Let \(a, b \in G \) where \(ab = ba \) and \(|a| = m \) and \(|b| = n \).
If \(\langle a \rangle \cap \langle b \rangle = \{e\} \) show \(\exists x \in G \) st. \(|x| = \text{lcm}(m,n) \).

Claim: \(x = ab \) is such an element.

Say \(|x| = k \). As such \(x^k = (ab)^k = e \)
But since \(ab = ba \) then \((ab)^k = a^k b^k \) and so
\[
a^k b^k = e
\]

Observe now that since \(|a| = m \) and \(|b| = n \) then
\[
(ab)^{\text{lcm}(m,n)} = a^{\text{lcm}(m,n)} b^{\text{lcm}(m,n)} = e \cdot e = e
\]
Therefore \(k \mid \text{lcm}(m,n) \) \(\text{(X)} \)

Now, if \((ab)^k = e \) then \(a^k b^k = e \rightarrow a^k = b^{-k} \)
But if so, then \(b^k \in \langle a \rangle \) and \(a^k \in \langle b \rangle \) (i.e. \(a^k \) is a power of \(b \) so is \(b^{-k} \)
However, we assume that \(\langle a \rangle \cap \langle b \rangle = \{e\} \)
So we must have \(a^k = e \) and \(b^{-k} = e \) (which implies \(b^k = e \))
Therefore, since \(|a| = m \) and \(|b| = n \) then \(m | k \) and \(n | k \) and so \(k \)
is a common multiple of \(m \) and \(n \) so \(\text{lcm}(m,n) \mid k \) \(\text{(X\#)} \)

But \(\text{(X)} \) and \(\text{(X\#)} \) together imply that \(k = \text{lcm}(m,n) \)

Note: You can apply this to question 49.
You also need the following fact:

If \(\langle a \rangle \) and \(\langle b \rangle \) are subgroups of \(G \) then if \(\gcd(|a|,|b|) = 1 \) then \(\langle a \rangle \cap \langle b \rangle = \{e\} \).