Szegö Theorem and Prediction Problem

Mamikon S. Ginovyan
Department of Mathematics and Statistics
Boston University

Monday, April 7, 2008, 10 am -12 noon
Mathematics and Computer Science (MCS) Building, Room 135
111 Cummington Street, Boston

Abstract: Let $X(t), t = 0, \pm 1, \ldots$, be a second order stationary random sequence with spectral density function $f(\lambda), \lambda \in [-\pi, \pi]$. Denote by $\sigma_n^2(f)$ the best linear mean square one-step prediction error in predicting the random variable $X(0)$ by the past of $X(t)$ of length n, and let $\sigma^2(f) = \sigma^2(f)$ be the prediction error by the entire past.

The Szegö classical "weak" theorem states that the relative prediction error $\delta_n(f) = \sigma_n^2(f) - \sigma^2(f)$ is nonnegative and tends to zero as $n \to \infty$.

In this talk we will present some (old and new) results that describe the rate of decrease of the relative prediction error $\delta_n(f)$ to zero as $n \to \infty$, depending on the dependence structure of the underlying process $X(t)$ and the smoothness properties of its spectral density function $f(\lambda)$.

We also will discuss the inverse problem: for a given rate of decrease of the relative prediction error $\delta_n(f)$ to zero, describe the process $X(t)$ compatible with that rate. Specify then dependence structure of $X(t)$ and the smoothness properties of its spectral density $f(\lambda)$.

For directions and maps, please see http://math.bu.edu/research/statistics/statseminar.html.