The chiral de Rham complex, orbifolds, elliptic genera, and automorphic forms

Matthew Szczesny University of Pennsylvania

Abstract

Mathematicians have devoted much effort towards rigorously describing various aspects of quantum field theory (QFT). One mathematical object that captures the algebraic content of (some) QFT's is a vertex algebra. Given a complex manifold X, one can attach to it a QFT known as the "supersymmetric sigma-model with target X", denoted $\Sigma(X)$. One would of course like to have a geometric construction of the vertex algebra underlying $\Sigma(X)$. A candidate for such a construction is the chiral de Rham complex introduced by Malikov, Schechtman, and Vaintrob in 1998. It is a sheaf of vertex algebras on X, denoted Ω_X^{ch} , whose cohomology captures interesting "stringy" invariants related to $\Sigma(X)$.

This talk will introduce vertex algebras, the sheaf Ω_X^{ch} , and its relation with algebraic loop-spaces. I will discuss joint work with Edward Frenkel extending the construction of Ω_X^{ch} to orbifolds. I will describe how it captures stringy geometric invariants of orbifolds such as Chen-Ruan orbifold cohomology and orbifold elliptic genera. Finally, I will discuss joint work with Anatoly Libgober on discrete torsion, and how beautiful generating functions that arise in this context seem to have a deep relation with the theory of automorphic lifts.