem 7.5.2
let Mg,n be the algebraic stack over SpecZ classifying n-marked stable curves of
genus g. Let Mg,n ⊂Mg,n be the open sub-stack which classifies smooth n-marked
projective curves. Let � be a prime number �≥ 3 and different from the character-
istic of the residue field k. Let

Mg,n,� −→Mg,n[1/�] =Mg,n ×Z Z[1/�]
be the finite étale cover given by trivializing the �-torsion of the Jacobian of the
universal curve of genus g over Mg,n[1/�]. Note that Mg,n,� is a scheme Mg,n,�;
cf. [20, 3.7]. Finally, let

Mg,n,� −→Mg,n[1/�] :=Mg,n ×Z Z[1/�]
be the normalization of Mg,n[1/�] in the function field of Mg,n,�. Note that
Mg,n,� =Mg,n,� is a projective scheme over Z[1/�]; cf. [20, 3.7]. By pulling back
from Mg,n[1/�] one obtains a “universal” stable n-marked proper curve of genus g
over Mg,n,�.

Then we can proceed as in the proof of Theorem 7.5.2 by replacing U by Mg,n,�.
After a finite étale extension S′K → SK one can add a level �-structure to the given
curve CK → SK . In this case it is evident that the pull-back of the universal curve
coincides with the given curve over S′K ×Mg

U , because Mg,n,� is a fine moduli
space.

The case of not necessarily proper rigid analytic curve fibrations will be reduced
to Theorem 7.5.2 by showing the following compactification theorem, which in-
volves the approximation techniques provided in Sect. 3.6.

Theorem 7.5.4. Let fK : XK → SK be a smooth rigid analytic curve fibration.
Then, étale locally on SK and locally on XK , there exists a smooth projective
SK -compactification; i.e., in the local sense as defined above there exists an SK -
embedding XK ↪→ PK of XK into a flat SK -curve which is smooth and projective
over its image in SK ; cf. Definition 7.5.7.

The proof, which is pretty hard, is done in three steps. First, one shows that, after
a suitable base change, there exists a flat model f :X→ S of fK which has reduced
geometric fibers; cf. Theorem 3.4.8.

Then we compactify such a formal morphism with respect to a topology, which is
given by subschemes of the special fiber of S and which is finer than the given one.
This is somehow an infinitesimal compactification. This part is formally algebraic
and not very hard.

As a final step we use approximation arguments in order to provide a compact-
ification with respect to the rigid analytic topology. This is done by approximating
morphisms to Hilbert schemes and by applying the approximation technique in The-
orem 3.6.7.
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Let us start with the second step. We want to compactify formal relative curves
with reduced geometric fibers. We will do this only on certain formal levels, where
the ideals defining these formal structures may be different from the ideal of defini-
tion we started with.

Proposition 7.5.5 (Infinitesimal compactification). Let f : X→ S be a flat affine
morphism of formal schemes with reduced geometric fibers which are equidimen-
sional of dimension 1. Then there exists a stratification

S0 := S1
0 ∪ · · · ∪ Sr0

of the special fiber S0 by subschemes S�0 of S0 and a rig-étale cover S′ → S of S such
that X′ =X×S S

′ admits a projective compactification P� over the formal comple-
tion of S′ with respect to each stratum S

�

0 for �= 1, . . . , r . The compactification can
be chosen to be smooth at infinity. Moreover, there exists a closed subscheme Δ� of
P� which is an ample relative Cartier divisor on P� .

This statement needs some explanations. Consider an open subscheme U of S
such that S�0 is closed in U0. So there exists a sheaf J of open ideals of OU such
that JOU0 has the vanishing locus S�0 . Over the completion ̂U(J ) of U with respect
to J , there exists a projective ̂U(J )-compactification of X; i.e., of X ×S

̂U(J ),
which is smooth at infinity.

In particular, if U ′ is an open subscheme of S′, whose special fiber U ′0 is mapped
to S�0 , there exists a formal compactification of X×S U

′ with respect to the ideal of
definition πOU ′ . The latter is an S-compactification of X over U ′. For the proof of
Proposition 7.5.5 we first provide an infinitesimal compactification around a given
point s of S0. Then the assertion of Proposition 7.5.5 follows by Noetherian induc-
tion.

Lemma 7.5.6. In the situation of Proposition 7.5.5 let s be a point of S0, and
denote by s its schematic closure in S0. Let J be a finitely generated open ideal
of OS whose vanishing locus is s. In the following we denote by the index “n” the
reduction modulo J n for n ∈N. Then there exists

(i) an open neighborhood U of s in S and a rig-étale cover U ′ →U ,
(ii) a projective flat U ′(n)-scheme P ′(n)→U ′(n) together with an open immersion

X′(n) ↪→ P ′(n) such that

(a) the geometric fibers of P ′(n)/U ′(n) are reduced,
(b) P ′(n) is smooth over U ′(n) at P ′(n)−X′(n),
(c) X′(n) is U ′(n)-dense in P ′(n),
(d) there exists a U ′(n)-ample invertible sheaf OP ′(n)(Δ(n)), where Δ(n) is an

effective relative Cartier divisor, which contains P ′(n)−X′(n) and which
is contained in the smooth locus of P ′(n).

In particular, if n varies, the schemes P ′(n) and the divisors Δ′(n) can be chosen
in a coherent way; i.e., they constitute a formal scheme ̂P ′(J ) and a relative Cartier
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divisor ̂Δ′(J ) on ̂P ′(J ) over the J -adic completion ̂U ′(J ) of U ′. In particular,
̂P ′(J ) is projective over ̂U ′(J ).

Proof. Let � be the residue field k(s) of the given point s.
First we consider the case, where the characteristic of � is p > 0. Then there

exists a finite radical field extension �′/� such that the natural normal compactifi-
cation X×R �′ of X ×R �

′ is smooth at infinity and such that the points at infinity
have residue fields which are étale over �′. We can also suppose that there is a closed
subscheme Δ′ of X×R �′, which is an ample relative Cartier divisor and which con-
tains the complement of X×R �

′. We choose an affine open neighborhood V (�′) in
X×R �′ of infinity.

We can realize �′ as an extension of � by adjoining elements α1, . . . , αr , which
satisfy equations of the type

αp
e(�)

� = a�, where a� ∈ �× for �= 1, . . . , r.

After replacing S by an open neighborhood U of s, we may assume that a1, . . . , ar
are induced by invertible sections a1, . . . , ar of OS . Let S∗ → S be the admissible
formal blowing-up of the ideal (p,J 2). Then consider the open subschemes

S∗(1) := {s∗ ∈ S∗;J 2 is generated by p at s∗
}

,

S∗(2) := {s∗ ∈ S∗;p is contained in J 2 at s∗
}

.

Now look at the finite rig-étale map

S∗(1)←− V
(

αp
e(�)

� − a�
)⊂D

r
S∗(1)(α1, . . . , αr),

where (α1, . . . , αr) are the coordinate functions on D
r
S∗ , which is rig-étale, because

p is invertible over S∗(1)rig. In the case of S∗(2) we may assume that J 2 is princi-
pal; say generated by an element b ∈OS∗(S∗(2)). Then look at the finite map

S∗(2)←− V
(

αp
e(�)

� − bα� − a�
)⊂D

r
S∗(2)(α1, . . . , αr),

which is rig-étale, because p = b2c for some c ∈OS∗(S∗(2)). So we see that there
exists an open neighborhood U of s and a rig-étale cover S′ → S such that every
point in S′ above s has residue field �′.

If the characteristic is zero, it is evident that there exists an étale extension S′ → S

and an open neighborhood U of s such that every point in S′ above s has residue
field �′.

Now we assert that after a suitable shrinking of U there exists a flat projective
U ′-scheme, which satisfies the assertion of the lemma.

Indeed, let s′ be the reduced pull-back of s in S′. We have a projective compact-
ification P(s′) of X(s′) over s′ which is smooth at infinity and we have a Cartier
divisorΔ(s′) on P(s′), which is étale over s′ containing infinity and which intersects
every irreducible component of P(s′) in the required way. There exists a coherent
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open ideal J ′ of OS′ which is of finite type with V (J ′)= V (JOS′) such that, after
shrinking U , the compactification P(J ′) and the Cartier divisor Δ(J ′) exists over
U ∩ V (J ′). Moreover, we may assume that the affine open neighborhood V (s′) in
P(s′) of infinity is defined over U ∩ V (J ′), say V ∗ → U ∩ V (J ′), and that it is
smooth over U ∩ V (J ′).

Since J ′/JOS′ is nilpotent, we can lift everything to a smooth affine scheme V ′
over U ∩ V (JOS′). Likewise we can lift the gluing map of X ×U V (J ′) and V ∗,
which defines P(J ′), to a gluing map of X ×U V (JOS′) and V ′. Thus, we obtain
a proper flat relative curve P ′ over U ∩ V (JOS′). Likewise we can lift the relative
Cartier divisor Δ(J ′) to a relative Cartier divisor Δ′ on P ′. Since Δ′ is ample, P ′ is
projective over U ∩ V (JOS′). By a similar procedure one lifts from U ∩ V (JOS′)
to the level U ∩ V (J nOS′) for every n ∈N. �

Proof of Proposition 7.5.5. If the residue field of R has characteristic zero, it is easy
to see that there exists a stratification of S0 such that X0 admits a compactification
over the strata, which are smooth at infinity. Indeed, take a normal projective closure
of X over (generic) points in S0. The infinitesimal compactification at such a point
can be constructed from such a compactification by a lifting procedure as described
at the end of the proof of Lemma 7.5.6. The existence of the stratification follows
by Noetherian induction on S0.

In the case, where the residue field of R has positive characteristic, one has to
perform a base change S′ → S as described in the proof of Lemma 7.5.6 in order
to get compactifications which are smooth at infinity. The method of Lemma 7.5.6
gives us a coherent system of compactifications on every level and hence a formal
compactification as desired. As above the existence of the stratification follows by
Noetherian induction on S0. �

As a next problem we will discuss the third step; namely, to provide a compact-
ification of X/S with respect to the rigid analytic topology, which is coarser than
the one considered in Proposition 7.5.5. Since we have to work locally on X, we
introduce the following definition.

Definition 7.5.7. Let X→ S be a flat morphism of admissible formal schemes.
Assume that the associated rigid analytic morphism XK → SK is a smooth rigid
analytic curve fibration.

X is said to be S-compactifiable if there exists an open S-immersion of X into
a flat projective formal relative curve C→ U , where U is the image of X under
the morphism X→ S and where the associated rigid analytic curve CK → UK is
smooth.

X is said to be locally S-compactifiable if for every closed point x0 of X0 there
exists an open neighborhood V which is S-compactifiable.

If U is an open subscheme of S and if X×S U is (locally) compactifiable over U ,
we say X is (locally) S-compactifiable over U .

Proposition 7.5.8 (Extension of compactifications). Let X→ S be an affine flat
morphism of admissible formal schemes such that the associated rigid analytic map
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XK → SK is a smooth rigid analytic curve fibration. Let V = Spf(B) be an open
affine subscheme of X which is faithfully flat over an open affine subscheme U =
Spf(A) of S. Assume that V is S-compactifiable.

Then, after base change by an admissible formal blowing-up S′ → S, there exist
an admissible formal blowing-up X′ → X and an open subscheme V ′ of X′ such
that the schematic closure of (X′ ×X V )0 is contained in V ′0 and such that V ′ is
S-compactifiable.

The last condition means that VK �XK
V ′K for the generic fibers; i.e., VK is

relatively compact with respect to XK contained in V ′K .

Proof. Consider the following situation:

V C P
N
U

U

where V ↪→ C is an open U -immersion into a flat projective formal U -curve C with
smooth rigid analytic fibers and where C is immersed into P

N
U by a very ample line

bundle. We may assume that U is connected; then the fibers of C0 over U0 have a
constant Hilbert polynomial Φ with respect to the given very ample invertible sheaf.
We may assume that the degree d with respect to the embedding into P

N of a fiber
of C/U satisfies d ≥ (2g − 1), where g is the genus of the rigid analytic fibers.

Due to Grothendieck’s formal GAGA [39, III1, 5.4], the morphism C→ U is
induced by an algebraic morphism C −→ U = SpecA, where C is a closed sub-
scheme of PN

U
, which is flat over U with Hilbert polynomial Φ . Let H be the Hilbert

scheme parameterizing subschemes of PN
Z

with Hilbert polynomial Φ . Note that H
is proper over Z; cf. [15, §8.2/9]. The morphism C→U corresponds to a morphism
ϕ :U→H , and hence to a morphism ϕ :U→H .

Now consider the associated rigid analytic situation

VK CK P
N
UK

UK.

Over the rigid analytic part, the family CK → UK is assumed to be a flat family
of smooth curves of genus g. Let H ⊂ H be the open subscheme parameterizing
smooth curves of genus g in P

N
Z

. Note that H ⊗Z K is a K-scheme of finite type
and denote by HK the associated rigid analytic space. Thus, due to Proposition 3.6.6
the rigid analytic space HK has no boundary; i.e., every quasi-compact open rigid
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analytic subvariety of HK is relatively compact in HK . Moreover, HK is smooth
over K due to Lemma 7.5.9 below.

Thus, there exists an admissible formal blowing-up H ′ →H ⊗Z R and a quasi-
compact formally open subscheme Y of H ′ such that its associated rigid analytic
space YK is contained in HK and such that ϕ factorizes through Y with relatively
compact image in Y . Thus, we can assume that we have morphisms

U
ϕ−→ ˜Y � Y −→H ′.

Let λ1 ∈ N be an integer such that the A-algebra B , which is associated to V ,
satisfies the property of Proposition 3.6.9. Due to Theorem 3.6.7 there exist an ad-
missible formal blowing-up S′ → S and an open subscheme U ′ of S′ such that the
schematic closure of (U ×S S

′)0 in S′0 is contained in U ′0, and there exists a mor-
phism ϕ′ : U ′ −→ Y such that ϕ′|UK extends to a morphism ϕ′ : U → ˜Y and such
that ϕ′ coincides with ϕ up to the level λ= λ1.

We may replace S′ by S. Let C′ → U ′ be the curve, which is obtained by the
pull-back of the universal curve over H ′ or H ⊗Z R via the morphism ϕ′. Set

D := C′ ×U ′ U.

Due to the universal property we have a Uλ-isomorphism

Cλ Dλ

Uλ.

The open immersion Vλ ↪→ Cλ ˜−→Dλ induces an isomorphism Vλ ˜−→Wλ, where
Wλ is an open affine subscheme of Dλ. By Proposition 3.6.9 we see that this iso-
morphism lifts to an isomorphism V ˜−→W , where W is the open subscheme as-
sociated to Wλ. Thus, we have that the open immersion Vλ ↪→Dλ lifts to an open
U -immersion

V D

U.

Now we want to apply Theorem 3.6.7 to the situation

ϕ : V →D ↪→ C′.

The image of ϕ is relatively U ′-compact in C′, because C′ is proper over U ′. Fur-
thermore, ϕK is an open immersion. Then it follows from Theorem 3.6.7 that there
exist an admissible formal blowing-up X′ →X, an open subscheme V ′ of X′ and a
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morphism ϕ′ : V ′ → C′ such that the schematic closure of (X′ ×X V )0 is contained
in V ′0 and such that ϕ′K is an open immersion. By Corollary 3.3.8(c) there exists
an admissible formal blowing-up C′′ → C′ such that, after taking strict transforms,
ϕ′ ×C′ C′′ is an open immersion. Finally, choose an admissible formal blowing-up
of S′ to make the model C′′ flat over S′; cf. Theorem 3.3.7. This completes the proof
of the extension of compactifications in Proposition 7.5.8. �

Lemma 7.5.9. Let g,d ∈ N be integers. Fix some projective space P
N
Z

and let
H(d,g,N) be the Hilbert scheme parameterizing closed subschemes of PN which
are smooth curves of genus g and of degree d . Then H(d,g,N) is smooth over Z if
d ≥ 2g− 1.

Proof. One can test the smoothness by the criterion using Artinian rings; cf. [40,
Exp. III, Theorem 3.1]. Thus, it suffices to show the infinitesimal lifting property of
smooth curves and the lifting property of the closed embedding into P

N . The lifting
of curves follows from [40, Exp. III, Theorem 6.3]. The lifting of the embedding
follows from the lifting property of relative Cartier divisors; use [39, 0IV, 15.1.16]
and the vanishing of the H 1(C,OC(Δ)) for a divisor Δ of degree d ≥ (2g − 1) on
a curve of genus g. The latter follows from Serre’s duality theorem. �

Proof of Theorem 7.5.4. A first major step is done by the reduced fiber theorem in
Theorem 3.4.8. Thus, we may assume that the curve fibration fK :XK → SK has a
flat R-model f :X→ S with reduced geometric fibers. Since the assertion is local
on X and on S, we may assume that X0 and S0 are affine and that f is faithfully
flat. Due to Proposition 7.5.5 we may assume that, in addition, there exists a finite
partition of S0

S0 = S1
0 ∪ S2

0 ∪ · · · ∪ Sr0
by affine (locally closed) subschemes such that there exists a compactification of
X/S over the completion of S with respect to the strata S�0 for � = 1, . . . , r , which
is smooth at infinity. Furthermore, we can choose the subschemes of the following
special type:

S1
0 :=
{

s ∈ S0;f 1
0 (s) 
= 0

}

,

S
�

0 :=
{

s ∈ S0;f j

0 (s)= 0 for j = 1, . . . , �− 1 and f �

0 (s) 
= 0
}

,

where f � ∈O(S) and where f �

0 denotes the restriction of f � to S0. For ε1, . . . , εr
in
√|K∗| with ε� < 1, which will be specified later, we define open subvarieties

SK(1) :=
{

s ∈ SK ;
∣

∣f 1(s)
∣

∣≥ 1
}

,

SK(1)′ :=
{

s ∈ SK ;
∣

∣f 1(s)
∣

∣≥ ε1
}

,

SK(�) :=
{

s ∈ SK ;
∣

∣f j (s)
∣

∣≤ εj for j = 1, . . . , �− 1 and
∣

∣f �(s)
∣

∣≥ 1
}

,

SK(�)
′ := {s ∈ SK ;

∣

∣f j (s)
∣

∣≤ εj for j = 1, . . . , �− 1 and
∣

∣f �(s)
∣

∣≥ ε�
}

.
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Then {SK(1)′, . . . , SK(r)′} is an open affinoid covering of SK such that
SK(�)⊂ SK(�)

′ for � = 1, . . . , r . Note that we have an S-compactification of X
over S(�), where S(�)→ S is a model of SK(�) ↪→ SK . Now it follows from Propo-
sition 7.5.8 that we can choose ε1, . . . , εr such that XK admits locally a smooth
projective compactification over SK(�)′ for i = 1, . . . , r .

Indeed, let U = S(1) and consider V = X ×S U which is S-compactifiable
over U . Due to Proposition 7.5.8 there exist admissible formal blowing-ups S′ → S

and X→ (X ×S S
′) and there exists an open subscheme V ′ of X′, which contains

the schematic closure (X′ ×X V )0 in X′0 and which is S-compactifiable. Then let
ε2

1 be the maximum of f1 on the complement of (X′ ×X V )0 in X′0. After we have
found a suitable ε1 < 1, we turn to SK(2) and start the same procedure as before
to find ε2 with ε2 < 1 and so on. It is clear that this implies the assertion of Theo-
rem 7.5.4. �

The stable reduction theorem for smooth rigid analytic curve fibrations can easily
be deduced from Theorems 7.5.2 and 7.5.4.

Theorem 7.5.10. Let fK :XK → SK be a quasi-compact separated smooth rigid
analytic curve fibration over a normal rigid analytic space SK .

Then, étale locally on SK and locally on XK , there exists a semi-stable model
of fK ; i.e., a formal model f :X→ S of fK such that f is flat with geometrically
reduced fibers such that its singularities are at most ordinary double points.

Proof. Due to Theorem 7.5.4 we may assume that fK is compactifiable by a smooth
projective curve f K :XK → SK . Moreover, we may assume that fK admits an R-
model f :X→ S which is flat with reduced geometric fibers. Thus, we may assume
that f admits sections, and hence that the geometric fibers of f are connected by
[39, IV3, 15.6.4]. Thus, we may assume that every fiber of X/S is marked by sec-
tions σ1, . . . , σn ∈ X(S), which factorize through the smooth locus of X/S and do
not meet each other, such that every irreducible component of the smooth part of
every fiber of X/S is marked by at least three of them.

Now by Theorem 7.5.2, after replacing SK by an étale cover, there exists a n-
marked stable R-model f : X→ S of f K with respect to the sections σ1, . . . , σn.
Moreover, we may assume that S is normal. Then XK is induced by an open formal
subscheme of X, after a suitable blowing-up of S. Indeed, the latter follows from
Lemma 7.5.11 below. With the notation of Lemma 7.5.11 the open subspace XK is
induced by the subscheme V of Y . Thus, we see that V → S is a semi-stable model
of XK → SK . �

Lemma 7.5.11. Let S be a normal admissible affine formal R-scheme. Let X→ S

and Y → S be flat relative formal S-curves with connected and reduced geometric
fibers. Assume that their generic fibers YK → SK and XK → SK are smooth and
that Y → S is proper. Let ϕK :XK → YK be an open SK -immersion.

Let σ1, . . . , σn ∈ X(S) be sections which factorize through the smooth locus of
X/S such that every irreducible component of the smooth part of every fiber of X/S
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is marked by at least three of them. Let τ1, . . . , τn be S-valued points of Y , which
extend ϕK ◦ σ1, . . . , ϕK ◦ σn.

If Y → S is an n-marked stable curve with respect to τ1, . . . , τn, then there exists
an open subscheme V ⊂ Y such that ψK := (ϕK |VK )−1 extends to a surjective S-
morphism ψ : V →X.

Proof. The assertion is true if S is the spectrum of a valuation ring. Indeed, consider
the schematic closure Γ := Γ (ϕK)⊂X×S Y of the graph of ϕK .

Then Γ → S is flat and p1 : Γ → X is surjective, because Y → S and hence
p1 : Γ → X is proper. So Γ is an R-model of XK . The second projection
p2 : Γ → Y is quasi-finite. In fact, assume that there exists an irreducible component
˜Γi of Γk := Γ ⊗R k, which is mapped to a point under p2. There is a component ˜Xi

of X⊗R k such that ˜Γi is mapped surjectively to ˜Xi . However, this is impossible,
because the irreducible component ˜Xi of X⊗R k is marked by at least three of the
points σ1, . . . , σn and Y ⊗R k is also n-marked with respect to the images of these
points.

Let Vk := p2(Γk)⊂ Yk := Y ⊗R k be the image of Γk . If y ∈ Vk , then there exists
an étale neighborhood Y ′k→ Yk of y such that Γk ×Y Y

′
k→ Y ′k is finite. Let Y ′ → Y

be a lifting of Y ′k . Then we have that Γ ×Y Y
′ → Y ′ is finite. Since ϕK is an open

immersion, the projection p2|ΓK : ΓK → YK is an open immersion. Thus, we see
by Zariski’s main theorem [78, Chap. IV, Corollaire 2] that Γ ′ := Γ ×Y Y

′ → Y ′ is
an open immersion, because S is normal, and hence Y is normal. In particular, the
subscheme Vk is open in Yk . Let V ⊂ Y be the lifting of Vk . By faithfully flat descent
we obtain that Γ → V is an isomorphism. Thus, ψ := p1 ◦ (p2|Γ )−1 : V →X is an
extension of ψK and ψ is surjective.

In the relative case we also consider the schematic closure

Γ := Γ (ϕK)⊂X×S Y

of the graph of ϕK and the second projection p2 : Γ → Y . After performing a
suitable admissible blowing-up of S, we may assume that the structure morphism
p : Γ → S is flat. Then the morphism p2 : Γ → Y is an open immersion. Indeed,
if s is a closed point of S0 let R(s)/R be an extension of valuation rings such that
SpecR(s)→ S is an R-morphism, which lifts the closed point s. Thus, we obtain
the base change

Γ

p

p2

Y Γs
ps

p2,s

Ys

S SpecR(s).

Since p is flat, ps is flat as well. As discussed before, p2,s is an open immersion.
Thus, p2 : Γ → Y is quasi-finite. Likewise as before one concludes by Zariski’s
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main theorem that p2 : Γ → Y is an open immersion, because Y is normal and
p2 ⊗R K is an open immersion. Then we see as above that

ψ := p1 ◦ (p2|Γ )−1 : V := p2(Γ )−→X

is an extension of ψK , which is proper and surjective. �

Remark 7.5.12. In [44] Hartl has generalized Theorem 7.5.10 to higher dimen-
sions if the valuation ring R is a discrete valuation ring. He shows that every quasi-
compact smooth rigid analytic space has a rig-étale cover which admits a strictly
semi-stable formal R-model after a suitable finite étale extension of the base ring R.
His proof uses our compactification result in Theorem 7.5.4 to deduce the proof
of his result to the semi-stable reduction theorem for curve fibrations in Theo-
rem 7.5.10. After applying the same procedure to the base of the curve fibration
he shows how to resolve the singularities which occur in such a situation.

7.6 The Structure Theorem

Instead of abeloid varieties, we will more generally study bounded rigid analytic
groups. A smooth rigid analytic group is called bounded if it is quasi-compact and
commutative; for example a proper smooth rigid group is bounded. In this section
we will only present the results; the proofs are postponed to Sect. 7.7.

Theorem 7.6.1. Let GK be a smooth rigid analytic group assumed to be bounded
and connected. After a suitable finite separable field extension of K there exists an
open connected analytic subgroup GK of GK , which admits a smooth formal model
G over R, and there exists a rigid analytic group homomorphism ϕ : TK →GK of a
split affine torus TK =G

r
m,K for some r ∈N to GK with the following properties:

(i) The restriction ϕ of ϕ to the open analytic subtorus T K = G
r

m,K of units of

TK induces a closed immersion T = G
r

m,R ↪→G, which splits in the maximal

formal torus of G.
(ii) There is a bounded part TK(α) of TK with ϕ(TK(α)) ·GK =GK .

The subgroup GK of GK is uniquely determined by these conditions. In partic-
ular, GK is the largest open connected analytic subgroup of GK , which admits a
smooth formal R-model.

The subtorus of units Gm,K of Gm,K is the open analytic subset of Gm,K con-
sisting of the points z ∈ Gm,K with |z| = 1. Denote by EK the push-forward
of GK = EK via the morphism T K ↪→ TK . By Proposition A.2.5 the extension
G→ G/T admits a formal rational section. Therefore, the extension is given by
formal line bundles E1, . . . ,Er , where r is the rank of the maximal subtorus T K of
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GK which extends. Therefore, as in the case of Raynaud extensions in Sect. 6.1 we
have an absolute value function

− log |_| :EK −→R
r , (z1, . . . , zr ) �−→

(− log |z1|, . . . , . log |zr |
)

.

Thus, we obtain a surjective homomorphism p : EK →GK of rigid groups via ϕ.
The kernel M = ker(p) is a discrete subgroup of EK .

Corollary 7.6.2 (Structure theorem). In the situation of Theorem 7.6.1, after a
suitable finite separable field extension of K , there is a canonical isomorphism
GK � EK/M , where EK is an extension of the generic fiber of the smooth for-
mal group scheme B :=G/T by an affine torus TK , and where M is a lattice of EK

of rank equal to the rank of Hom(Gm,K,GK).

The group GK has the following mapping properties; cf. Propositions 5.4.6
and 5.4.8.

Proposition 7.6.3 (Mapping property). In the situation of Theorem 7.6.1, the sub-
group GK has the following property:

(i) Let uK : ZK →GK be a rigid analytic morphism from a connected rigid ana-
lytic space ZK with a K-rational point z0 satisfying uK(z0)= e, where e is the
unit element of GK .

If ZK admits a smooth formal model Z, then uK maps ZK to GK and
uK :ZK →GK extends to a formal morphism u : Z→G.

(ii) Let ZK be a connected affine rig-smooth formal curve which has a semi-stable
model Z with precisely one singular point z̃0. Let ξ : ZK → Gm,K be a rigid
analytic morphism which restricts to a coordinate function on the formal fiber
of Z+(z̃0) of the double point z̃0. Let z0 ∈ Z+(z̃0) be a K-rational point with
ζ(z0)= 1.

If uK : ZK → GK is a rigid analytic morphism, then there exists a unique
group homomorphism ϕ :Gm,K →GK with ϕ(Gm,K)⊂GK such that uK fac-
torizes into uK = (ϕ ◦ ξ) · u · uK(z0), where u : ZK →GK is a rigid analytic
morphism.

In the case of proper groups one can say more:

Theorem 7.6.4. Let GK be a smooth rigid analytic group assumed to be proper
and connected. After a suitable finite separable field extension GK admits a Ray-
naud representation:

(a) There exists a largest open connected analytic subgroup GK of GK which ad-
mits a smooth formal R-model G. The formal group G is an extension of a
formal abelian R-scheme B by a formal torus T .

(b) The canonical maps (restriction and reduction)

Hom(Gm,K,GK) ˜−→Hom(Gm,K,GK) ˜−→Hom(Gm,k,Gk)



344 7 Abeloid Varieties

are bijective. In particular, there exists a rigid analytic group homomorphism
from a split affine torus ϕ : TK →GK with the following properties:

(i) ϕ|T K
induces an isomorphism from T to the maximal torus of G.

(ii) There is a bounded part TK(α) of TK with ϕ(TK(α)) ·GK =GK .

(c) Let EK be the push-forward of GK via the morphism T K ↪→ TK . The map ϕ

induces a rigid analytic group homomorphism p : EK →GK . The kernel of p
is a lattice M of rank dim(T K) and GK is the quotient of EK by M .

This representation of GK is called Raynaud representation in Definition 6.1.5:

M

h

φ

TK ̂GK

q

p

BK =̂ φ′ :M ′ → B ′.

GK = ̂GK/M

In this case every multiplicative group homomorphism Gm,k→Gk of the reduc-
tions lifts to a group homomorphism Gm,R→G of the formal groups and extends to
a rigid homomorphism Gm,K →GK . In general, the latter is not valid for bounded
groups GK ; for example take GK =Gm,K .

If GK is proper, then there is no additive group Ga,k in the reduction of G. This
corresponds to Grothendieck’s Stable Reduction Theorem. That follows from the
fact that the quotient G/T is proper if GK is proper.

From Theorems 7.6.4 and 6.3.3 it follows by using Galois descent that every
smooth proper rigid group has a dual.

Corollary 7.6.5. Let GK be a smooth rigid analytic group which is proper and
connected. Then the rigid analytic Picard functor PicτGK/K

of translation invariant
line bundles is representable by a smooth rigid analytic group G′K , which is proper
and connected.

Furthermore, the dual of G′K is canonically isomorphic to GK .

The representability of PicXK/K of a smooth proper rigid analytic space XK with
potentially semi-stable reduction is shown in [45].

For the remaining part of this section we assume that the non-Archimedean field
has a discrete valuation. In this case there is a theory of formal Néron models;
cf. [16]. A formal Néron model of GK is the largest open subgroup NK , which
admits a smooth formal R-model N ; it depends on the base field K . More precisely,
a formal Néron model of GK is defined by a universal property:
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If fK : ZK → GK is a morphism of rigid analytic spaces, where ZK admits a
smooth formal R-scheme Z, then fK maps ZK to NK and extends uniquely to a
morphism of formal R-schemes f :Z→N .

One can show that every bounded group has a formal Néron model. A formal
Néron model is called stable if its 1-component is compatible with finite separable
field extensions.

Corollary 7.6.6. If GK is a smooth proper rigid analytic group, then there ex-
ists a finite separable field extension K ′/K such that the formal Néron model of
GK ⊗K K ′ has semi-abelian reduction.

In particular, a formal Néron model with semi-abelian reduction is stable.

Corollary 7.6.7. If GK is a smooth bounded rigid analytic group, then there ex-
ists a finite separable field extension K ′/K such that the formal Néron model of
GK ⊗K K ′ is stable.

Remark 7.6.8. Let K be an arbitrary non-Archimedean field with valuation ring R.
Let GK be a connected bounded rigid analytic group with a unit element eK . One
can think of the existence of a marked formal Néron model of GK ; i.e., a connected
admissible open subgroup GK of GK , which has smooth formal R-model G, and
satisfies the universal property:

Let ZK be any rigid analytic spaces, which has a K-rational point z and admits
a connected smooth formal R-scheme Z. If fK : ZK →GK is a morphism of rigid
analytic spaces with fK(z)= e equal to the unit element of GK , then fK maps ZK
to GK and factorizes uniquely to a morphism of the formal R-schemes f : Z→G.

Due to the existence of formal Néron models it exists if R is a discrete valuation
ring. Moreover, our Theorem 7.6.1 implies that such a marked Néron model exists
after a finite separable field extension. Raynaud gave an example of a group GK

such that GK does not admit a marked formal Néron model over the given valuation
ring R with a non-discrete valuation.

As an example, let R0 be a discrete valuation ring with uniformizer π0. Con-
sider an infinite increasing sequence of discrete valuation rings Rn with uniformiz-
ers πn satisfying πn = π3

n+1. Let R be the completion of the inductive limit of

the Rn. Then consider the formal torus Gm,R over R and let GK be the rigid ana-
lytic K-group obtained from Gm,K by twisting the inversion on Gm,K by π0. Then
GK has a marked Néron model G(n) over each Rn. The generic fiber G(n)K of
G(n) is strictly bigger than the one of G(n− 1)K ; namely, G(n)K consists of all
points x ∈K with |1− x| ≤ |πn/√π0|. Thus, when we pass to the limit, there can-
not exist a marked Néron model of finite type over R, because it would already
exists over a some Rn and hence the sequence of the G(n)K would not increase
strictly.

Over the quadratic extension K ′ := K[�] with �2 = π0 there exists a Néron
model with good reduction. For sake of simplicity assume that the characteristic of
the residue field is unequal 2. So the extension R′/R is even tame.
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7.7 Proof of the Structure Theorem

Using Lemma 3.1.13 and Corollary 3.4.3 one easily reduces the proof to the case,
where the non-Archimedean field K is algebraically closed. Therefore, we assume
in the following that K is algebraically closed.

We start with the proof of Theorem 7.6.1 and Corollary 7.6.2.
Let d be the dimension of GK . Since GK is smooth over K , there exists an étale

surjective map

uK :XK −→GK

from a smooth affinoid space XK which admits a flat fibration by smooth affinoid
curves over a smooth affinoid space SK of dimension (d − 1); say

fK :XK −→ SK.

Indeed, sinceGK is bounded and smooth, there exists a finite admissible open cover-
ing by smooth affinoid subvarieties {Ui

K ; i = 1, . . . ,m} of GK such that the module
of differential forms Ω1

GK/K
is generated over Ui

K by differentials dgi1, . . . , dg
i
d ,

where gi1, . . . , g
i
d are holomorphic functions on Ui

K . Let

f iK :Ui
K −→A

d−1
K

be the map given by gi1, . . . , g
i
d−1. Due to Corollary 3.3.8(d) the image of f i

K is an

admissible open subvariety of Ad−1
K ; so we can replace A

d−1
K by the image of f i

K .
Then let fK : XK → SK be the disjoint sum of the maps f 1

K, . . . , f
m
K . This map is

smooth and faithfully flat due to the construction. Due to Theorem 7.5.10 we may
assume that fK admits a model

f :X −→ S

which is faithfully flat with reduced geometric fibers such that their singularities are
at most ordinary double points.

Let Y be the smooth part of X/S. Since X→ S is faithfully flat with geometri-
cally reduced fibers, Y is dense in every fiber of X/S and Y is faithfully flat over S.
After a further étale surjective base change of S, we may assume that Y can be
marked by a finite family of S-sections

σj : S −→ Y ↪→X for j = 1, . . . , n

which meet every connected component of a fiber of Y/S. Let Xj be the open
subscheme of X which is the union of all connected components of fibers of X/S
which meet σj ; cf. [39, IV3, 15.6.4]. After replacing f :X→ S by the sum

∐

(f |Xj
) :
∐

Xj −→
∐

Sj
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of the induced maps f |Xj
:Xj → Sj we may assume that f :X→ S has geometri-

cally connected fibers. Furthermore, we have the section

σ :=
∐

σj : S −→ Y ↪→X.

Then set

X := smooth part of (X/SpfR),

Y := smooth part of (X/S).

Next we apply the same procedure to SK which we did for GK above; i.e., we
choose a smooth fibration of SK by relative curves. In order to do it in a coherent
way, set

f d
K := fK :Xd

K :=XK −→Xd−1
K := SK

f d := f :Xd :=X −→Xd−1 := S

udK := uK :Xd
K −→GK.

Moreover, fix the section

σd−1 = σ :Xd−1 −→ Y ↪→Xd

of f d . Thus, we obtain a morphism

ud−1
K := udK ◦ σd−1

rig :Xd−1
K −→GK.

By the same procedure, after étale surjective base change, we obtain a fibration

f d−1
K :Xd−1

K −→Xd−2
K

by smooth curves, which admits a flat model

f d−1 :Xd−1 −→Xd−2

such that its geometric fibers are reduced and connected and such that the singular-
ities of the geometric fibers are at most ordinary double points. Set

Yd−1 := smooth part of
(

Xd−1/Xd−2).

Also, we fix a section

σd−2 :Xd−2 −→ Yd−1 ↪→Xd−1

of f d−1. Thus, we obtain a morphism

ud−2
K := ud−1

K ◦ σd−2
K :Xd−2

K −→GK.
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Continuing this way, we obtain a system of maps with sections

Xd :=X
uK

f d

GK

Xd−1 := S
f d−1

σd−1

Xd−2

f d−2

σd−2

Xd−3 . . .

σ d−3

X1

f 1
X0,

σ 0

where

f δ :Xδ −→Xδ−1 for δ ∈ {d, . . . ,1}
is faithfully flat with reduced and connected geometric fibers such that the singular-
ities of the fibers are at most ordinary double points. We have sections

σ δ−1 :Xδ−1 → Y δ ↪→Xδ

of f δ for δ = 1, . . . , d , where

Y δ := smooth part of
(

Xδ/Xδ−1).

Moreover, we obtain morphisms

uδ−1
K := uδK ◦ σ δ−1

K :Xδ−1
K −→GK.

After a suitable finite separable field extension, we may assume that every connected
component of X0 is a rational point. For δ = 1, . . . , d put

X
δ := smooth part of

(

Xδ/SpfR
)

Then we let

GK :=
〈

X
d
,udK
〉

be the open admissible subgroup of GK , which is generated by XK . This has a
smooth formal model G over R by Theorem 7.2.3; see Definition 7.2.8 for the no-
tation.

Note that X0 is a disjoint union of rational points after the extension of the base

ring R. Therefore, X0 is smooth over SpfR and hence Y 1 = X
1
. Since each σ δ

maps Xδ−1 into Y δ , the image

σd−1 ◦ · · · ◦ σ δ−1(X
δ−1)⊂X

is contained in the smooth part of X over R. Now consider the map

uδK := uK ◦ σd−1 ◦ · · · ◦ σ δ :Xδ −→GK.



7.7 Proof of the Structure Theorem 349

Then we have that

uδK(x1) · uδK(x2)
−1 ∈GK

for all points x1, x2, which belong to the same connectedness component of X
δ

for

δ = 1, . . . , d . Indeed, σ δ(x) ∈Xδ+1
for x ∈Xδ

, because σ δ(x) belongs to Y δ+1 and
Y δ+1 → Xδ is smooth. Thus, we see that σ δ(x) is a smooth point of Xδ+1. So the
assertion follows from the definition of GK .

Moreover, from Corollary 7.2.9 we can deduce the stronger statement:

Lemma 7.7.1. In the above situation we have that

uδK(x1) · uδK(x2)
−1 ∈GK

for all points x1, x2, which belong to the same connectedness component of the
smooth part of a fiber of Xδ/Xδ−1 for δ = 1, . . . , d ; i.e., of a connectedness compo-
nent of Y δ ×Xδ−1 s, where s is a closed point of Xδ−1.

Proof. The group generated by Xδ via uδK is contained in GK , because the com-

position σ δ ◦ · · · ◦ σd−1 maps X
δ

into X
d
. Then the assertion follows by Corol-

lary 7.2.9. �

Next consider the maximal formal torus

T =G
r

m,R ⊂G.

This torus is split, because the base field K is algebraically closed. T is a lifting
of the maximal torus ˜T ⊂ ˜G of the reduction ˜G of G due to Proposition 5.6.7. The
torus T canonically splits into a product

T = T 1 × T 2.

Here T 1 ∼= G
r1
m,R is the maximal subtorus such that the inclusion G

r1
m,R ↪→G ex-

tends to a group homomorphism G
r1
m,K −→GK . In fact, this follows from Propo-

sition 7.3.1. Indeed, if ϕ : Gm,K → GK is a group homomorphism such that ϕN

extends for some positive integer N , then ϕN(Gm,K)�GK and, ϕ(Gm,K)�GK ,
as well. Thus, it follows from Proposition 5.6.7 that ϕ extends also.

This settles the assertion (i) of Theorem 7.6.1.

Lemma 7.7.2. In the above situation let ϕ : T1 := G
r1
m,K → GK be the extension

of the inclusion T 1 =G
r1
m,K ↪→GK . Then there exists a bounded part T1(α) of T1

such that GK = ϕ(T1(α)) ·GK .

Proof. Firstly, consider two points x1, x2 ∈ CK of a fiber CK of Xδ
K/X

δ−1
K , for

some δ ∈ {1, . . . , d}. Then CK is a rigid analytic curve with semi-stable model
C :=Xδ ×Xδ−1 SpfR(s), where R(s) is the valuation ring of the non-Archimedean
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field K(s) at the base point of the fiber. By Lemma 7.7.1 we know that the group
〈C,uδK 〉 ⊂ GK generated by the smooth part C is contained in GK . Then, Theo-
rem 7.4.1 implies

uδK(x1) · uδK(x2)
−1 ∈ ϕ(T1) ·GK.

Secondly, consider two points x1, x2 ∈XK which belong to the same connected
component of Xd . Then there exists a maximal δ ∈ {0, . . . , d − 1} such that

f δ+1 ◦ · · · ◦ f d(x1)= f δ+1 ◦ · · · ◦ f d(x2) ∈Xδ
K,

because X0
K is a disjoint union of isolated points. For i = 1,2 consider

xi,d := xi,

xi,δ := f δ+1 ◦ · · · ◦ f d(xi) ∈Xδ for δ ∈ {1, . . . , d − 1}.
Thus, we have x1,δ = x2,δ ∈Xδ for some δ ∈ {0, . . . , d}. Therefore

uδK(x1,δ) · uδK(x2,δ)
−1 = e ∈ ϕ(T1) ·GK.

Furthermore xi,δ+1 and σ δ(xi,δ) belong to the same fiber of Xδ+1/Xδ . Thus, we see
by induction

uδ+1
K (xi,δ+1) · uδK(xi,δ)−1 ∈ ϕ(T1) ·GK

by the above reasoning. Since ϕ(T1) ·GK is a subgroup, we obtain

udK(x1) · udK(x2)
−1 = udK(x1,d )u

d−1
K (x1,d−1)

−1 . . . uδ+1
K (x1,δ+1)u

δ
K(x1,δ)

−1

· uδK(x2,δ)u
δ+1
K (x2,δ+1)

−1 . . . ud−1
K (x2,d−1)u

d
K(x2,d )

−1

∈ ϕ(T1) ·GK.

Thirdly, we choose a point zi in every connectedness component of the generic
fiber of the smooth part X ⊂ X; note that the connectedness components are
related to the points in X0. Thus we see by the second step that uK(xi) is
contained in Ui := uK(zi) · ϕ(T1) · GK if xi belongs to the same component
as zi . Since ϕ(T1) · GK is a group, we have that Ui = Uj or Ui ∩ Uj = ∅.
For each connectedness component we need only a bounded part T1(α) with
ϕ(T1(α)) ·GK = ϕ(T1) ·GK =GK . Indeed, the heights of the annuli, which appear
in the fibers of our fibrations is bounded from below, because we deal with finitely
many quasi-compact formal schemes. Thus, the connectedness of GK implies that
ϕ(T1) ·GK =GK , as we will see below. �

We define the push forward

̂GK :=GK ×T 1
T1

by T 1 → T1. Then consider the induced group homomorphism

Φ : ̂GK −→GK, (g, t) �−→ g · ϕ(t),
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for g ∈GK and t ∈ T1 and put

M :=KerΦ ⊂ ̂GK.

Then M is a discrete subgroup of ̂GK , because Φ := Φ|GK
: GK → GK is an

isomorphism and hence GK is a connectedness component of Φ−1(GK). Thus,
M is a lattice in the sense of Sect. 6.1. Since there is a bounded part T1(α) with
ϕ(T1(α)) ·GK = ϕ(T1) ·GK , the lattice M is of full rank. Denote by HK the group
̂GK/M , which is an open admissible subgroup of GK . Moreover, our considera-
tions have shown that GK is disjoint union of finitely many translates of HK , the
connectedness of GK implies HK =GK .

The latter implies the assertion (ii) and Corollary 7.6.2; for the existence of the
quotient G/T see Lemma 5.5.2. The assertion on the uniqueness follows by the
mapping property in Proposition 7.6.3. Hereby we complete the proof of Theo-
rem 7.6.1 and of Corollary 7.6.2. �

We continue with the proof of the mapping property of Proposition 7.6.3.
(i) If G has semi-abelian reduction, the assertion follows from Proposition 5.4.6.

Now consider the general case. The group GK is a quotient EK/M due to Corol-
lary 7.6.2. Since the reduction of Z is irreducible, there exists an element t ∈ TK
and a formal dense open part Z′K ⊂ ZK such that uK(Z′K) ⊂ t ·GK . Indeed, one
can cover GK by finitely many charts U1

K, . . . ,U
n
K of the following type. Take a cell

decomposition of the absolute value set

Δ :=R
r/ log(M)

and denote by U1
K, . . . ,U

n
K the pre-image of such a decomposition.

Due to Proposition 3.1.12 there exists an index j ∈ {1, . . . ,m} and a formal dense
open part Z′K of ZK such that uK(Z′K) ⊂ U

j
K , because the reduction of Z is irre-

ducible. On the chart Uj
K there are the character functions, which do not have zeros.

Thus, we see by Remark 1.4.6 that the absolute value functions of their pull-backs
to Z′K are constant, because the reduction of Z′ is irreducible. If we choose the point
t ∈ TK such that the character functions take the same absolute value at t , then we
see by Theorem 7.2.1 that ZK is mapped to t ·GK . Since uK(z0) = 1, we obtain
that uK(ZK)⊂GK .

(ii) The proof is close to the proof of Theorem 7.4.1 which is a similar state-
ment. In Theorem 7.4.1 we assumed that the map uK is unramified; this assumption
was only made to have the existence of the group H(ρ)K in Lemma 7.4.2. For the
present statement this can be avoided due to the assertion (i) already proved above.

We may assume that ξ(z0)= 1 and that there is an α ∈ |K×| such that |ξ(x)| = α

or |ξ(x)| = 1/α for all x ∈ ZK in the smooth formal part Z of Z. Then, for any
ρ ∈ |K×| with α < ρ ≤ 1 set

ZK(x0) ⊃ A(ρ) := ξ−1
({

z ∈Gm,K ;ρ ≤ |z| ≤ 1/ρ
})

,

ZK(x0) ⊃ A(ρ)+ := ξ−1
({

z ∈Gm,K ; |z| = 1/ρ
})

,

ZK(x0) ⊃ A(ρ)− := ξ−1
({

z ∈Gm,K ; |z| = ρ
})

.
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Since uK(A(1)) is relatively compact in GK , one shows as in Theorem 7.4.1 that
there exists a group homomorphism ϕ :Gm,K →GK such that uK decomposes into

uK = (ϕ ◦ ξ) · uK,
where uK maps A(1) to a unipotent subgroup of GK . After replacing uK by uK
we may assume that uK maps A(1) into a subgroup which admits a smooth for-
mal model with unipotent reduction. Thus, it remains to see that uK maps ZK
to GK . Now we proceed in the same manner as in the proof of Lemma 7.4.4 to
show that uK(A(ρ)) ⊂ GK for all ρ ∈ |K×| with α < ρ ≤ 1. Indeed, the group
H(ρ) := 〈A(ρ)+ ∪A(ρ)−, uK〉 is contained in GK for all ρ ∈ |K×| with α < ρ ≤ 1
due to (i). Thus, we see as in the proof of Lemma 7.4.4(e) that uK(A(ρ))⊂GK for
all ρ with α < ρ ≤ 1. So u−1

K (GK) contains a formal open part of ZK , which is a
neighborhood of the formal fiber Z+(z0). Due to (i) we know that the smooth part
ZK is mapped to GK and hence the whole ZK is mapped to GK . �

Now we turn to the proof of Theorem 7.6.4.
(a) Now we have, in addition, that GK is proper. Denote by B =G/T the quo-

tient of G by the maximal formal torus T of G; cf. Lemma 5.5.2. We will show that
B is proper. Then G has semi-abelian reduction and T is the maximal torus, which
is a lifting of the maximal torus of the reduction G0. In particular, G is a formal
torus extension of B , which is a formal abelian R-scheme.

For this it suffices to show that there is no subgroup of type Ga,k contained in the
reduction of G. Assume the contrary and consider a closed embedding Ga,0 ↪→G0.
Since G is smooth, the closed embedding lifts to a formal morphism DR → G,
where DR is the formal affine line over R.

Let d be the dimension of GK . There exists a closed subvariety BK of an
open neighborhood of the unit element such that BK is isomorphic to a (d − 1)-
dimensional ball Dd−1

K and

D
d
K
∼= (DK ×BK)−→GK, (x, y) �−→ x · y,

is an open immersion. Since GK is proper, we see by Corollary 3.6.18 that there
exists an open immersion D

d
K(c) ↪→ GK of a ball Dd

K(c) into GK , where D
d
K is

relatively compact in D
d
K(c). By Theorem 7.2.3 the d-dimensional ball Dd

K(c) gen-
erates a subgroup with unipotent reduction. Due to Proposition 7.6.3 this subgroup
is contained in GK . Thus, we see that the reduction of the map DK →GK maps to
the unit element, and hence we arrive at a contradiction.

(b) The restriction map is well-defined by Proposition 7.6.3. Moreover, the
isomorphism ϕ : Gr

m,K ˜−→T K extends to a homomorphism ϕ : Gr
m,K → GK by

Proposition 7.3.1, because GK is proper. Thus, we see that the restriction map is
bijective. The reduction is bijective due to the lifting property of tori; cf. Proposi-
tion 5.6.7. The remaining assertion follows from Theorem 7.6.1.

(c) This follows from Corollary 7.6.2. �

The Corollaries 7.6.6 and 7.6.7 follow immediately from the theorems and the
mapping property. Moreover, we know from Proposition 5.4.6 that a formal Néron
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model with semi-abelian reduction is stable. Finally let us give an interpretation of
the induced map from the affine torus TK =G

r
m,K to GK .

Remark 7.7.3. If G′K is the dual of an abeloid variety GK and if G′K admits an

open subgroup G
′
K which has a smooth formal model G

′
with semi-abelian reduc-

tion, whose formal subtorus is split, the map

ϕ : TK =G
r
m,K −→GK

can be presented in the following way: If a = (a1, . . . , ar ) is a basis of H 1(G′K,Z),
then a gives rise to a map

a :Gr
m,K −→GK =G′′K, (t1, . . . , tr ) �−→

(

a1(t1)⊗ · · · ⊗ ar(tr )
)

,

where a(t) is the line bundle given by the cocycle (ζ(t)nij ) ∈H 1(G′K,O
×
G′K

) for a

cycle a = (nij ) ∈H 1(G′K,Z) and ζ is a coordinate function of Gm,K . We view a(t)

as a point of the dual of G′K , which is isomorphic to GK .

Thus, all the statements of Sect. 7.6 are completely proved. �



Appendix
Miscellaneous

A.1 Some Notions about Graphs

Here we fix some notions about graphs which are used in this book. The definitions
are taken form the book of Serre [90].

Definition A.1.1. A graph G consists of sets V = vert(G), E = edge(G), and two
maps

E −→ V × V ; e �−→ (o(e), t (e)),
and

E −→E; e �−→ e,

which satisfy the following conditions: for each e ∈ E we have e = e, e 
= e and
o(e)= t (e).

In this definition an edge is oriented. Sometimes, when it is not necessary to have
an orientation on the graph, we identify e with e. Then we will talk about geometric
edges and geometric graphs, respectively.

An element v ∈ V is called a vertex of G; an element e ∈E is called an (oriented)
edge, e is called the inverse edge of e. The vertex o(e)= t (e) is called the origin of e,
and the vertex t (e)= o(e) is called the terminus of e. These two vertices are called
the extremities of e. We say two vertices are adjacent if they are the extremities of
some edge.

There is an evident notion of morphism for graphs. We say a morphism is injec-
tive if the corresponding maps on the vertices and edges are injective. Moreover,
there is an evident notion of a subgraph of G.

An orientation of a graph G is a subset E+ of the set of edges E such that E is
the disjoint union of E+ and E+. It always exist. An oriented graph is defined, up
to isomorphism, by giving the two subsets V and E+ and a map E+ → V ×V . The
corresponding sets of edges is E =E+ �E+ where E+ denotes a copy of E+.
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Definition A.1.2. Let G be a graph and E = vert(G), E = edge(G). We form a
topological space T which is a disjoint union of V and E × [0,1], where V and
E are provided with the discrete topology. Let R be the finest equivalence relation
on T for which (e, t) ≡ (e, (1− t)), (e,0) ≡ o(e) and (e,1) ≡ t (e) for e ∈ E and
t ∈ [0,1].

The quotient space real(G)= T/R is called the realization of G. The realization
real(G) is a CW-complex of dimension ≤ 1 in the sense of H.C. Whitehead.

Definition A.1.3. A path (of length n) in a graph G is a finite sequence of edges
c= (e1, . . . , en) with t (ei)= o(ei+1) for i = 1, . . . , n− 1. We say that c leads from
o(e1) to t (en). The vertices o(e1) and t (en) are called the extremities of the path. It
is called closed if t (en)= o(e1).

A pair of the form (ei, ei+1)= (ei, ei) in a path is called a backtracking. If there
is a path from v0 to v1 in G, then there is one without backtracking. An infinite path
is a direct limit of paths of finite length; i.e., it is an infinite sequence (e1, e2, . . .) of
edges such that t (ei)= o(ei+1) for all i ∈N.

A graph is connected if every two vertices are the extremities of at least one path.

Definition A.1.4. A circuit (of length n) in a graph G is a finite path c of length n
as in Definition A.1.3 without backtracking such that t (en)= o(e1).

A loop in G is a circuit of length 1.

Definition A.1.5. A tree is a connected non-empty graph without circuits.

Next we list some facts about graphs; for proofs we refer to [90, I.2].

Proposition A.1.6. Let v0 and v1 be two vertices in a tree G. Then there is exactly
one path leading from v0 to v1 without backtracking.

Definition A.1.7. Let G be a graph and let V = vert(G), E = edge(G). Let v be
a vertex and let Ev be the set of edges such that v = t (e). The cardinal n of Ev is
called the index of v.

If n= 0 one says that v is isolated; if G is connected this is not possible unless
V = {v}, E = ∅. If n≤ 1 one says v is a terminal vertex.

Let v be a vertex of G. We denote by G− v the subgraph of G with vertex set
V − {v} and edge set E − (Ev ∪Ev).

Proposition A.1.8. Let v be a non-isolated terminal vertex of a graph G.

(a) G is connected if and only if G− v is connected.
(b) Every circuit of G is contained in G− v.
(c) G is a tree if and only if G− v is a tree.

Let G be a graph. The set of subgraphs of G which are trees, ordered by in-
clusion, is evidently directed. By Zorn’s lemma it has a maximal element; such an
element is called a maximal tree in G.
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Proposition A.1.9. Let T be a maximal tree of a connected non-empty graph G.
The T contains all the vertices of G.

Definition A.1.10. Let G be a connected graph with finitely many edges. Let

v(G) := #(vertG) and e(G) := 1

2
#(edgeG)

be the number of vertices and of geometric edges, respectively. Then we have that
e(g)≥ v(G)− 1. Equality holds if and only if G is a tree. The integer

z(G) := e(G)− v(G)+ 1

is called the cyclomatic number of G.

Note that e(G) is the number of “geometric edges” of G; i.e., number of lines in
the realization real(G) of G. The cyclomatic number equals the first Betti number
of real(G).

Proposition A.1.11. Let G be a connected graph with finitely many edges and let
v0 be a vertex of G. Then there exists a tree ̂G with a vertex v̂0 and a morphism
p : ̂G→G with p(̂v0)= v0 such that the induced map real(̂G)→ real(G) of their
realizations is the universal covering in the sense of topological spaces. The pair
(̂G, v̂0) is uniquely determined up to canonical isomorphism.

We call (̂G, v̂0) the universal covering of G.
The fundamental group π1(real(G), v0) is free and acts as Deck transformation

group on ̂G.

Proof. The proof is done by resolving all the circuits of G.
At first we choose a maximal tree T in G with v0 ∈ vert(T ) and an orientation

A of T . Put T0 = T and let p0 : T0 → G be the inclusion. Then, for each n ∈ N,
we will construct trees Tn with injective maps ιn : Tn→ Tn+1 and surjective maps
pn : Tn→G, where pn+1 : Tn+1 →G restricts to pn. The inductive limit ̂G of the
system (Tn, ιn) with the induced map p : ̂G→G is universal in the sense that each
map from a tree (F,f0) to G, which sends the vertex f0 to v0, factorizes uniquely
through p : (̂G, v̂0)−→ (G,v0), where v̂0 is the limit of the vertices vn+1 := ιn(vn).

We start with T0 := T and p0 := ι, where ι is the inclusion of T into G. Let F be
a copy of T , where we add open edges e+, e− for each e ∈ T − (A∩T ); by an open
edge we mean an edge with one extremity. We put o(e+) := o(e) and t (e−) := t (e).
Note that there is neither t (e+) nor o(e−) defined. Let F+e and F−e be copies of
F for e ∈ A − (T ∩ A). Then we glue F with the new copies by identifying the
open edges e+ of F with e− of F+e and e− of F with e+ of F−e ; i.e., t (e+) := t (e)

in F+e and o(e−) := t (e) in F−e . It is evident how to introduce the reversed edges
of the edges which connect F with the new copies. Thus we end up with a tree
F1 with open edges. By removing the remained open edges we obtain a tree T1,
an evident inclusion ι0 : T0 ↪→ T1, and a surjective morphism p1 : T1 → G. Now
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we can repeat the process by gluing new copies of F along the open edges of F1.
By iterating such constructions we obtain the desired directed system (Tn, ιn)n∈N,
where ιn : Tn→ Tn+1 is the inclusion. Then the inductive limit lim−→(Tn, ιn) is a tree

̂G equipped with a map p : ̂G→G. We leave it to the reader to show the universal
property of (̂G, v̂0).

Let Γ be the free group generated over the edges e ∈A− (T ∩A). Then Γ acts
on ̂G by mapping a generator e ∈A− (T ∩A) to the shift which sends e− to e+.

It is clear that the induced map real(p) : real(̂G)→ real(G) is the universal cov-
ering of real(G). Moreover, the group Γ can be identified with the deck transforma-
tion group of real(p), and hence with the fundamental group π1(real(G), x0), which
is free; cf. [90, I, §3, Theorem 4]. �

A.2 Torus Extensions of Formal Abelian Schemes

In this section we want to give an overview of the theory of torus extensions of
formal abelian varieties. In principle, one can cite the book of Serre [88, Chap. VII],
where the case of algebraic groups is widely explained. We recall the main results
and point out, where some modification have to be made in the formal algebraic
case. As always we mean by a formal scheme an admissible formal scheme over
SpfR. The residue field k of R is assumed to be algebraically closed.

In the following we consider only smooth formal group schemes G,E,B which
are commutative and connected. We write the group laws on G,E multiplicatively
and on B additively. We assume that G is affine and B will be a formal abelian
scheme at the end. A sequence of formal algebraic homomorphisms

0→G→E→ B→ 0

is called strictly exact if it is exact in the usual sense, and if the sequence of their
tangent bundles

0→ tG→ tE→ tB → 0 (A.1)

is exact. The latter means that E→ B is smooth and G→E is a closed immersion.
A strictly exact sequence (A.1) is called an extension of B by G.

As in the algebraic case, two extensions E1 and E2 are isomorphic if there is a
morphism f :E1 →E2 making the diagram

0 G

idG

E1

f

B

idB

0

0 G E2 B 0.

commutative. Then f is automatically an isomorphism.



A.2 Torus Extensions of Formal Abelian Schemes 359

The set of isomorphism classes of commutative extensions of B by G is denoted
by Ext(B,G). It is a contravariant functor in B and a covariant functor in G. Indeed,
for every γ :G→G′ one obtains a commutative diagram

0 G
ι

γ

E

Γ

B

idB

0

0 G′ E′ B 0,

where

E′ := γ∗E :=G′ �G E

is the fibered coproduct in the category of formal group schemes; it is also called
the push-out. This is the quotient of G′ ×E by the image of the closed immersion

(γ,−ι) :G ↪→G′ ×E

which exists in the category of formal group schemes. In fact, it exists on every level
of the formal schemes; that is the algebraic case.

If ϕ : B ′ → B is a homomorphism, one obtains a commutative diagram

0 G
ι

idG

E′

Φ

B ′

ϕ

0

0 G
ι

E B 0,

where

E′ := ϕ∗E :=E ×B B
′

is the fibered product; it is also called pull-back. This exists in the category of formal
group schemes.

On Ext(B,G) one has a law of composition: For E1,E2 ∈ Ext(B,G) set

E1 +E2 := δ∗μ∗(E1 ×E2),

where δ : B→ B × B is the diagonal map of B and μ :G×G→G is the group
law of G. As in [88, VII, §1, Props. 1, 2, 3] we have the results:

Proposition A.2.1. The law of composition defined above turns Ext(B,G) into an
abelian group. If C denotes the category of commutative formal group schemes, the
functor Ext(B,G) is an additive bi-functor on C × C.
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We have two exact sequences:

Proposition A.2.2. Consider the strictly exact sequences of formal algebraic
groups

0→ B ′ → B→ B ′′ → 0,

0→G′ →G→G′′ → 0.

Then the sequence

0→ Hom
(

B ′′,G
)→Hom(B,G)→Hom

(

B ′,G
) d−→

→ Ext
(

B ′′,G
)→ Ext(B,G)→ Ext

(

B ′,G
)

is exact, where d(ϕ) := ϕ∗(B). Similarly, the sequence

0→ Hom
(

B,G′
)→Hom(B,G)→Hom

(

B,G′′
) d−→

→ Ext
(

B,G′
)→ Ext(B,G)→ Ext

(

B,G′′
)

is exact, where d(ϕ) := ϕ∗(G).

An important tool in the theory of extensions of B by G is the notion of a fac-
tor system. This is a morphism of the underlying formal schemes f : B ×B→G

satisfying the relations

f (y, z) · f (x, y + z)

f (x + y, z) · f (x, y) = 1 for all x, y, z ∈ B.

If g : B→ G is a morphism, then the function δ(g) : B × B→ G defined by the
formula

δ(g)(x, y) := g(x + y)

g(x) · g(y)
is a factor system; such a system is called trivial. The classes of factor systems
modulo the trivial ones is denoted by H 2(B,G). A factor system is called symmetric
if

f (x, y)= f (y, x) for all x, y ∈ B.
The classes of symmetric systems is a subgroup H 2(B,G)sym ⊂H 2(B,G).

One can also define a rational factor system; i.e., a rational morphism
f : B ×B ���G which is defined only on a nonempty open subset of the formal
scheme B ×B . It is called trivial if f = δ(g) for a rational morphism g : B ���G.
Thus, we obtain the groups H 2

rat (B,G) and H 2
rat (B,G)sym, respectively. If the

systems are required to be defined on the whole of B , one writes H 2
reg(B,G) and

H 2
reg(B,G)sym, respectively.
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There are important extensions which admit a rational section

0 G E B

s

0.

If s is defined on B , then it is called regular. If it is defined on a dense formally
open subset, then it is called rational. There is the result:

Proposition A.2.3. In the above situation we have:

(a) The group H 2
reg(B,G)sym is isomorphic to the subgroup of Ext(B,G) given by

the formal extensions which admit a regular section.
(b) The group H 2

rat (B,G)sym is isomorphic to the subgroup of Ext(B,G) given by
the formal extensions which admit a rational section.

(c) The canonical homomorphism H 2
reg(B,G)sym→H 2

rat (B,G)sym is injective.

Proof. One can proceed as in [88, VII, §1, Prop. 4] except for the statement that
one can associate a formal group to a formal birational group law. If an extension
G→E→ B admits a rational section s : B ���E, then

f : B ×B ���G,(b1, b2) ��� s(b1 + b2) · s(b1)
−1 · s(b2)

−1,

defines a symmetric rational factor system, as the extension is commutative.
Conversely, to a symmetric rational factor system f : B×B ���G one associates

a birational group law on G×B by setting

(g1, b1) % (g2, b2) :=
(

g1g2f (b1, b2), b1 + b2
)

,

(g, b)−1 := ((g · f (b,−b))−1
,−b)

where we may assume that f (0B,0B)= 1G. Then, similarly as in the proof of [15,
Theorem 5.1/5], this birational law gives rise to a formal group scheme. In fact, the
formal group can be constructed by gluing certain copies (as translates) of the chart
of the open part, where the law of composition is defined. This extension obviously
admits a formal rational section. �

We remind the reader that the push-out of a morphism γ :G→G′ of a rational
factor system f : B × B ���G is given by the group associated to γ∗(f ) := γ ◦ f
and the pull-back of a morphism ϕ : B ′ → B is given by the group associated to
ϕ∗(f ) := f ◦ (ϕ × ϕ).

As before consider an extension with a rational section; say with a regular section
s : U → E, where U ⊂ B is a nonempty open subset of B . Using translates of U ,
one obtains an open covering {Ui; i ∈ I } of B and regular sections si :Ui→E. Let
q : E→ B be the morphism of the extension, then the section si gives rise to an
isomorphism

G×Ui ˜−→q−1(Ui), (x, y) �−→ x · si(y).
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Let GB be the sheaf which associates to an open subset V of B the set Mor(V ,G)
of regular morphisms from V to G. There is a map

ψ :H 2
rat (B,G)sym −→H 1(B,GB), s �−→ (λi,j ) := (sj /si)i,j ,

which associates to a rational section s the class of the cocycle ((sj /si)i,j ).

Proposition A.2.4. The kernel of ψ is H 2
reg(B,G)sym.

A main result for our application is the following statement.

Proposition A.2.5. If G is linear, then H 2
rat (B,G)sym = Ext(B,G).

Proof. In view of Proposition A.2.3, one has to show that every extension E of B
by G has a rational section. It is shown in [88, VII, §1, Prop. 6] that over the special
fiber of the given formal extension there exists a rational section. This follows from
a result of Lang-Tate [58, Chap. V, no. 21]. Indeed, one can view E ⊗B Spec(�)
as a principal homogeneous space under the group G⊗R � over the generic point
Spec(�) of B⊗R k. The set of classes of principal homogeneous spaces over Spec(�)
is isomorphic to H 1(Gal(�sep/�),G(�sep)), where �sep is a separable algebraic clo-
sure of the generic point Spec(�) of the special fiber of B . Since G is commutative
and smooth, G is a successive extension of groups of type G=Gm or Ga . The van-
ishing of H 1(Gal(�sep/�),Gm(�sep)) is a consequence of “Theorem 90” of Hilbert.
The vanishing of H 1(Gal(�sep/�),Ga(�sep)) follows from the normal basis theo-
rem. Thus, let Uk ⊂ Bk be a nonempty open affine subset of the special fiber which
admits a section sk :Uk→Ek . Due to the smoothness of E→ B the section sk lifts
to a formal section s :U→ B . �

Finally, we focus on the case, where B is a formal abelian scheme. Recall form
of Propositions A.2.5 and A.2.4 that we have a canonical morphism

ψ : Ext(B,G)=H 2
rat (B,G)sym −→H 1(B,GB),

where GB is the sheaf of germs of regular maps from B to G. One can determine
the kernel and the image of ψ ; cf. [88, Chap. VII, §3, Theorem 5]. For explaining
the result, we need some notations. For i = 1,2 let

pi : B ×B −→ B be the i-th projection,

ιi : B→ B ×B be the i-th injection defined by the unit element e of B.

Then, via pull-backs, one obtains morphisms

(

p∗1,p∗2
) : H 1(B,GB)×H 1(B,GB) −→ H 1(B ×B,GB×B),

(

ι∗1 × ι∗2
) : H 1(B ×B,GB×B) −→ H 1(B,GB)×H 1(B,GB).
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Then, (ι∗1 × ι∗2) is a left inverse of (p∗1,p∗2). Furthermore, let

mB : B ×B −→ B

be the group law. Thus, for every x ∈ H 1(B,GB) we have the pull-back
m∗B(x) ∈ H 1(B × B,GB×B). One says that an x ∈ H 1(B,GB) is primitive if
m∗B(x) = (p∗1,p∗2)(x, x). In the case G = Gm, the notion “primitive” for a line
bundle L means m∗BL ∼= p∗1L ⊗ p∗2L which is equivalent to L being translation
invariant; cf. [74, II.8 & II.13].

Theorem A.2.6. Let B be a smooth formal group scheme and G be a connected
commutative formal linear group. If every morphism B→G is constant, then the
canonical homomorphism

ψ : Ext(B,G)−→H 1(B,GB)

is injective and its image is the set of primitive elements in H 1(B,GB).

Proof. Let G→E→ B be an extension. The extension E corresponds to a formal
rational factor system f ∈ H 2

rat(B,G) due to Proposition A.2.5. Assume that E
belongs to the kernel of ψ . Then E→ B is a trivial G-torsor. Let s : B→ E be
a regular section of E→ B . After a transformation by a constant we may assume
that s maps the unit of B to the unit of E. Now E corresponds to

f : B ×B −→G,(b1, b2) �−→ f (b1, b2)= s(b1 + b2) · s(b1)
−1 · s(b2)

−1.

The map f is regular on all of B×B and maps B×B to G. Since any map B→G

is constant, f is constant and equal to the unit element. So s : B→E is a group ho-
momorphism, and hence E is the trivial extension. Thus, we see that ψ is injective.
The identification of the image of ψ follows as in [88, VII, §3, Theorem 5]. �

Remark A.2.7. On can even construct the group law on a primitive G-torsor L over
B explicitly; cf. [88, p. 182]. In fact, the isomorphism m∗BL∼= p∗1L⊗ p∗2L gives rise
to a regular function mL : L×L→ L which is compatible with the group law of B .
Indeed, one checks the identity

mL(�1g1, �2g2)=mL(�1, �2)g1g2 for �1, �2 ∈ L, g1, g2 ∈G.
There exists a point e ∈ L projecting to the unit element of B . After applying a
translation by an element of G, one can suppose mL(e, e)= e. Then it follows that
(L,mL) is a group, and hence a G-extension of B .

Theorem A.2.8. Let B be a formal abelian R-scheme. Then the group Ext(B,Gr
m)

is canonically isomorphic to the set of R-valued points B ′(R)r of (B ′)r , where B ′
is the dual abelian scheme of B which represents the functor PicτB/R of translation
invariant line bundles on B; cf. Theorem 6.1.1.
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Without introducing coordinates on the torus T ∼=G
r
m, an element of Ext(B,T )

is equivalent to a group homomorphism ϕ :X(T )→ B ′ from the character group
X(T ) to the dual B ′.

In particular, for every σ ∈Hom(T ,Gm) we have a commutative diagram

0 T

σ

E B

id

0

0 Gm σ∗E B 0

and the class of the Gm-torsor σ∗E is given by ϕ(σ).

A.3 Cubical Structures

In this section we give a survey on cubical structures. This notion was invented by
L. Breen [19]. Here we follow the exposition of Moret-Bailly [70, Chap. I] and add
some proofs.

In the following let A and G be commutative group objects in the category of
schemes or of rigid analytic spaces. The group law on A is written additively “+”
and on G multiplicatively “·”. The unit element of A and of G is denoted by “0” and
by “1”, respectively. Then we will consider G-torsors on A. In our applications A
will be an abelian scheme, an abeloid variety or a Raynaud extension and G=Gm.
Recall that Gm-torsors L on A correspond to line bundles on A.

Notation A.3.1. Let S be scheme or a rigid analytic space and let A→ S and
G→ S be smooth S-group objects with connected fibers. If L is a G-torsor over A,
for integers n≥ 1 we obtain G-torsors on An

Dn(L) :=
⊗

∅
=I⊂{1,...,n}
μ∗IL⊗(−1)n+card(I )

,

where the tensor product runs through all non-empty subsets I of {1, . . . , n} and
where μI :An→A is the morphism

μI :An −→A, (x1, . . . , xn) �−→
∑

i∈I
xi .

For the empty set I the map μI is the zero map. Sometimes one also adds the tensor
product with μ∗∅L

⊗(−1)n , then the modified Dn(L) is canonically rigidified along
the zero section. Since we mostly work with rigidified line bundles, we will omit
the empty set. On the other hand, any rigidificator of Dn(L) in the above given
definition gives rise to a rigidificator of L.



A.3 Cubical Structures 365

Note that Dn(L) is functorial in L and compatible with pull-backs by group
homomorphisms and with tensor products of G-torsors. We are especially interested
in the cases n= 2,3. For S-valued points x, y, z of A we have

D2(L)x,y = Lx+y ⊗L−1
x ⊗L−1

y ,

D3(L)x,y,z = Lx+y+z ⊗L−1
x+y ⊗L−1

x+z ⊗L−1
y+z ⊗Lx ⊗Ly ⊗Lz.

Here we denote the fiber of a G-torsor at a point x by Lx . For any permutation
σ ∈Sn and points x1, . . . , xn ∈A(S) there is a canonical isomorphism

(χσ )x1,...,xn :Dn(L)x1,...,xn ˜−→Dn(L)xσ(1),...,xσ(n) .

The action of S2 gives rise to isomorphisms

ξx,y :D2(L)x,y ˜−→D2(L)y,x

for points x, y ∈A(S) satisfying ξx,x = id and ξx,y ◦ ξy,x = id. There is a canonical
isomorphism

ϕx,y,z :D2(L)x+y,z ⊗D2(L)x,y ˜−→D2(L)x,y+z ⊗D2(L)y,z, (A.2)

which can be viewed as a cocycle condition. In particular, one has an isomorphism
of rigidificators

D2(L)0,y � L−1
0 �D2(L)x,0, (A.3)

where 0 denotes the unit element of A. The isomorphisms are compatible with the
symmetry; i.e., the following diagram is commutative

D2(L)y,z ⊗D2(L)0,y

ϕ0,y,z

D2(L)0,y+z ⊗D2(L)y,z

L−1
0 ⊗D2(L)y,z.

Assume now that there is a section τ of D2(L) over A2. Then τ gives rise to a
trivialization τ(x, y) of Lx,y ⊗L−1

x ⊗L−1
y ; i.e., to an isomorphism

Lx ⊗Ly ˜−→Lx+y, (�x, �y) �−→ �x % �y,

and hence to a law of composition on L, which is compatible with the group law of
A under the projection p : L→A. In particular, we have that

(g�1) % �2 = �1 % (g�2)= g(�1 % �2) for all g ∈G,�1, �2 ∈ L. (A.4)
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Obviously, the sections τ of D2(L) correspond to the laws of composition on L.
Indeed, a law of composition “%” on L defines a section

τ
(

p(�1),p(�2)
) := (�1 % �2)⊗ �−1

1 ⊗ �−1
2 for �1, �2 ∈ L.

Such a section τ gives rise to two sections ε1, ε2 : A→ L0 = 0∗L via the iso-
morphisms of rigidificators (A.3); they satisfy ε1(x) % � = � and � % ε2(y) = � for
x, y ∈ A and � ∈ L. If ε : 0→ L0 is the original rigidificator, then ε1(0) = ε and
ε2(0)= ε. Due to (A.4) one has (g1ε) % (g2 % ε)= (g1 · g2)ε for g1, g2 ∈G. Thus,
the restriction of “%” onto L0 can be viewed as a group law on L0 with unit element
ε and is isomorphic to G.

The law of composition “%” is commutative if and only if τ is invariant under S2
and “%” is associative if and only if τ is compatible with the cocycle condition

ϕx,y,z
(

τ(x + y, z)⊗ τ(x, y)
)= τ(x, y + z)⊗ τ(y, z).

Regarding ε as a unit element of L, the law of composition “%” is a group law on
L which can be viewed as a G-extension of A. There is a bijective correspondence;
cf. [70, I.2.3.10].

Proposition A.3.2. Let L be a G-torsor over A. Then there is a one-to-one corre-
spondence between

(i) Commutative G-extensions of A on L, which are compatible with the structure
of the G-torsor on L.

(ii) Sections τ of D2(L) over A× A which are symmetric and satisfy the cocycle
condition.

Now we turn to the discussion of D3(L). Starting with D2(L), one has two
canonical isomorphisms

D2(L)x+y,z ⊗D2(L)
−1
x,z ⊗D2(L)

−1
y,z

(α1)x,y,z

D3(L)x,y,z

D2(L)x,y+z ⊗D2(L)
−1
x,y ⊗D2(L)

−1
x,z.

(α2)x,y,z

One verifies that (α2)
−1
x,y,z ◦ (α1)x,y,z = ϕx,y,z from (A.2). There is a canonical iso-

morphism

ψx,y,z,t :D3(L)x+y,z,t ⊗D3(L)x,y,t ˜−→D3(L)x,y+z,t ⊗D3(L)y,z,t ,

which will serve as a cocycle isomorphism for D3(L).
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Definition A.3.3. A cubical structure on a G-torsor L on A is a section τ of the
G-torsor D3(L) over A3 with the following properties:

(i) τ is invariant under S3; i.e. χσ (τ)= σ ∗(τ ) for all σ ∈S3,
(ii) τ is a 2-cocycle; i.e., for all S-valued points x, y, z, t of A holds

ψx,y,z,t
(

τ(x + y, z, t)⊗ τ(x, y, t)
)= τ(x, y + z, t)⊗ τ(y, z, t).

A cubical G-torsor is a couple (L, τ), where L is a G-torsor on A and τ is a
cubical structure on the G-torsor associated to L.

A morphism (L, τ)→ (L′, τ ′) of cubical G-torsors is a morphism f : L→ L′
of G-torsors such that D3(f )(τ )= τ ′.

A trivialization of a cubical G-torsor (L, τ) is a section σ : A→ L such that
D3(σ )= τ .

In the case G = Gm we denote by CubA/S the functor, which associates to an
S-scheme S′ the set of isomorphy classes (L, τ) of line bundles L on A×S S

′ with
a cubical structure τ .

Note that a cubical G-torsor is automatically rigidified. For abeloid varieties
A and Gm-torsors the converse is also true by the theorem of the cube Theo-
rem 7.1.6(a).

Proposition A.3.4. Let A be an abeloid variety over a non-Archimedean field K

and G=Gm. Then the canonical morphism of functors

CubA/K ˜−→(PicA/K,1),

which associates to a line bundle with cubical structure the line bundle with the
induced rigidificator at the unit section, is an equivalence.

Proof. It follows from the rigidity of Lemma 7.1.2 that D3(L) is trivial for any line
bundle L on A; cf. Theorem 7.1.6. The cocycle condition in Definition A.3.3(ii) is
automatically fulfilled. Indeed, since A is a connected proper rigid analytic space,
any global holomorphic function is constant due to Corollary 1.6.8. Moreover, for
any rigid analytic space S the canonical map OS → p∗OA×S is bijective. So one
has to check the cocycle condition only at the point x = y = z = t = 0. There it is
true because of the compatibility of the rigidificators. �

Mumford introduced the concept of Gm-biextension in [73], which was exten-
sively analyzed and amplified in [42, VII & VIII] by Grothendieck. Roughly speak-
ing, a G-biextension of two commutative group spaces A1,A2 is a G-torsor over
A1 × A2 with two partial group laws which are compatible in the obvious sense.
There is the following relationship between cubical structures and biextensions; cf.
[70, I.2.5.4].

Proposition A.3.5. Let L be a G-torsor. Then a cubical structure τ on L is equiv-
alent to the structure of a symmetric biextension on D2(L) over A×A by G.
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The laws of composition “%1” and “%2” on D2(L) are associated to the sections
σ1 and σ2 satisfying the relation α1(σ1)= τ = α2(σ2).

Proof. By the isomorphisms α1 and α2, the section τ induces

σ1 := α−1
1 (τ ) :A×A−→D2(L)x+y,z ⊗D2(L)

−1
x,z ⊗D2(L)

−1
y,z,

σ2 := α−1
2 (τ ) :A×A−→D2(L)x,y+z ⊗D2(L)

−1
x,y ⊗D2(L)

−1
x,z,

and hence two laws of composition

%1 :D2(L)x,z ⊗D2(L)y,z −→D2(L)x+y,z,

%2 :D2(L)x,y ⊗D2(L)x,z −→D2(L)x,y+z.

The conditions of the cubical structure in Definition A.3.3 imply that the group laws
“%1” and “%2” define symmetric biextensions. Here the symmetry is given by the
morphism ξx,y :D2(L)x,y −→D2(L)y,x . �

Now we turn to the special situation we are mainly interested in.

Notation A.3.6. In the following we will consider an extension of an abelian Rn-
scheme B by a split affine torus T of rank r

0→ T
ι−→E

q−→ B→ 0 =̂ φ′ :M ′ → B ′ (∗)

which are smooth over Rn :=R/Rπn+1 for some n ∈N, where (R,mR) is a valua-
tion ring with 0 
= π ∈mR . In the following let S be an Rn-scheme and consider the
extension (∗) after base change S→ SpecRn.

In our applications the above extension will be an extension of a formal torus by
a formal abelian scheme. The results we will show below for the Rn-situation can
be immediately carried over to the formal situation.

Proposition A.3.7. Let T → S be a torus. Then the category Cub(T ,Gm) of cu-
bical Gm-torsors on T is equivalent to the category Ext(T ,Gm) of commutative
Gm-extensions of T and both categories consist of exactly one isomorphy class.

Proof. The assertion mainly follows from [42, VIII, 3.4]; cf. [70, I.7.2.1]. For the
convenience of the reader we will give the proof in the case S = SpecRn.

Let L→ T be a Gm-torsor. Over the residue field k of R there exists a section
s0 : T ⊗ k→ L⊗ k, since OT (T ⊗ k) is factorial. Due to the smoothness of L→ T

the section lifts to a section s : T → L. Thus, we know that L=Gm,T is the trivial
torsor. Knowing this, one can proceed with a general affine base scheme S = SpecA.
From Proposition A.3.5 it follows that a cubical structure on Gm,T is equivalent to
the structure of a symmetric biextension on D2(Gm,T ) over T ×T . This is a section

σ : T × T −→D2(Gm,T )=Gm,T×T



A.3 Cubical Structures 369

with certain properties. The section σ is given by a Laurent polynomial

σ(ξ1, ξ2)= ξ
m1
1 ξ

m2
2 · (1+ h(ξ1, ξ2)

)

with m1,m2 ∈ Z
r , where ξ1, ξ2 are the coordinate functions on T × T , and h is a

polynomial in A[ξ1, ξ2, ξ
−1
1 , ξ−1

2 ] with coefficients contained in the Jacobson rad-
ical of A. Let a ⊂ A be the ideal generated by the coefficients of h; in particular,
a is finitely generated and contained in the Jacobson radical of A, since the units in
A[ξ1, ξ2, ξ

−1
1 , ξ−1

2 ] are of type α · ξm1
1 ξ

m2
2 with a unit α ∈ A× if A is reduced. The

symmetry implies m1 =m2 and h(ξ1, ξ2)= h(ξ2, ξ1). Moreover,

σ(ξ1,1)= 1= σ(1, ξ2)

implies m1 =m2 = 0. It remains to show h= 0. The cocycle condition

σ(ξ1ξ2, ζ ) · σ(ξ1, ξ2)= σ(ξ1, ξ2ζ ) · σ(ξ2, ζ )

implies

h(ξ1ξ2, ζ )+ h(ξ1, ξ2)= h(ξ1, ξ2ζ )+ h(ξ2, ζ ) mod a
2.

Now look at the Laurent expansion

h=
∑

μ,ν∈Zr
hμ,νξ

μ
1 ξ

ν
2 ∈An

[

ξ1, ξ
−1
1 , ξ2, ξ

−1
2

]

.

Then the cocycle condition yields

hμ,ν · ξμ1 ξμ2 ζ ν + hμ,ν · ξμ1 ξν2 = hμ,ν · ξμ1 ξν2 ζ ν + hμ,ν · ξμ2 ζ ν mod a
2.

Thus, modulo a2, we see hμ,ν = 0 if ν 
= 0, and hence hμ,0 = 0 if μ 
= 0. Thus, it
follows a= a2 and hence a= 0. �

Next, we turn to the main result for our applications. This result was invented by
Breen [19, 3.10]; we specialize the statement to the case we are mainly concerned
with; cf. [70, I.7.2.2].

Theorem A.3.8. In the situation of Notation A.3.6 let S be an Rn-scheme or an
admissible formal R-scheme and let E be a (formal) torus extension of an abelian
Rn-scheme or of a formal abelian R-scheme, respectively.

Let (L, s) be a pair consisting of a cubical line bundle L on the torus extension
E ×R S and a trivialization s : T × S→ L|T×S of the cubical line bundle L|T×S .

(a) Then (L, s) descends to a cubical line bundle N on B ×R S.
(b) The set of all possible descent data for L is a principal homogeneous space

under the character group M ′ =Hom(T ,Gm) in a natural way.

In particular, if L is the trivial line bundle, then s is a character m′ of T and
N = PB×φ′(m′).
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We will sketch a proof in the situation S = SpecRn.

Lemma A.3.9. Let T → S be a split affine torus. Every trivialization ϕ : T →Gm,T

of the trivial cubical Gm-torsor is a character m′ : T →Gm.

Proof. As in the proof of Proposition A.3.7 let S = SpecA. Then ϕ can be written
as

ϕ(ξ)= c · ξm′ · (1+ h(ξ)
)

,

where ξ denotes the coordinate functions on T , and c ∈ A× is a unit, and h ∈
A[ξ, ξ−1] is a Laurent polynomial, whose ideal of coefficients a ⊂ A is contained
in the Jacobson radical. Since ϕ has to respect rigidificators, we have c = 1 and
h(1)= 0. Moreover, ϕ induces a group homomorphism D2(ϕ). Therefore, ϕ has to
fulfill the relation

ϕ(ξ1ξ2)= ϕ(ξ1) · ϕ(ξ2).

The latter implies

h(ξ1ξ2)= h(ξ1)+ h(ξ2) mod a
2.

As in the proof of Proposition A.3.7, it follows from the last equation that
h= 0. �

Sketch of the Proof of Theorem A.3.8. (a) Let us first consider the situation over the
residue field R = k. Since E is a torus extension of B , by Proposition A.2.5 there
exists an affine open covering B := (B1, . . . ,BN) of B and sections

σi : Bi −→E for i = 1, . . . ,N.

The sections give rise to isomorphisms

T ×Bi ˜−→Ei := q−1(Bi), (t, b) �−→ t · σi(b).
Then the canonical map

Pic(Bi) ˜−→Pic(T ×R Bi), N �−→ q∗N,

is bijective. Indeed, the pull-back by the section σi is a left inverse of the map, and so
the mapping is injective. Since Bi is smooth over k, its local rings are factorial. Thus,
for any given line bundle L on Ei

∼= T × Bi there exists an affine open covering
U= {U1, . . . ,Un} of Bi such that L|T×Uν is trivial. After refining the covering B we
may assume that L|Ei is trivial. Due to Theorem A.3.9 the trivialization s : T → L|T
is a character m′, which extends to a trivialization em′ :E→ q∗PB×φ′(m′). Then the
trivializations of L|Ei can be represented in the form

�i = εi ⊗ em′
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where εi :Ei→ L⊗ q∗PB×φ′(−m) is a section. Since the invertible elements of the
ring A[ξ, ξ−1] of Laurent polynomials over a connected reduced ring A are of the
form α · ξm′ for an invertible element α of A and an integer m′ ∈ Z, the transition
functions λi,j ∈OE(Ei ∩Ej)

× defined via

λi,j · �j = �i over Ei ∩Ej

are of type

λi,j = βi,j · ξm
′
i,j

i (∗)

with invertible functions βi,j ∈ O×B (Bi ∩ Bj ) and integers m′i,j ∈ Z. The integers
(m′i,j ) constitute a cocycle. Since B is irreducible, the cocycle vanishes. Then, we
can present the transition functions λi,j in the form λi,j = βi,j ⊗ em′ . Thus, the
functions (βi,j ) constitutes a cocycle in Z1(B,O×B ) and hence (βi,j ) induces a line
bundle N on B . Therefore, the couple (L, s) is the pull-back of N ⊗ PB×φ′(m′)
equipped with the canonical trivialization em′ |T : T → PB×φ′(m′). So the statement
in Theorem A.3.8 is true in the case R = k.

Now consider the case Rn := R/Rπn+1. Generally speaking, this follows by
lifting the results from the situation over the residue field due to the lifting property
of smooth morphisms, but this can be done only locally on B . At first, they are
defined only over the reduction Bi ⊗R k, where k =R/mR is the residue field of R,
then they lift to sections over R/Rπn due to the smoothness of E→ B . The main
property, which one looses in the non-reduced case, is the structure of the units as
used in (∗). That is precisely the point why the cubical structures are introduced. In
fact, if one postulates that the sections have to respect the cubical structures, then
the transition functions are of the type (∗) as well. For example look at the proof of
Proposition A.3.7.

Concerning the uniqueness, we may assume that q∗N ∼=Gm,E and that the sec-
tion s : E→Gm,E is equal to the constant section e0 = 1. Then the sections �i are
equal to βi · e0 and hence the cocycle λi,j = βi · β−1

j is solvable. Thus, the sections
(βi) fit together to build a trivialization of the Gm-torsor N .

(b) It remains to analyze the possible descent data of the trivial cubical line bun-
dle OE on E. It follows from Theorem A.3.9 that trivializations of the trivial cubical
line bundle on a torus can be given only by characters m′ ∈M ′. Thus, the character
group acts faithfully and transitively on the trivializations of sT . �

Corollary A.3.10. Let N1 and N2 be cubical line bundles on B . Then, for every
morphism α : q∗N1 → q∗N2 respecting the cubical structures, there exists a unique
character m′ ∈M ′ such that

α⊗ e−m′ : q∗N1 −→ q∗(N2 ⊗ PB×φ′(−m′))

descends to a morphism β :N1 →N2 ⊗ PB×φ′(−m′).
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Proof. We may assume that N1 is trivial and the pull-back L := q∗N2 is trivial.
Then it follows from Theorem A.3.8 that L descends to N2 := PB×φ′(m′). Now
α ⊗ e−m′ is a pull-back of a global section β : B→N2 ⊗ PB×φ′(−m′) if and only if
α ⊗ e−m′ is constant on the fibers of q . The latter is equivalent to the fact that the
restriction (α⊗ e−m′)|T is constant to 1. Thus we see that the assertion is true. �



Glossary of Notations

N,Z,Q,R,Qp natural, integer, rational, real, p-adic numbers
K non-Archimedean field, Definition 1.1.1
R valuation ring of K
k residue field of R
mR maximal ideal of R
π element of mR with π 
= 0 or uniformizer of R if R is a dis-

crete valuation ring
K ′ finite separable field extension of K
R′ valuation ring of K ′
K complete algebraic closure of K
R valuation ring of K
K(x) the residue field of a point x
|K×| value group of K
√|K×| divisible hull of |K×|, equal to |K×|
̂A universal covering of an abelian variety A, Theorem 5.6.3
A largest connected subgroup ofAwith smooth formalR-model,

Theorem 5.6.3
A′ dual of an abelian variety A, Definition 5.1.5
A
n
S affine n-space over a base S

AK = Tn/a affinoid K-algebra, Sect. 1.2
ÅK R-subalgebra of AK of power bounded functions, Defini-

tion 1.4.4
ǍK ideal in ÅK of topologically nilpotent elements, Defini-

tion 1.4.4
˜AK reduction of AK , Definition 1.4.4
AK〈η1, . . . , ηn〉 relative Tate algebra over an affinoid K-algebra AK , Defini-

tion 1.2.8
B
n := SpTn n-dimensional unit ball, Sect. 1.3

CubA/S functor of cubical line bundles on A, Theorem 6.3.2
CubME/S functor of cubical line bundles on E with M-linearization,

Theorem 6.3.2
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CubME/B/S functor of cubical line bundles of B with M-action, Theo-
rem 6.3.2

DK := SpK〈ξ 〉 closed unit disc over K
D
−
K open unit disc, Definition 2.4.1

Dn(L) line bundle on An for a group space A, Notation A.3.1
Gm,S 1-dimensional torus over a space S
Gm,K 1-dimensional torus of units over K , Proposition 5.4.6
vert(G) set of the vertices of a graph G, Definition A.1.1
edge(G) set of the edges of a graph G, Definition A.1.1
real(G) realization of a graph G, Definition A.1.2
H1(XK,Z) homology group of a curve XK , Proposition 5.5.3, Re-

mark 2.4.18
H1(˜X,Z) homology group of the reduction ˜X, Proposition 5.2.3 and

Corollary 5.2.4
H 1(XK,Z) cohomology group of a curve XK , Lemma 5.5.1 and Corol-

lary 5.5.6
H 1(˜X,Z) cohomology group of the reduction ˜X, Remark 5.2.7 and

Proposition 5.2.8
JK := Jac(X) Jacobi variety, representing Pic0

X/K , Definition 5.1.2
̂JK universal covering of the Jacobian JK , Theorem 5.5.11
JK largest connected subgroup of JK with smooth formal R-

model, Proposition 5.3.3
J formal R-model of JK , Proposition 5.3.3
LΓ set of limit points of a Schottky group Γ
�(γ ) length of the presentation of γ ∈ Γ with respect to a basis of a

Schottky group Γ
OX(D) invertible sheaf associated to a divisor D meromorphic func-

tions f with divf +D ≥ 0
P
n
S projective n-space over a base S

PA×A′ Poincaré bundle on A×A′, Theorem 6.1.1
PA×A′ Poincaré invertible sheaf on A×A′, Theorem 5.1.4
Pic0

X/K Picard functor of a line bundles of degree zero on K-curve X,
Theorem 5.1.1

PicτA/K Picard functor of translation invariant line bundles on an abe-
loid variety A, Theorem 5.1.4

Pol(f ) the set of poles of a meromorphic function f
R〈ξ1, . . . , ξn〉 restricted power series ring over R
rig generic fiber of an object over R, Definition 3.3.1, Theo-

rem 3.3.3, Definition 3.3.6
Sing(X) singular locus of a curve X
Sp maximal spectrum of an affinoid algebra, Sect. 1.3
Spf formal spectrum of a formal R-scheme, Sect. 3.2
TK affine torus over K
T formal torus over R
T K torus of units of TK , generic fiber of T
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Tn :=K〈ξ1, . . . , ξn〉 Tate algebra, Sect. 1.2
T̊n subring of Tn of functions with Gauss norm ≤ 1, Exam-

ple 1.4.5
X(S) S-valued points of a space X
X(T ) character group of a torus T
ΩΓ domain of ordinary points of a Schottky group Γ
| · |X sup-norm on a rigid space X, Sect. 1.4
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A
Abelian variety

dual, 219
semi-abelian reduction, 247
uniformization, 249

Abeloid variety
commutative, 311
criterion for algebraicity, 312
definition, 258, 310
dual of, 344
line bundle

criterion for ampleness, 313
global sections of, 312

meromorphic functions on, 312
morphism, 311
morphism from abeloid variety

to rigid analytic variety, 311
polarization, 290
Raynaud representation, 258
structure theorem, 343
uniformization, 343

Admissible R-algebra
coherent, 113
definition, 113
formal localization, 114
generic fiber of, 117

Affinoid algebra
definition, 4
finiteness of morphisms, 105
invertible functions

on products of discs and annuli, 18
Laurent localization, 106
power bounded subalgebra, 11, 104
reduction, 11, 105

Affinoid space
affinoid subdomain, 8
canonical reduction, 11

coherent sheaf, 10
definition, 5, 13
holomorphic functions on, 6
maximum principle, 10
rational covering, 6, 9
rational subdomain, 6

Algebra of power bounded functions, 11
Annulus

affinoid, 8
boundary of, 8
closed, 7
closed rational, 52
height of, 8, 108
open, 7
open rational, 52
reduction of, 208

Approximation theorem, 158
Automorphic function, 65
Automorphy factor, 66

B
Blowing-down, 201
Blowing-up

admissible, 116
algebraic and formal, 154
and flattening, 120
properties, 116

Bounded rigid analytic group
definition, 342
structure of, 342
structure theorem, 343

C
Coherent sheaf

definition, 15
GAGA, 18
on affinoid space, 15
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Covering
admissible, 13
topological sense, 24

Cross ratio, 33
Cubical structure

and biextension, 367
Breen, 364
definition, 367
descent, 369
descent on Raynaud extension, 371
line bundle, 267, 367
on torus, 368, 370
rigidified Picard functor, 367

Curve
marked stable, 202
semi-stable, 201
stable, 201

Cyclomatic number
of graph, 191
of reduction, 191

D
Dense subscheme, 133
Disc

affinoid, 3
closed, 3
closed rational, 52
closed unit, 52
in a curve, 108
inclusions, 195
open, 3
open rational, 52
open unit, 52
reduction of, 207

Divisor
degree, 22
effective, 22

Drinfeld’s pairing
polarization, 69, 84, 85
positivity, 70
symmetry, 66

E
Ext(B,G)

and formal abelian scheme, 363
and H 1(B,GB), 363
and H 2

rat (B,G)sym, 361, 362
and H 2

reg(B,G)sym, 361
composition law, 359
exact sequences, 360
factor system, 360

F
Field

non-Archimedean, 1
stable, 112

Flatness
by blowing-up, 120
criterion, 149, 152
of formal extensions, 149, 153

Flattening
improved properties, 120

Flattening theorem, 120
Formal abelian scheme

definition of, 256
dual of, 256

Formal analytic space
and admissible covering, 110
and formal R-scheme, 115
blowing-down, 200
by disjoint discs in a curve, 108, 190, 193
definition, 107
equality of structures, 201
examples, 107
formal fiber, 107
morphism, 107

criterion for formal, 235
reduction, 107

Formal birational group law
associated group, 318, 320
definition, 318

Formal fiber
and étale morphism, 185
connected, 184, 185
definition, 107
formal neighborhood, 178
functions on, 184, 185
genus of, 192
of a smooth point, 186
of double point, 189
of ordinary n-fold point, 194
of smooth point, 189
periphery of, 186
reduction map, 178

Formal group scheme
lifting of tori, 250

Formal n-dimensional polydisc, 115
Formal Néron model

definition, 345
marked, 345
semi-abelian reduction of, 345
stability of, 345

Formal R-scheme
admissible, 114
admissible blowing-up, 115
and formal analytic space, 115
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Formal R-scheme (cont.)
definition, 114
examples, 115
generic fiber of, 117
generic fiber of blowing-up, 117
properness, 122

Formal torus, 115

G
GAGA, 15, 18
Gaußnorm, 4
Generation of subgroups, 317
Generic fiber of a formal scheme, 117
Genus formula, 192
Geometric multiplicity, 129
Gradgleichung, 112
Graph

circuit, 356
connected, 356
cyclomatic number, 357
definition, 355
edge, 355
fundamental group, 357
geometric, 53, 355
geometric edge, 355
loop, 356
of coincidence, 222
path, 356
realization, 356
topology, 356
tree, 356
universal covering, 357
vertex, 355

index, 356
Grothendieck topology

admissible covering, 13
admissible open subset, 13
sheaf, 12
strong, 12
weak, 12

Group extension
factor system, 360
strictly exact, 358

H
Hilbert’s Nullstellensatz, 5
Holomorphic function, 13

I
Ideal

of coefficients, 141
open, 115

Invertible sheaf
ample, 21

and line bundle, 20
definition, 20
degree, 23

J
Jacobian variety

and Picard functor, 218
autoduality, 90, 220
definition, 218
formal smooth subgroup, 233

group extension, 242
lift of Jacobian of reduction, 232

generalized, 221
of Mumford curve, 84, 86, 89
of semi-stable curve, 221

and symmetric product, 228
as group extension, 222, 227
theta polarization, 223

of smooth curve, 220
theta polarization, 220

polarization
canonical, 84, 302
theta, 219, 302

Raynaud representation of, 298
theta divisor, 220
torus part, 229
uniformization of, 246

algebraicity of, 291
universal covering, 246

L
Lattice

in Raynaud extension, 257
in torus, 73
of full rank, 73

Line bundle
absolute value on, 257
ample, 21
and invertible sheaf, 20
cubical, 267, 367
cubical structure

definition, 267
descent, 272
descent of morphism, 272
extension, 267, 272
linearization, 275
translation invariant, 277
trivial, 277

definition, 20
degree, 23
extension on smooth model, 268
invertible sheaf, 278
isomorphic, 24
linearized, 24
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Line bundle (cont.)
trivial, 24

on Raynaud extension, 278
Fourier decomposition, 279
global M-invariant sections, 281
M-invariant sections, 280

on rigid analytic tori, 75, 76, 270
quotients by M-linearization, 25
rigidificator of, 23
rigidified, 23
translation invariant, 20

Locally for the rigid analytic
étale topology, 331
topology, 331

M
Maximum principle, 10

relative, 141
Meromorphic function

definition, 196
degree on formal fiber, 197, 198
formal analytic structure by, 196
order at a point of reduction, 197
reduction, 199, 200
sup-norm at component of reduction, 197,

198
Möbius transformation

attractive fixed point, 33, 66
definition, 33
elliptic, 33
hyperbolic, 33
limit point, 34
multiplier, 33
parabolic, 34
repelling fixed point, 33, 66

Morphism
elementary étale, 130
equidimensional fibers, 129
pointed schemes, 130
rig-étale cover, 119
rig-finite, 119
rig-flat, 119
rig-flat in dimension ≥ n, 120
rig-isomorphism, 119
rig-quasi-finite, 119

Morphism of cubical line bundles, 367
Morphism of uniformized abeloid varieties,

287
Morphism to a group from rigid space

with semi-abelian reduction, 236, 239
with smooth formal model, 314

Morphism to abeloid variety
from a semi-stable curve, 326
from formal torus, 322

Morphism to bounded rigid analytic group
from semi-stable curve, 343
from smooth formal space, 343

Morphism to Jacobian variety
from a semi-stable curve, 244
from smooth formal space, 243
from torus

and H 1(XK,Z), 243
Multiplicative filtration, 144
Mumford construction, 304
Mumford curve

algebraicity, 49
canonical polarization, 100
characterization, 216, 247
definition, 49
global differential forms, 69, 91
Jacobian variety of, 86, 89
Riemann’s vanishing theorem, 97
theta divisor, 93
theta function, 92
universal covering, 214
universal line bundle, 90

N
Noether normalization, 5

P
Picard functor

definition, 218
representability for

abelian variety, 219
curves, 218
formal abelian scheme, 256
generic fiber of formal abelian scheme,

283
uniformized abeloid scheme, 285

Poincaré bundle
on rigid analytic torus, 78
on uniformized abeloid variety, 285

Polarization
abeloid variety, 290
canonical, 84, 302
canonical and Drinfeld’s, 86
Drinfeld’s, 69
Mumford curve, 100
rigid analytic torus, 80
theta, 302
theta divisor, 296

Power bounded, 11
Power bounded function, 104
Projective linear group, 33
Pull-back, 359
Push-out, 359
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Q
Quasi-compact, 118
Quasi-separated, 118

R
Raynaud extension

definition, 257
dual of, 283
lattice, 257
line bundles on, 278
morphism of, 260
morphism to dual, 263
quotient by lattice, 258
quotient of, 258

Raynaud representation
algebraicity, 291
definition, 258
morphism of dual, 264
of abelian variety, 250
of abeloid variety, 343
of Jacobian variety, 298
pairing, 259

Raynaud uniformization, 249, 304, 343
Reduced fiber theorem

and norms, 124
method of Epp, 126
natural approach, 128
statement in absolute form, 125
statement in relative form, 128

Reduction
of a disc, 207
of an affinoid space, 11, 105
of an annulus, 208
of formal analytic space, 107
of P1

K , 52
reduction map, 105
split, 216
split rational, 216

Rigid analytic curve fibration
compactifiable, 336
extension of compactification, 336
infinitesimal compactification, 334
semi-stable reduction, 340
stable reduction of, 333

Rigid analytic space
Chow theorem, 18
coherent sheaf, 15
definition, 13
direct image theorem, 16
enlargement, 157
enlargement of immersions, 166, 169
existence of R-models, 118
GAGA theorems, 18
holomorphic functions on, 13

morphism, 13
étale, 14
smooth, 14

no boundary, 157
proper mapping theorem, 16
properness, 15, 123
R-model of, 117
relatively compact, 155
Theorem A and B, 15

Rigid analytic variety, 310
Rigidity lemma, 310

S
Schottky group

and skeleton, 58
definition, 34
example, 41
free, 48
fundamental domain, 37
properties, 35
separating system of generators, 42

Semi-abelian, 235
group scheme, 235

Semi-abelian reduction theorem
for abelian variety

algebraic case, 248
formal case, 247

for abeloid variety, 343
Singularity

double point, 189
ordinary n-fold point, 194

Skeleton of curve
definition, 53, 212
length of a path on, 60
of locally planar curve, 53
of projective line, 54
pairing of paths, 61
path on, 60
separating points, 53, 212
stable, 53, 213
stable, existence, uniqueness, 54, 213

Spectral norm, 111
Stable field

definition, 112
transitivity of stability, 112

Stable reduction theorem
algebraic case, 210
formal case, 202
proper curve fibration, 331

Subdomain of P1
K

invertible functions on, 57
presentation, 56
zeros of functions on, 58

Sup-norm, 10
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Supremum norm, 10
Symmetric product of curves, 218

theta divisor, 218

T
Tate

acyclicity theorem, 9
algebra, 4

properties, 4
reduction, 11
relative, 5

elliptic curve, 29
Theorem of

cube, 311
Elkik, 160
Epp, 126
Gabber, 152
Gerritzen-Grauert, 9
Grauert-Remmert-Gruson, 113
Gruson-Raynaud, 113, 140
Ihara, 48
Riemann-Roch, 22
square, 312

Theta divisor
Jacobian of semi-stable curve, 223
symmetric product of curves, 218

Topology
holomorphic, 13

Torsor
under Gm, 20

Torus
basic facts, 73
formal, 236
lattice in, 73

of units, 236, 241, 256
quotient by a lattice, 74
rigid analytic, 75

algebraicity, 82
ampleness of line bundle, 81
dual, 78
Riemann’s period relations, 81

split formal, 256
with lattice, 73

Torus extension
of formal abelian scheme, 256, 363

Tree-like, 191

U
Uniformized abeloid variety

ample line bundle, 289
polarization

definition, 289
line bundle, 290

Universal covering
of abeloid variety, 343
of curve, 213

bounded function on, 213
of Jacobian, 246
of Mumford curve, 214

W
Weierstraß, 4

distinguished power series, 4
division, 5, 149
domain, 6
polynomial, 4
preparation theorem, 5, 149
product, 64


	Rigid Geometry of Curves and Their Jacobians
	Introduction

	Chapter 1: Classical Rigid Geometry
	1.1 Non-Archimedean Fields
	1.2 Restricted Power Series
	1.3 Afﬁnoid Spaces
	1.4 The Maximum Principle
	1.5 Rigid Analytic Spaces
	1.6 Coherent Sheaves
	1.7 Line Bundles
	1.8 Algebraization of Proper Rigid Analytic Curves

	Chapter 2: Mumford Curves
	2.1 Tate's Elliptic Curve
	2.2 Schottky Groups
	2.3 Deﬁnition and Properties
	2.4 Skeletons
	2.5 Automorphic Functions
	2.6 Drinfeld's Polarization
	2.7 Rigid Analytic Tori and Their Duals
	2.8 Jacobian Variety of a Mumford Curve
	2.9 Riemann's Vanishing Theorem

	Chapter 3: Formal and Rigid Geometry
	3.1 Canonical Reduction of Afﬁnoid Domains
	3.1.1 Functors AK ÅK and AKÃK
	3.1.2 Formal Analytic Spaces
	3.1.3 Finiteness Theorem of Grauert-Remmert-Gruson

	3.2 Admissible Formal Schemes
	3.3 Generic Fiber of Admissible Formal Schemes
	3.4 Reduced Fiber Theorem
	3.4.1 Analytic Method of Grauert-Remmert-Gruson
	3.4.2 Elementary Method of Epp
	3.4.3 The Natural Approach

	3.5 Complements on Flatness
	3.6 Approximation in Smooth Rigid Spaces
	3.7 Compactiﬁcation of Smooth Curve Fibrations

	Chapter 4: Rigid Analytic Curves
	4.1 Formal Fibers
	4.2 Genus Formula
	4.3 Meromorphic Functions
	4.4 Formal Stable Reduction
	4.5 Stable Reduction
	4.6 Universal Covering of a Curve
	4.7 Characterization of Mumford Curves

	Chapter 5: Jacobian Varieties
	5.1 Jacobian of a Smooth Projective Curve
	5.2 Generalized Jacobian of a Semi-Stable Curve
	5.3 Lifting of the Jacobian of the Reduction
	5.4 Morphisms to Rigid Analytic Groups with Semi-Abelian Reduction
	5.5 Uniformization of Jacobians
	5.6 Applications to Abelian Varieties

	Chapter 6: Raynaud Extensions
	6.1 Basic Facts
	6.2 Line Bundles
	6.3 Duality
	6.4 Algebraization
	6.5 Polarization of Jacobians
	6.6 Parameterizing Degenerating Abelian Varieties

	Chapter 7: Abeloid Varieties
	7.1 Basic Facts on Abeloid Varieties
	7.2 Generation of Subgroups by Smooth Covers
	7.3 Extension of Formal Tori
	7.4 Morphisms from Curves to Groups
	7.5 Stable Reduction of Relative Curves
	7.6 The Structure Theorem
	7.7 Proof of the Structure Theorem

	Appendix: Miscellaneous
	A.1 Some Notions about Graphs
	A.2 Torus Extensions of Formal Abelian Schemes
	A.3 Cubical Structures

	Glossary of Notations
	References
	Index

