Algebras and varieties related to finite subgroups of Sp(2n)

Pavel Etingof Department of Mathematics MIT

Abstract

This talk is an introduction to my recent work with Victor Ginzburg.

The Cherednik algebra H_n is the algebra over **C** generated by the symmetric group S_n and two sets of generators $\mathbf{x} = (x_1, ..., x_n)$ and $\mathbf{y} = (y_1, ..., y_n)$, where the defining relations are the obvious commutation relations between S_n and x_i, y_i , and the relations:

$$[x_i, x_j] = [y_i, y_j] = 0,$$
$$[x_i, y_j] = -s_{ij}, i \neq j$$
$$[x_i, y_i] = s_{i1} + \dots + s_{in}.$$

(where s_{ij} is the permutation of i and j). This algebra has a filtration given by $deg(S_n) = 0$, $deg(x_i) = deg(y_i) = 1$, and it is known from Cherednik's work that $gr(H_n)$ is the smash product $\mathbf{C}[S_n] \bullet \mathbf{C}[\mathbf{x}, \mathbf{y}]$ (the Poincare-Birkhoff-Witt theorem).

Ginzburg and I proved the following:

Theorem. 1. Let Z_n be the center of H_n . Then $gr(Z_n) = \mathbf{C}[\mathbf{x}, \mathbf{y}]^{S_n}$

2. Let $M_n = Spec(Z_n)$. Then M_n is a smooth, affine, symplectic algebraic variety of dimension 2n.

3. There exists an algebraic vector bundle V on M_n of dimension n! such that $H_n = \text{End}(V)$. The group $S_n \subset H_n$ acts on fibers of this bundle as in the regular representation. In particular, all irreduicble representations of H_n are of dimension n! and are parametrized by points of M_n .

4. The variety M_n is isomorphic to the Kazhdan-Kostant-Sternberg-Wilson "Calogero-Moser space", which is the set of pairs of n by n matrices X, Y such that [X, Y] + 1 has rank 1, modulo conjugation.

Some, but not all, of these results can be generalized to the case when S_n is replaced by any Coxeter group and even any group generated by symplectic reflections: some as theorems, some as conjectures.

I will try to describe some of these results and also their quantum analogs.