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Renormalization: A classical example

Consider an object suspended in a fluid. Applying a force F and measuring
its acceleration gives its inertial mass using

F = mia

The object interacts with the surrounding fluid, so mi > m, mass
measured outside any fluid, m, the bare mass. Its inertial mass is

mi = m + αM

(Archimedes’ principle).

In this scenario, the inertial mass is the renormalized mass. The bare mass
is m, the unrenormalized mass, and the M is the interaction mass, or the
counterterm. If the interaction cannot be turned off then the bare mass
cannot be measured.
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The Renormalization Bundle
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Outline

Define

Feynman Diagrams
The Hopf algebra of Feynman diagrams
Renormalization process

Build the renormalization bundle

Generalizing the renormalization bundle
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Feynman Diagrams
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Background: Lagrangian

In general:

L = LF + LV

LF quadratic form involving an exterior derivative (∆)
LV is a polynomial (minimal degree = 3)

For this talk:

L =
1

2
(|dφ|2 −m2φ2) + gφ3

LF = 1
2 (|dφ|2 −m2φ2)

LV = gφ3

φ is a hermitian scalar field
The space-time dimension is 6
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Background: Feynman Diagrams

Definition

A Feynman graph is an abstract representation of a field interaction. It is
drawn as a connected, not necessarily planar, graph with possibly
differently labeled edges. The orientation of the embedding of the graph in
the plane does not matter.

1 All vertices have valence 3

2 Vertices of valence one are replaced by half edges with no vertex at
the end
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Background: Feynman Integrals

Any particular diagram of interaction is associated to an integral

f (p1, . . . , pn)

∫
R6

d6k∏
∆i

where

∆ is the Laplacian

∆−1 is the associated Green’s kernel

Conservation of momentum∑
pi = 0

This integral is often divergent. Thus we need to renormalize it.
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Background: Graphs of interest

When are these integrals (superficially) divergent?
When they correspond to graphs with 2 or 3 external edges.

Definition

A one particle irreducible, 1PI, graph is a connected Feynman graph such
that the removal of any internal edge still results in a connected graph.
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Background: Subgraph

Definition

An admissible subgraph of a divergent Feynman graph, γ, is a subgraph
that can also be expressed as a divergent 1PI Feynman graph.

A subgraph of Γ is

1 A subset of vertices of Γ

2 A subset of interior edges meeting these vertices

An admissible subgraph, can be expressed as a divergent 1PI Feynman
diagram:

1 If an edge of Γ meets 1 vertex of γ, it is represented by 1 external
edge of γ. If it meets γ at 2 vertices, and is not an edge of γ, then it
is represented by 2 external legs of γ.

2 Each connected component of γ is 1PI

3 γ has 2 or 3 external legs
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Background: Contracted graph

Definition

Let γ = γ1
∐
. . .
∐
γn A contracted graph is the Feynman graph derived

by replacing each connected admissible subgraph, with a vertex vγi . The
resulting contracted graph is written Γ//γ.
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Example

Inadmissible subgraph

Admissible subgraph
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Background: Summary

1 Defined the Feynman diagrams

2 Defined subgraphs and contracted graphs
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The Hopf Algebra
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Hopf Algebra: Construction

Definition

The Hopf algebra H is generated by the vector space of indecomposable
elements, C < xΓ|Γ ∈ {1PI graphs of L} >.

m : H⊗H → H
xΓ ⊗ xΓ′ → xΓx ′Γ

Disjoint union of the 1PI graphs.

η : C → H
1C → 1H

1H = x∅

H is a commutative algebra.
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Hopf Algebra: Construction

∆ : H → H⊗H
xΓ → 1⊗ xΓ + xΓ ⊗ 1 +

∑
(Γ)

xγ ⊗ xΓ//γ

∆ is defined such that ∆(x1x2) = ∆(x1)∆(x2).

ε : H → C

xΓ →
{

xΓ Γ = ∅
0, else

H is non-co-commutative coalgebra.
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Hopf Algebra: Construction

S : H → H
xΓ → −xΓ −

∑
(Γ)

m(S(xγ)⊗ xΓ//γ)

S(xΓxΓ′) = S(xΓ′)S(xΓ)

Definition

xΓ ∈ H is primitive if ∆(xΓ) = xΓ ⊗ 1 + 1⊗ xΓ.
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Hopf Algebra: Grading

There is a grading on H given by the loop number: For x a monomial in
H, x ∈ Hn ⇔ dim H1(x) = n. H0 = C.

For x a monomial in H, x ∈ Hn

Y (x) = nx
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Hopf Algebra: Affine Group Scheme

G = Spec H
Hopf algebra relations ↔ group axioms.

(id ⊗∆)∆ = (∆⊗ id)∆ ↔ multiplication
(id ⊗ ε)∆ = id ↔ identity

m(S ⊗ id)∆ = εη ↔ inverse

G is an affine group scheme.

G is a covariant functor.

C(C− alg) → Homalg (H, ∗)
A → Homalg (H,A)

G (A) = A valued points of G
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Hopf Algebra: Restricted Dual

Indecomposable elements of H∨ are the generators of

C < δxΓ
|Γ ∈ {1PI graphs of L} >

δxΓ
(xΓ′) is the Kronecker delta function.

Multiplication is the convolution product:

δxΓ
? δxΓ′ (x) = (δxΓ

⊗ δxΓ′ )(∆x)

Γ, Γ′ 1PI, x ∈ H.

Comultiplication shows the indecomposables are primitive:

∆δxΓ
(x ⊗ y) = δΓ(xy) = δxΓ

ε(y) + ε(x)δxΓ
(y)
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Hopf Algebra: Milnor-Moore

Theorem

Milnor-Moore Given a connected, graded, cocommutative, locally finite
Hopf algebra, H, there is a Hopf algebra isomorphism, H ' U(g), where g

is the Lie algebra generated by the indecomposable elements of H.

The Milnor-Moore theorem holds on the restricted dual of H.

U(g) ' H∨ =
⊕

n

(Hn)∨ =
⊕

n

Hn

This gives a grading on H∨.

g = Lie G (C)

{Generators of g} ∼ {Primitives of H∨} ∼ {Indecomposables of H} ∼
{1PI graphs}
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Hopf Algebra: Contravariant Relation
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Hopf Algebra: Summary

Defined H the Hopf algebra of Feynman graphs

Defined G of H = C[G ]

G (A) = Homalg (H,A)

Defined H∨ ' U(Lie G (C))

G takes {sections} → {γ†(z) ∈ H∨((z))|∆γ†(z) = γ†(z)⊗ γ†(z)}
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Renormalization
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Renormalization: For Quantum Field Theory

The fields in quantum field theory interact with themselves, but this
interaction cannot be turned off.

UΓ ← divergent (unrenormalized) Feynman integrals associate to 1PI
graphs.

RΓ ← renormalized integral.

CΓ ← counterterm.

Renormalization separates U(Γ) into an iterated product of RΓ, and a
counterterm, CΓ.
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Renormalization: The Process

The process of extracting finite values from these divergent integrals is
twofold.

1 regularize the integral: rewrite them in terms of a set of parameters
that yields a sensible value away from predetermined limit.

2 renormalize away any divergences that still occur after regularization.

Dimensional Regularization analytically continues the dimension of the
theory, to a complex ε ball around 6. z = D − 6.

BPHZ Renormalization is a recursive formula for extracting finite values
from dimensionally regularized divergent integrals.
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Renormalization: Dimensional Regularization

Rewrite the divergent Feynman integrals:

f (p1, . . . , pn)

∫
R6

d6k∏
∆i

=
ıAD

(2π)D

∫ ∞
0

dr rD−1f (−r 2)

AD = 2πD/2

Γ(D/2) = area of a unit sphere in D dimensions.

=
ı

2D−1πD/2Γ(D/2)

∫ ∞
0

dr rD−1f (−r 2)

All poles are now captured in the dimension parameter.
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Renormalization: Birkhoff Decomposition

Theorem

Birkhoff Decomposition Theorem Let C be a smooth simple curve in
CP1 separating it into two connected components: ∞ ∈ C−, 0 ∈ C+. For
G a simply connected complex Lie group and γ : C → G , there are

holomorphic maps γ± : C± → G such that γ(z) = γ−(z)−1γ+(z) on C .

This decomposition is unique up to the normalization γ−(∞) = 1.
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Renormalization: Birkhoff Decomposition variant

∆ = the infinitesimal disk of complex dimension around z = 0

γ : ∆→ G → γ(z) = γ−1
− (z)γ+(z)

By the functor G ,

γ†(z) = γ†?−1
− (z) ? γ†+(z)

γ†?−1
− (z) ∈ G (C[z ])

γ†+(z) ∈ G (C{z})
γ†(z) ∈ G (C((z)))
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Renormalization: BPHZ

Theorem

Connes Kreimer For xΓ ∈ H, Birkhoff decomposition gives

γ†−(z)(xΓ) = −π(γ†(z)(xΓ) +
∑
(xΓ)

γ†−(z)(x ′Γ) ? γ†(z)(x ′′Γ ))

γ†+(z)(xΓ) = γ†(z)(xΓ) + γ†−(z)(xΓ) +
∑
(xΓ)

γ†−(z)(x ′Γ) ? γ†(z)(x ′′Γ )

γ†(z)(xΓ) = UΓ(z) γ†+(z)(xΓ) = RΓ(z) γ†−(z)(xΓ) =
CΓ(z)

The BPHZ renormalization process gives:

CΓ = −π(UΓ +
∑
(Γ)

C ′ΓU ′′Γ )

RΓ = UΓ + CΓ +
∑
(Γ)

C ′ΓU ′′Γ
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Renormalization: A Rota-Baxter Perspective

Definition

A Rota-Baxter Algebra is pair (A,R), where A is an algebra over a
commutative ring k and R is a linear operator on A such that for x , y ∈ A,

R(x)R(y) + θR(xy) = R(R(x)y) + R(xR(y))

where θ ∈ k is the weight.

(C((z)), π) is a Rota-Baxter algebra of weight 1:

π : C((z)) → z−1C[z−1]
∞∑
−n

aiz
i →

−1∑
−n

aiz
i
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Renormalization: A Rota-Baxter Perspective

Theorem

Fard, Guo, KreimerLet (A,R) be a complete filtered Rota Baxter algebra
of non-zero weight. For γ† ∈ G (A), one can write γ† = ea with
a ∈ Hom(H,A)(1). Let u = γ† − (η ◦ ε) ∈ Hom(H,A)(1).

1 P : Hom(H,A)→ Hom(H,A) is a Rota-Baxter operator given by
P = R ◦ f . (Hom(H,A),P) is a filtered non-commutative,
associative, unital Rota-Baxter algebra.

2 The Birkhoff decompositions are

γ†− = −R(γ† +
∑
γ

γ†−γ
†) = (η ◦ ε)− P(γ†− ? u)

and

γ†+ = R̃(γ† +
∑
γ

γ†−γ
†) = (η ◦ ε)− P̃(γ†+ ? (γ†?−1 − (η ◦ ε)))
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Renormalization: The Renormalization Group

The renormalization group describes how the dynamics of a system
depends on the scale at which it is probed.

The process of dimensional regularization transforms the coupling constant

g 7→ tzg

where t ∈ C×. I will also write this as t = es for s ∈ C.

For H∨,

θs(γ†(z)(x)) = γ†(z)(esY (x))

θs is the renormalization group.
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Renormalization:Renormalization group flow generator

Renormalization group gives sections of the P → B bundle
corresponding to γ†(z , t) = tY γ†(z)(x)

Renormalization group flow: Ft(γ(z , t)) = d
dt γ
†(z , t).

Renormalization group flow generator:
β(z , t)(γ(z , t)) = limz→0 F1(γ(z , t))

β is key in describing how the Lagrangian changes with the
renormalization mass.
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Renormalization: Important Physical Condition

The counterterms of a physical Lagrangian do not depend on the
renormalization mass scale. This is expressed by the restriction to
G (C((z))):

G Φ(C((z))) = {γ†| d

ds
(θszγ

†)− = 0}

which is satisfied by examples in the physical world.
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Renormalization: Summary

∆ comes from Dimensional Regularization

Sections of the bundle decompose as BPHZ renormalization

C× comes from the renormalization group

Interested in sections of γ†(z , t) = tY γ†(z)(x)

Defined the renormalization group flow generator
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The Renormalization Bundle
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The Renormalization Bundle: Construction

The renormalization bundle can be written in two stages as

P → B → ∆

∆ is the infinitesimal disk of complex dimensions
B is the trivial C× principal bundle over ∆
P is the trivial G principal bundle over B

∆∗ is the punctured disk. B∗ and P∗ are the corresponding bundles
missing the fiber over 0.
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The Renormalization Bundle: The Connes-Marcolli
Connection

P∗ has a trivial connection on it.

A section of P∗ pulls back its connection form to

ω = γ†−1(z , t)dγ†(z , t) ∈ (g(A) o C)⊗ Ω1

Interested in sections corresponding to tY γ†(z) ∈ G (C((z)))[t, t−1].

Look like the renormalization group has acted on these.
Pull back ω to flat, C× invariant connection forms.
This last condition means that

ω(z , t) = tYω(z , 1)
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The Renormalization Bundle: Defining the Connection
Form

There is an element R̃(γ†) = γ†?−1 ? (γ†(z) ◦ Y ) ∈ g(A) that determines
the connection one form ω by

γ†(z) = Te−
∫∞

0 θ−t R̃(γ†)dt

Susama Agarwala (Johns Hopkins University)Differential Geometry on the Renormalization Bundle October 18, 2007 40 / 48



The Renormalization Bundle: G (A) Gauge Equivalence

Let ω = γ†−1dγ† and ω = γ′†−1dγ′†

The two connection 1-forms ω ∼ ω′ are equivalent if and only if
γ′†(z , 1) = γ†(z , 1)φ(z , 1) for some holomorphic function φ ∈ G (A). In
other words,

ω ∼ ω′ ⇔ γ†−(z , 1) = γ′†−(z , 1)
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The Renormalization Bundle: Equisingularity

Equisingularity is a geometric generalization of the “physica” condition
d
ds (θszγ

†)− = 0.

Definition

If two section of the bundle P∗ → ∆∗, γ†(z , σ1(z)), and γ†(z , σ2(z)) have
the property

1 γ†?−1
− (z , σ1(z)) ∼ γ†?−1

− (z , σ2(z)) ∀σi (z) s.t. σ1(0) = σ2(0)

2 the pull back of the connection form ω is C× invariant

the pullback of the connection form ω is equisingular.
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The Renormalization Bundle: Connes Marcolli Main
Theorem

Theorem

If γ defines an equisingular connection one form, then γ† ∈ G Φ(A). That
is, any equisingular connection form

γ† ∼ Te−z−1
∫∞

0 θ−tβ(γ†?−1
− )dt

β(γ†?−1
− ) ∈ g is the renormalization group flow generator.
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Renormalization Bundle: Summary

Connes and Marcolli have taken the renormalization process for a scalar
field theory, and interpreted it geometrically.

1 Defined a Hopf algebra for the theory

2 Created a bundle over the regularization parameter space

3 Identified renormalization with the sections of this bundle

4 ”Physical” sections correspond to connection forms uniquely
determined by the renormalization group generator
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Future hopes and dreams
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Generalizations: The Renormalization Bundle for Other
Theories

The Rota-Baxter perspective to the Birkhoff Decomposition allows for the
decomposition of a more general class of regularization scheme. For
instance, one can make small changes to this bundle by changing ∆ to ∆n

to account for renormalization schemes with multiple parameters (ζ
function renormalization). Or, one can change the number of
renormalization mass parameters (for theories like QCD.)
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Generalizations: Zeta Function Renormalization

The propagators in the Feynman diagrams are defined as the Green’s
functions for the Laplacian in the Minkowski metric. One can build an
analog of this in on a compact manifold. Let ∆M be the Laplacian on a
compact manifold M in d dimensions. Then the Feynman integral becomes∫

Rd

f (k)
ddk∏

∆Mi

Presumably, this can be renormalized via zeta function renormalization
onto a Rota-Baxter algebra V . Following the methods of this talk, one
hopes to then define a renormalization group generator for Feynman
integrals over a generalized background manifold.
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Generalizations: QFT Over Curved Space Time

Without explicitly stating so, I have been ignoring the external leg
structure of the Feynman graphs in this talk. To include these, one needs
to reattach the external legs in the bundle

P × Rn → B × Rn → ∆× Rn

where Rn (or rather its Fourier transform) contains the information about
the external momenta of the interacting fields. To complete the picture in
generalized space time, rewrite the bundle

P ×M → B ×M → ∆×M

and reattach the legs.
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