
On the Refined Open Gromov-Witten Invariants on
K3 Surfaces

Yu-Shen Lin

Columbia University, USA
yslin@math.columbia.edu

Abstract

The paper is a survey of the author’s recent work on the correspondence
theorem of open Gromov-Witten invariants and the tropical discs counting in-
variants on K3 surfaces. In particular, both invariants satisfy the Kontsevich-
Soibelman wall-crossing formula. One can furthermore prove that the tropi-
cal discs counting invariants admits a q-deformation and satisfy the q-deformed
wall-crossing formula. In particular, this suggests that the open Gromov-
Witten invariants might admit a q-deformation as well.

Keywords: Open Gromov-Witten invariants, K3 surfaces, Refined generalized
Donaldson-Thomas invariants

1 Introduction

The story starts from the Strominger-Yau-Zaslow conjecture [26] which predicts
that a Calabi-Yau manifold X would admit a special Lagrangian torus fibration
near large complex limits. The mirror X̌ can be constructed by topologically taking
the dual torus fibration and the complex structure of X̌ is quantum corrected by
the holomorphic discs in X . The recipe of constructing the mirror is successfully
realized in non-Archimedean geometry [17][9].

On the other hand, it is conjectured that the Calabi-Yau manifold X will col-
lapse to an affine manifold with singularities near large complex limit [19]. The
statement is verified in the case of certain K3 surface [12] and later generalized
to certain hyperKähler manifolds [11]. Conjecturely, the holomorphic curves in X
collapse to certain 1-skeletons on the affine manifold with singularities known as
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tropical curves. Although it looks like the collapsing lost much of geometric in-
formation of X , the enumerative aspects are preserved. Mikhalkin first carried out
the picture on the C2 inside smooth toric surfaces [23]. The different toric com-
pactifications of C2 correspond to the possible directions of unbounded edges of
tropical curves. Moreover, the counting of Riemann surfaces in a smooth toric sur-
face with constraints is equal to the weighted count of trivalent tropical curves on
R2 with constraints. It is later generalized to counting Riemann surface of genus
zero in toric manifolds of all dimension by Nishinou-Siebert [25]. The tropical
geometry is generalized to degeneration of schemes and a similar statement for
counting holomorphic cylinders was derived by Tony Yue Yu [28] in the context
of non-Archimedean geometry. However, due to the lack of explicit expression of
Ricci-flat metric of Calabi-Yau manifolds, there is not much known in this aspects
in Calabi-Yau manifolds over C.

The survey is arranged as follows: we first review the preliminary knowledge
of hyperKähler geometry in Section 2. We review the tropical geometry of K3
surface in Section 3. In particular, we explain the what are ”admissible” tropical
discs and the associated weights which lead to a tropical discs counting invariant.
In Section 3, we define the open Gromov-Witten invariants on K3 surfaces, naively
counting holomorphic discs with boundaries on special Lagrangian torus fibres. In
Section 4, the local geometry of a singular single nodal fibre in a K3 and the two
invariants coincides when the boundary condition is near the singular fibre. In Sec-
tion 5, we discuss the correspondence theorem between open Gromov-Witten in-
variants and tropical discs counting invariants. Finally, inspired by the q-deformed
wall-crossing formula, one can get a q-deformed tropical discs counting invariants
in Section 6. In particular, we expect a q-deformation of open Gromov-Witten
invariants as well.
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2 HyperKähler Geometry

Definition 2.1. 1. A holomorphic symplectic form Ω on a complex manifold X
is a d-closed, non-degenerate holomorphic 2-form.
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2. A Kähler manifold X of dimCX = 2n is a hyperKähler manifold if it admits
a holomorphic symplectic 2-form Ω and a Kähler form ω such that

ω
2n = cΩ

n∧ Ω̄
n, (1)

for some constant c > 0.

Example 2.2. By Yau’s theorem [27], every compact Kähler manifold admits a
holomorphic symplectic 2-form is hyperKähler. In particular, every K3 surface is
hyperKähler.

Given a hyperKähler manifold X and its Kähler form ω , holomorphic sym-
plectic form Ω satisfying (1), the pair (ω,Ω) induces an S2-family of hyperKähler
structures on the underlying space of X given by

ωζ =
i(−ζ + ζ̄ )ReΩ− (ζ + ζ̄ )ImΩ+(1−|ζ |2)ω

1+ |ζ |2
,

Ωζ =− i
2ζ

Ω+ω− i
2

ζ Ω̄,

for each ζ ∈ P1. The d-closedness of Ωζ together with the Newlander-Nirenberg
theorem imply that the almost complex structure determined by Ωζ is actually
integrable. In particular, when ζ = eiϑ ,ϑ ∈ S1, we have

ωϑ := ωeiϑ =−Im(e−iϑ
Ω)

Ωϑ := Ωeiϑ = ω−Re(e−iϑ
Ω).

We will denote the hyperKähler manifold with Kähler form ωϑ and holomorphic
symplectic 2-form Ωϑ by Xϑ . A smooth holomorphic Lagrangian L in X is a half
dimensional complex submanifold with the restriction of holomorphic symplectic
form vanishes, Ω|L = 0. Equivalently, we have ωϑ |L = ImΩϑ |L = 0 and thus L
is a special Lagrangian submanifold in Xϑ ,ϑ ∈ S1. To sum up, the holomorphic
Lagrangians in a hyperKähler manifold (X ,ω,Ω) become special Lagrangian sub-
manifolds with respect to another hyperKähler structure (Xϑ ,ωϑ ,Ωϑ ),ϑ ∈ S1 on
the same underlying space and vice versa. In particular, if X → B is a holomorphic
Lagrangian fibration then Xϑ → B is a special Lagrangian fibration. This is known
as the hyperKähler rotation trick. It worth noticing that the roles of holomorphic
Lagrangian and special Lagrangian are not completely symmetric.

Remark 2.3. For a compact hyperKähler manifold, the holomorphic symplectic
2-form is unique up to a C∗-scaling. Given a fixed choice of the Kähler class [ω],
the S1-family of hyperKähler manifold {Xϑ}ϑ∈S1 does not depend on the choice of
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the holomorphic symplectic 2-form Ω. Although, the S1-family does depend on the
choice of the Kähler class [ω], the invariants we defined later in the paper does not
(See Theorem 4.2).

In the rest part of the paper, we will always assume that X→ B is an elliptic K3
surface and B0 is the complement of the discriminant locus in B. For each u ∈ B,
we denote the fibre over u by Lu.

3 Tropical Geometry on K3 Surfaces

To talk about tropical geometry for elliptic K3 surface, one need an integral affine
structure on the base of the fibration. For each ϑ ∈ S1, the special Lagrangian
fibration on Xϑ →B induces the complex affine structure on B0 [14]. Explicitly, the
affine coordinates can be understood via introducing the central charge function:

Definition 3.1. The central charge Z is a C-valued function on the local system of
lattices

Z : Γ =
⋃

u∈B0

H2(X ,Lu;Z)→ C

γu 7−→ Zγ(u) :=
∫

γ

Ω.

The integral in Definition 3.1 is well-defined because Ω|Lu = 0.

Proposition 3.2. [20]

1. The central charge Z is a holomorphic function on Γ1.

2. If Mγ(X,Lu) is non-empty, then topologically it is Mγ(Xϑ ,Lu) and ϑ =
ArgZγ(u).

Given u0 ∈B0 and choose γ1,γ2 ∈H2(X ,Lu0) such that ∂γ1,∂γ2 generate H1(Lu0).
Then { fi(u) = Re(e−iϑ Zγi(u))}i=1,2 give integral affine coordinates near u0. We
will denote the base with this integral affine structure by Bϑ . One observation is
the following:

Proposition 3.3. [20] If Lu(t) is a 1-parameter family of special Lagrangian torus
bounding holomorphic discs of relative class γ in Xϑ , then u(t) is characterized by
an affine line in Bϑ . In other words, the locus of special Lagrangian tori bounding
holomorphic discs of a fixed relative class locally form an affine line.

1Here we identify Γ and B0 locally
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Proof. Assume that Lu(t) bounds a holomorphic disc in the relative class γ . Write
γ = aγ1 +bγ2 + γ0, where γ0 ∈ H2(X ,Z). Then we have

0 =
∫

γu(t)

Im(Ωϑ )

=
∫

aγ1,u(t)+bγ2,u(t)+γ0

Re(e−iϑ
Ω)

= a f1(u(t))+b f2(u(t))+
∫

γ0

Re(e−iϑ
Ω).

The last term is a constant and thus the proposition follows.

Assume that the elliptic K3 surface X admits only I1-type singular fibres, now
we will define tropical discs on Bϑ , modified from [6][24]:

Definition 3.4. Let B be an affine 2-manifold with at singularities ∆ and with in-
tegral structure on T B. In other words, there exists an integral affine structures on
B\∆. Assume that around each singularity of the affine structure the monodromy
is conjugate to

(
1 1
0 1

)
. Let B0 be the complement of the singularities ∆. A tropical

curve (with stop) on B is a 3-tuple (φ ,T,w) where G is a rooted connected graph
(with a root x). We denote the set of vertices and edges by C0(T ) and C1(T ) respec-
tively. Then the weight function w : C1(T )→N and the continuous map φ : T → B
satisfy the following:

1. We allow G to have unbounded edges only when B is non-compact.

2. For any vertex v ∈C0(T ), the unique edge ev closest to the stop is called the
outgoing edge of v and wv := w(ev).

3. For each e ∈ C1(T ), φ |e is either an embedding of affine segment on B0 or
φ |e is a constant map. In the later case, e is associated with an integral
primitive tangent vector at φ(e) (up to sign) if φ(e) /∈ ∆. The edge adjacent
to x is not contracted by φ .

4. For each v ∈C0(T ), v 6= x and val(v) = 1, we have φ(v) ∈ ∆. Moreover,

(a) If φ |ev is an embedding, then φ(ev) in the monodromy invariant direc-
tion.

(b) If φ(ev) ∈ ∆ is contracted, then the integral primitive tangent vector
ve associate to e is in the monodromy invariant direction in TyB, y =
Expφ(ev)(εve) for some small ε > 0.

5. For each v ∈C0(T ), v 6= x and val(v) = 2, we have φ(v) ∈ ∆. Moreover,
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(a) the edges e+v ,e
−
v adjacent to v are not contracted by φ .

(b) φ(e±v ) is in the monodromy invariant direction.

(c) w(e+v ) = w(e−v ).

6. For each v ∈C0(T ), val(v)≥ 2, we have the following assumption:

(balancing condition) Each outgoing tangent at u along the image of each
edge adjacent to v is rational with respect to the above integral structure on
Tφ(v)B. Denote the outgoing primitive tangent vectors by vi and the corre-
sponding weight by wi, then

∑
i

wivi = 0. (2)

Remark 3.5. When B = R2 and a tropical curve with no stop and no contracted
edges reduces to the tropical curves defined in [23].

We will view two tropical discs (φ ,T,w) and (φ ′,T ′,w′) as the same if there
exists a homeomorphism f : T → T ′ such that φ ′ ◦ f = φ and w′ ◦ f = w. The main
difference of the definition of the tropical discs from the existing literature is that
one need to allow the contracting edges. All the complication actually comes from
the singularities of the affine structure.

The balancing condition in the Definition 3.4 allows one to define the multiplic-
ity for each trivalent vertex [23]: Let v be a trivalent vertex and and three outgoing
vectors to be v1,v2,v3 with the corresponding weight w1,w2,w3. Define the weight
associate to v to be

Multv(φ) = w1w2|v1∧ v2|. (3)

Here we choose an isomorphism ∧Tφ(v)B ∼= Z2, so Multv(φ) ∈ N. The balancing
condition guarantees that Multv(φ) is well-defined for a trivalent vertex v.

Before we define the tropical disc counting invariant, we need to associate each
tropical disc (φ ,T,w) on Bϑ with stop at u ∈ B0 a relative class in H2(X ,Lu). Let
(φ ,T,w) be a tropical disc with root x and φ(x) = u. If |C0(T )|= 2, then the image
of another vertex v is in ∆ and φ(e) is an embedding in the monodromy invariant
direction for the unique edge e. We define [φ ]∈H2(X ,Lu) to be the relative class of
the Lefschetz thimble associate to Lφ(v) with the sign such that

∫
[φ ] ωϑ > 0. We will

assign a relative class [φ ] ∈H2(X ,Lu) for each tropical disc (φ ,T,w) with stop at u
by induction on |C0(T )|. Assume |C0(T )|= k+1> 2 and let v′ be the unique vertex
share the edge with x. By deleting the edge e connecting v′ and x, we get tropical

2If φ(v) ∈ ∆, one should replace φ(v) by Expφ(ev)(εve).
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discs (φ1,T1,w1), · · · ,(φl,Tl,wl) with stop at φ(v′) and |C0(Ti)| < |C0(T )|. Thus,
there is a relative class [φi] ∈ H2(X ,Lφ(v′)) defined by induction hypothesis. Then
we define [φ ] ∈ H2(X ,Lu) to be the parallel transport of ∑

l
i=1[φi] ∈ H2(X ,Lφ(v′))

along the affine line segment φ(e).
The following definition is auxiliary to define which tropical discs are ”admis-

sible”.

Definition 3.6. 1. Let v1, · · · ,vn ∈M∼=Z2 be primitive vectors (not necessarily
distinct) and di j ∈M⊗R be the lines in the direction vi with weight wi j, j =
1, · · · , li. Assume that wi j ≤ wi j′ if j ≤ j′. We order di j such that di1 j1 < di2 j2
if

(a) i1 < i2 or

(b) i1 = i2 and j1 < j2.

2. We say that the lines {di j} are in the standard position if the intersection of
di1 j1 and di2 j2 is on the far right side of the line di j if di j > di1 j1 and di j > di2 j2 .

3. Let (φ ,T,w) be a tropical curve in R2 with no contracted edges. We say
(φ ,T,w) is in the standard position with respect to {(vi,wi j)} if T has |∑i li|+
1 unbounded edges such that all except one unbounded edges are mapped
into some di j with weight wi j by φ . The exceptional unbounded edge has
direction v and weight w such that wv = ∑i, j viwi j.

The following definition explains which tropical discs will contribute to the
tropical discs counting invariants in Definition 7.1.

Definition 3.7. A tropical disc (φ ,T,w) with stop u ∈ B0 is called an admissible
tropical disc if the following holds:

1. For every vertex v ∈C0(T ), its valency val(v)≤ 3.

2. Assume e ∈C1(T ) is contracted to a point φ(e) ∈ B. The preimage of φ(e)
is a disjoint union of subtrees of T . Let Te be the connected subtree con-
taining e. Let e0,e1, · · · ,em ∈ C1(T ) be the edges adjacent to Te and e0 is
the one closest to the root. Denote the weight of ei by wi. Let T ′ be the tree
obtained by adding edges e0, · · · ,em with weight w1, · · ·wm and T̃ be the tree
by replacing each ei ∈C1(T ′) by an unbounded edge with weight wi. T\T ′
is a disjoint union of subtrees of T . Let Ti be the connected subtree con-
taining ei, i = 1, · · ·m. Then φi = (φ |Ti ,Ti,w|Ti) defines a tropical disc with
stop at φ(e). For each ei there exists a relative class [φi] ∈ H2(X ,Lφ(e)). Let
vi ∈ Tφ(e)B0 be the primitive vector such that vi|Z[φi]|> 0 and viArgZ[φi] = 0.
Let (vi,Z[φi]), i = 1, · · · ,n be such distinct pairs and with the order such that
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(a) ArgZ[φi](φ(e)− εvi)≤ ArgZ[φ j](φ(e)− εv j) for ε � 0, if i < j.
(b) The above equality holds and i < j imply |Z[φi](φ(e))|< |Zφ j](φ(e))|.

Assume that wi j, j = 1, · · · , li are the weights of the edges attached to the
pairs (vi,Z[φi]) and ordered in the way that wi j ≤ wi j′ if j < j′. Then there
exists φ̃ : T̃ → R2 with no contracted edges and weight w̃ : C1(T̃ )→ N,

w̃(e′) =

{
w(e′), e ∈ T ′

wi, e = ei,

such that the balancing condition (2) is satisfied. Moreover, the tropical
curve (φ̃ , T̃ , w̃) is in the standard position with respect to {vi,wi j}.

Given a tree T , we say a vertex v ∈ Cext
0 (T ) if val(v) = 1 and we denote

Cint
0 (T ) = C0(T )\Cext

0 (T ). With above notations, the tropical discs counting can
be defined as follows, motivated by the work of Gross-Pandharipande-Siebert [7]:

Definition 3.8. 1. Let φ : T → Bϑ be an admissible tropical disc with the stop
u ∈ B0. Then we define its weight of φ to be

Mult(φ) := ∏
v∈Cint

0 (T )

Multv(φ) ∏
v∈Cext

0 (T )\{u}

(−1)wv−1

w2
v

∏
Te:φ(e)is a point

|Aut(wT (e))|,

where the notation is explained below:

(a) Here we use the notation in Definition 3.7. Then we set wTe =(w1, · · · ,wn).
The last product doesn’t repeat the factor if Te = Te′ .

(b) For a set of weight vectors w = (w1, · · · ,wn) and wi = (wi1, · · · ,wili),
for i = 1, · · · ,n. We set

ai
n = |{wi j|wi j = n}|

and

|Aut(w)|= ∏
i

∏
n∈N
ai

n 6=0

(ai
n)!,

which is the subgroup of the permutation group ∏i Σli stabilizing w.

2. Let u∈ B0 and γ ∈H2(X ,Lu). We define the tropical discs counting invariant
Ω̃trop(γ;u) to be

Ω̃
trop(γ;u) := ∑

φ

Mult(φ),

where the sum is over all admissible tropical discs on BArgZγ
with stop at u

such that [φ ] = γ .
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4 Open Gromov-Witten Invariants on K3 Surfaces and
Wall-Crossing

Recall that Xϑ → B is a K3 surface with special Lagrangian fibration. Our goal is
to define a counting for the holomorphic discs with boundary on a fibre Lu, u ∈ B0.
Given a relative class γ ∈ H2(X ,Lu), we denote the M (Xϑ ,Lu) to be the moduli
space of stable holomorphic discs (up to isomorphisms) in relative class γ . The first
issue of defining such counting is that the virtual dimension of the moduli space
is −1, which reflects the fact that there is no holomorphic disc with respect to a
generic almost complex structure. Inspired by the work of Bryan-Leung [1], it is
natural to consider the following moduli space instead

Mγ(X,Lu) :=
⋃

u∈S1

Mγ(Xϑ ,Lu).

The virtual dimension of the new moduli space Mγ(X,Lu) is zero and it makes
sense to count. The second issue to define the counting is that generally the moduli
spaces of holomorphic discs admit real codimension one boundaries and thus there
are no well-defined virtual fundamental classes.

To understand how hyperKähler geometry helps to resolve the issue coming
from real codimension one boundaries of the moduli space, we need the help of the
central charge function (see Definition 3.1). Assume that ∂γ 6= 0 and Mγ(X,Lu)
admits non-empty real codimension one boundary, then there exists γ1,γ2 such that
γ = γ1 + γ2 and both γ1,γ2 are represented as holomorphic discs with respect to the
same complex structure in the S1-family. From Proposition 3.2, we have

ArgZγ1(u) = ArgZγ2(u). (4)

Since Zγi are holomorphic functions, the locus cut out by the equation (4) are real
codimension one and locally divides the base into chambers. Set

W ′γ =
⋃

γ=γ1+γ2
ArgZγ1 6=cArgZγ2

{u ∈ B|Mγ1(Xϑ ,Lu),Mγ2(Xϑ ,Lu) are non-empty for some ϑ ∈ S1.}

Each locus in the union is locally a closed subset of locus in the form defined in
(4). Moreover, Gromov compactness theorem guarantees that the union is a finite
union. In particular, the complement of W ′γ is a real analytic Zariski open subset on
B.

Theorem 4.1. [20] Assume that

1. the relative class γ has its boundary ∂γ not null-homologous,
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2. u /∈W ′γ and

3. γ cannot be expressed as dγ ′+ γ0, where d ∈ N, γ ′ ∈ H2(X ,Lu) and γ0 ∈
H2(X) such that

∫
γ0

Ω = 0.

Then Mγ(X,Lu) is compact without boundaries.

Under the assumption of Theorem 4.1, the moduli space Mγ(X,Lu) particu-
larly has no real codimension one boundary and would admit a virtual fundamental
class [Mγ(X,Lu)]

vir [4] and we define the open Gromov-Witten invariants [20] by

Ω̃(γ;u) :=
∫
[Mγ (X,Lu)]vir

1. (5)

In general, if we only have the first two assumption in Theorem 4.1, the moduli
space Mγ(X,Lu) might still have real codimension one boundary. From the gen-
eral theory of Fukaya-Oh-Ohta-Ono[4](see also [20] for the modification in this
particular case), there exists a Kuranishi structure on the moduli space Mγ(X,Lu).
The open Gromov-Witten invariant Ω̃(γ;u) can be defined using the smooth corre-
spondences:

Ω̃(γ;u) : Corr∗(Mγ(X,Lu), pt; tri, tri)(1).

We will refer the reader to [4][3] for the definition and properties of the smooth
correspondence.

Although the definition of the moduli space Mγ(X,Lu) depends on the choice
of the Kähler from ω , we have the following properties of the open Gromov-Witten
invariants:

Theorem 4.2. [20] Assume that ∂γ 6= 0 and u /∈W ′γ , then the open Gromov-Witten
invariants Ω̃(γ;u) satisfy

1. Ω̃(γ;u) does not depend on the choice of [ω].

2. Ω̃(γ;u) is locally constant in u.

3. (reality condition) Ω̃(−γ;u) = Ω̃(γ;u).

Locally the wall W ′γ divides the base into chambers and the open Gromov-
Witten invariant Ω̃(γ;u) is a constant inside each of the chamber. The open Gromov-
Witten invariants may jump when u varies from one chamber to another. Thus, we
will not try to define the open Gromov-Witten invariants when u falls on the wall.
To sum up, the appearance of real codimension one boundaries of the moduli space
Mγ(X,Lu) is largely constrained cohomologically, which is due to the hyperKähler
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geometry. The ambiguity from the real codimension one boundaries is interpreted
as the wall-crossing of the invariants when the boundary conditions of holomor-
phic discs vary. We will discuss how the open Gromov-Witten invariants Ω̃(γ;u)
and the tropical discs invariants Ω̃trop(γ;u) jump in Section 6.

5 Near an I1-Type Singular Fibre

When the symplectic area of a holomorphic disc with boundary on a special La-
grangian torus fibre is small, the gradient estimate of holomorphic discs guarantees
that the image holomorphic discs is contained in a tubular neighborhood of a sin-
gular fibre. Let u0 ∈ ∆ and Lu0 be a I1-type singular fibre. For an small open ball U
such that U ∩∆ = {u0}, we denote XU := π−1(U) to be the pre-image of the pro-
jection. It is straight-forward to check that H2(XU ,Lu) ∼= Z for each u ∈U\{u0}
and H2(XU ,Lu) is generated by the Lefschetz thimble.

For a fixed ϑ ∈ S1, there are two affine rays l± in U emanating from u0 such
that the tangents are monodromy invariant. From Proposition 3.3, only the torus
fibres above l± can bound holomorphic discs with small symplectic area. For u ∈
l±, the union of vanishing cycles over the affine segments between u0 and u can
be perturbed to a smooth holomorphic disc in Xϑ , if Xϑ is closed enough to the
large complex limit point [20]. Moreover, the open Gromov-Witten invariants are
calculated via cobordism argument and localization:

Theorem 5.1. [20] Let u0 ∈ ∆. For each d ∈N, there exists an open neighborhood
Ud of u0 in B such that

Ω̃(dγ;u) =

{
(−1)d−1

d2 , if γ represents the Lefschetz thimble ,

0, otherwise.

for any u ∈Ud .

It worth noticing that the generating function of the open Gromov-Witten in-
variants

∑
d∈N

dΩ̃(dγ;u)xd = log(1+ x)

is exactly the slab function of the initial ray in the Gross-Siebert program [9].
Similar observation is known in the case of toric Calabi-Yau manifolds [22].

On the other hand, the affine line segment between u0 and u uniquely deter-
mines a tropical disc (φ ,T,d): with T be a rooted tree with only two vertices v
and root x, φ be an embedding from T to the affine line segment between u0 and
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u and d ∈ N. On the other hand, this is the only tropical disc with its image con-
tained in U . Therefore, the Theorem 5.1 also holds for the tropical discs invariants
Ω̃trop(γ;u) by Definition 7.1. In particular, we have

Ω̃(γ;u) = Ω̃
trop(γ;u)

for u close enough to u0.

6 Wall-Crossing Formula for the Invariants

To understand the how do the open Gromov-Witten invariants Ω̃(γ;u) (and Ω̃trop(γ;u))
change as the u varies, we will first introduce the Kontsevich-Soibelman algebra
[18]: Fix a sector S with angle less than π . Let ΛS to be the ring in terms of
formal variable T ,

Λ
S := {

∞

∑
i=0

aiT λi |Argλi ∈S , lim |λi|= ∞}.

When S reduced to a ray, then ΛS is isomorphic to the standard Novikov ring.
There is a natural filtration Fλ ΛS of ΛS given by

Fλ
Λ

S := {
∞

∑
i=0

aiT λ ∈ Λ
S |ai = 0 if |λi|< λ}.

For each u ∈ B0, we consider the Lie algebra structure on the associate, com-
mutative algebra Lu := ΛS [H1(Lu)] with the bracket structure given by

[z∂γ1 ,z∂γ2 ] = 〈γ1,γ2〉z∂γ1+∂γ2 , (6)

where γ1,γ2 ∈ H2(X ,Lu). For a primitive γ ∈ H2(X ,Lu), we associate an automor-
phism of C[H1(Lu)] given by

Kγ(u) :Lu −→Lu

z∂γ ′ 7→ z∂γ ′ fγ(u)〈γ,γ
′〉, (7)

where fγ(u) is the generating function of the open Gromov-Witten invariants

log fγ(u) := ∑
d∈N

dΩ̃(dγ;u)(T Zγ (u)z∂γ)d . (8)

Straight-forward computation shows that Kγ(u) commutes with Kγ ′(u) if 〈γ1,γ2〉=
0. One can similarly define K trop

γ (u) and f trop
γ (u).

The jumping of the invariants Ω̃(γ;u) and Ω̃trop(γ;u) can be described by the
following theorem:
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Theorem 6.1. [21] Given a path φ(t) between u,u′ ∈ B0. Let Paru,u′ denotes
the isomorphism Lu → Lu′ induced by the parallel transport along φ(t). As-
sume that there exists no γ ∈ H2(X ,Lφ(t)) such that Mγ(X ,Lφ(t)) is nonempty and
ArgZγ(u(t)) ∈ ∂S . Then

Paru,u′

(
∏

ArgZγ (u)∈S
Kγ(u)

)
= ∏

ArgZγ (u′)∈S
Kγ(u′).

Here both of the products3 are taken in the order that ArgZγ is increasing. The
analogue statement holds for K trop

γ .

Theorem 6.1 generalized the wall-crossing formula in [20] when γ1,γ2 are both
primitive. When u varies across W ′γ and γ = γ1 + γ2 is the only possible degenera-
tion of holomorphic discs, then the jump of Ω̃(γ;u) is given by

〈γ1,γ2〉Ω̃(γ1;u)Ω̃(γ2;u).

By induction on the symplectic area of holomorphic discs, one can get more iden-
tities. For instance, the jump of Ω̃(γ1 +2γ2;u) is given by

2〈γ1,γ2〉Ω̃(γ1, ;u)Ω̃(2γ2;u)+
1
2
〈γ1,γ2〉Ω̃(γ1;u)Ω̃(γ2;u)2. (9)

Recall that from the definition of open Gromov-Witten invariants, Ω̃(γ;u) 6= 0 im-
plies that there exists a holomorphic disc in the relative class γ ∈H2(X ,Lu). In par-
ticular, Theorem 6.1 implies the existence of holomorphic discs in a lot of situation
when the standard gluing theorem does not due to the highly non-transversality.

The Theorem 5.1 and the Theorem 6.1 together gives the correspondence theo-
rem between the open Gromov-Witten invariants and the counting of tropical discs,
which generalized the work of Mikhalkin [23] and Nishinou-Siebert [25].

Theorem 6.2. Given u ∈ B0 and γ ∈ H2(X ,Lu) such that u ∈W ′γ , then we have

Ω̃(γ;u) = Ω̃
trop(γ;u).

It also worth mentioning that the open Gromov-Witten invariants Ω̃(γ;u) are
defined via De Rham models and are R-valued a priori. On the other hand, the
tropical discs counting invariants Ω̃trop(γ;u) are defined in Q. The correspondence
theorem indicates that Ω̃(γ;u) ∈Q, which is not obvious from the definition.

Motivate by the Gopakumar-Vafa conjecture [13] and the work of Gaiotto-
Moore-Neitzke [8], we are aiming for integer-valued invariants.

3In general, this is an infinite product and converges with respect to the non-Archimedean topol-
ogy induced by the filtration Fλ ΛS .
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Definition 6.3. A quadratic refinement is a continuous homomorphism

c : Γ−→ Z2

such that for each γ1,γ2 ∈ Γ,

c(γ1 + γ2;u) = (−1)〈γ1,γ2〉c(γ1;u)c(γ2;u).

Remark 6.4. It is well-known that the quadratic differential on a Riemann surface
is canonically one-to-one to the spin structures on the Riemann surface [16]. We
expect that the choices the quadratic differentials corresponds to certain choices
of orientations of the relevant moduli spaces of holomorphic discs.

Consider the following basic transformation

θγ(u) := expad
(
Li2(c(γ;u)T Zγ (u)z∂γ)

)
,

where Li2 is the dilogarithm function Li2(z) := ∑
∞
k=1

zk

k2 . Straight-forward compu-
tation shows that the explicit action of θγ is given by

θγ(u) : z∂γ ′ 7→ z∂γ ′(1− c(γ;u)T Zγ (u)z∂γ)〈γ,γ
′〉.

Then the transformation Kγ(u) can be uniquely decomposed into

Kγ(u) = ∏
d∈N

θdγ(u)Ω(dγ;u), (10)

for some Ω(dγ;u) ∈Q. From equation (7)(8)(10), we have

Ω̃
trop(dγ) =−∑

k|d
c(γ)d Ωtrop(d

k γ)

k2 , (11)

for any d ∈ Z. The information of Ω̃(dγ;u) can be converted to Ω(γ;u) by Möbius
inversion formula,

Ω
trop(dγ;u) =−∑

k|d
c(γ;u)

d
k µ(k)

Ω̃trop(d
k γ;u)

k2 .

One of the motivations of introducing such decomposition is the following open
analogue of the Gopakumar-Vafa conjecture:

Conjecture 6.5. [20] Assume u /∈W ′γ , then

14



1. Ω(γ;u) ∈ Z.

2. Ω(dγ;u) = 0 for sufficiently large d ∈ N.

For instance, under the notation of Theorem 5.1, we have

Ω(γ;u) =

{
1, if ±γ represents the Lefschetz thimble ,

0, otherwise.

7 Refinement of the Invariants and Refined Wall-Crossing
Formula

There is a q-deformation of the wall-crossing formula [2][15][17] as follows: we
first enlarge Lu by

Lu,q := Λ
S [H1(Lu)]⊗C[q±

1
2 ,((qn−1)−1)n≥1].

Then we replace the commutative product on Lu,q by

z∂1z∂γ2 = q
1
2 〈γ1,γ2〉z∂γ2z∂γ1

and the bracket becomes

[z∂γ1 ,z∂γ2 ] = (q
1
2 〈γ1,γ2〉−q−

1
2 〈γ1,γ2〉)z∂γ1+∂γ2 .

The study of special function theory of q-commuting variables provides the q-
deformed dilogarithm function

Li2(z;q) :=
∞

∑
k=1

zk

k(1−qk)
,

with semi-classical limit back to the dilogarithm function

lim
q

1
2→1

(q
1
2 −q−

1
2 )Li2(q

1
2 z;q) = Li2(z).

Thus, it is natural to define the analogue of θγ by

θγ,q(u) := exp
(
ad(Li2(c(γ;u)q

1
2 T Zγ (u)z∂γ ,q))

)
as an automorphism of Lu,q. Generally, we denote

θγ,q,n(u) := exp
(
ad(Li2(c(γ;u)q

n+1
2 T Zγ (u)z∂γ ,q))

)
.
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Straight-forward computation shows that

θγ,q(u) = Ad exp
(

1

q
1
2 −q−

1
2

∑
d∈N

(−1)d−1

d[d]q
(T Zγ (u)z∂γ)d

)
,

when γ is the relative class of a Lefschetz thimble. This motivates that we should
have

Ω̃
trop
q (dγ;u) =

(−1)d−1

d[d]q
, (12)

for the γ being the relative class of Lefschetz thimble, where

[d]q =
q

d
2 −q−

d
2

q
1
2 −q−

1
2
,d ∈ N.

The following is the generalization of tropical disc counting invariant with q-
deformation motivate from the work of [10][5].

Definition 7.1. 1. Let φ : T → Bϑ be an admissible tropical disc with the stop
u ∈ B0. Then we define its q-deformed weight of φ to be

Multq(φ) := ∏
v∈Cint

0 (T )

[Multv(φ)]q ∏
v∈Cext

0 (T )\{u}

(−1)wv−1

wv[wv]q
∏

Te:φ(e) is a point
|Aut(wTe)|,

where the notation is the same as in Definition 7.1.

2. Let u∈ B0 and γ ∈H2(X ,Lu). We define the tropical discs counting invariant
Ω̃

trop
q (γ;u) to be

Ω̃
trop
q (γ;u) := ∑

φ

Multq(φ) ∈Q[q±
1
2 ,(qn−1)−1]n≥1.

where the sum is over all admissible tropical discs on BArgZγ
with stop at u

such that [φ ] = γ .

It is easy to see that under the semi-classical limit q
1
2 → 1, the q-deformed

tropical discs counting invariants Ω̃
trop
q (γ;u) reduce Ω̃trop(γ;u). For each primitive

γ ∈ H2(X ,Lu), we associate an automorphism of Lu,q given by

K trop
γ,q (u) := Ad exp

(
1

q
1
2 −q−

1
2

∑
d∈N

dΩ̃
trop
q (dγ;u)(T Zγ (u)z∂γ)d

)
. (13)
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In the examples the author is aware of, the transformation Ktrop
γ,q (u) can be ex-

pressed in terms of θγ,q(u) similar to (10),

K trop
γ,q (u) = ∏

d∈N
θdγ,q(u)∑n(−1)nΩn(dγ;u),

for some rational number Ω
trop
n (γ;u). Then the q-deformed multiple cover formula

becomes

Ω̃
trop
q (dγ;u) = ∑

n∈Z
(−1)n+1

(
∑
k|d

c(γ;u)d

k[k]q
Ωn(

d
k

γ;u)
)

q
kn
2 .

Conjecture 7.2. Ωn(γ;u) are always positive integers.

Similar to the proof of tropical counterpart of Theorem 6.1 and together with
the Corollary 4.9 [5], we have the wall-crossing formula for q-deformed tropical
discs counting invariants:

Theorem 7.3. [21] Under the same assumption and notation of Theorem 6.1, then

Paru,u′

(
∏

ArgZγ (u)∈S
K trop

γ,q (u)
)
= ∏

ArgZγ (u′)∈S
K trop

γ,q (u′).

Example 7.4. Under the same condition before the equation (9) and Ω̃
trop
q (γ1,u) =

Ω̃
trop
q (γ2,u) = 1, then we have

∆Ω̃
trop
q (γ1 + γ2;u) = q

1
2 +q−

1
2 .

and

∆Ω
trop
n (γ;u) =


1, if γ = γ1 + γ2 and n =±1
1, if γ = kγ1 +(k+1)γ2 for some k ∈ Z and n = 0
0, otherwise.

Remark 7.5. From the Correspondence theorem (Theorem 6.2) and Definition
7.1, it suggests that the open Gromov-Witten invariants Ω̃(γ;u) also admits an
q-deformation

Ω̃q(γ;u) ∈Q[q±
1
2 ,(qn−1)−1]n≥1,

such that

lim
q

1
2→1

Ω̃q(γ;u) = Ω̃(γ;u).

We don’t know the geometric meaning of Ω̃q(γ;u). Especially, the terms q±
1
2 in

Example 7.4 corresponds to vectormultiplets in [8]. We are interested in the corre-
sponding elements in symplectic geometry will leave it for the future work.
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