Your work will be collected on Wednesday, October 22, in class.

1. Prove: For all \(x \in \mathbb{R} \) there is exactly one integer \(n \in \mathbb{Z} \) such that \(n \leq x < n + 1 \).

2. Prove that every infinite bounded subset of a compact metric space has a limit point.

3. Let \(\{s_n\} \) be an arbitrary real sequence and let \(E \) be the set of all extended real numbers \(x \in \mathbb{R} \cup \{\infty, -\infty\} \) such that there is a subsequence \(\{s_{n_i}\}_{i=1}^{\infty} \) with \(\lim_{i \to \infty} s_{n_i} = x \). Write down a careful proof of each of the following two statements:
 a. \(E \) is non-empty.
 b. For \(s \in \mathbb{R} \):
 \[\lim_{n \to \infty} s_n = s \iff \limsup_{n \to \infty} s_n = \liminf_{n \to \infty} s_n = s. \]

4. Let \(E \) be a subset of a metric space \((X, d)\). We define the boundary of \(E \) to be the set
 \[\text{bd}(E) := E \cap E^c. \]
 Prove that:
 a. Prove: \(\text{int}(E) \), \(\text{int}(E^c) \), and \(\text{bd}(E) \) are pairwise disjoint and that their union is \(X \).
 b. Prove: \(\overline{E} = \text{int}(E) \cup \text{bd}(E) \).
 c. Prove: \(\text{bd}(E) = \phi \) if and only if \(E \) is both open and closed.
 d. Give an example of a metric space \(X \) and a proper non-empty subset \(E \subseteq X \) such that \(\text{bd}(E) \) is empty.

5. Suppose we are given an infinite triangular array of non-negative real numbers
 \[
 \begin{array}{cccccc}
 p_{11} & | & p_{21} & | & p_{22} & | \\
 p_{31} & | & p_{32} & | & p_{33} & | \\
 & | & \cdots & | & \cdots & | \\
 \end{array}
 \]
 in which the sum of the numbers in any row is 1 (i.e. \(p_{nm} \geq 0 \) and for each \(n \), \(p_{n1} + p_{n2} + \cdots + p_{nn} = 1 \)). Now let \(\{s_n\} \) be any sequence of real numbers and define a new sequence \(\{t_n\} \) by
 \[t_n := p_{n1}s_1 + p_{n2}s_2 + \cdots p_{nn}s_n. \]
 a. Prove: for each \(n \), \(t_n \) lies somewhere between the maximum and the minimum of the numbers \(s_1, \ldots, s_n \).
 b. Now suppose also that \(\{s_n\} \) is a convergent sequence and that \(\lim_{n \to \infty} s_n = s \). Prove:
 \[\lim_{n \to \infty} t_n = s \] if and only if for every positive integer \(m \), \(\lim_{n \to \infty} p_{nm} = 0 \).
c. Prove:
\[
\lim_{n \to \infty} \frac{1 + \frac{1}{2} + \cdots + \frac{1}{n}}{\log(n)} = 1.
\]

Hint: Use parts a and b with
\[s_n = \frac{1}{n \cdot \log \frac{n+1}{n}}\]
and
\[p_{nm} = \frac{\log \frac{n+1}{n}}{\log(n+1)}\].

An Extra Credit Problem.

6. (Extra Credit) Let \(p \) be a positive prime number and define the \(p \)-adic abolute value of any nonzero integer \(a \in \mathbb{Z} \) by

\[|a|_p = p^{-n}, \text{ where } p^n \text{ is the highest power of } p \text{ dividing } a.\]

We also define \(|0|_p = 0 \). For any two integers \(a, b \in \mathbb{Z} \) we then define the \(p \)-adic distance from \(a \) to \(b \) by

\[d_p(a, b) := |a - b|_p.\]

Note that two integers \(a \) and \(b \) are “close” in the \(p \)-adic metric if \(a \) and \(b \) are the same modulo a high power of \(p \).

a. Prove that \(d_p \) is a metric on \(\mathbb{Z} \).

Let \(X \) be the metric space \((\mathbb{Z}, d_p)\) (i.e. \(\mathbb{Z} \) with the \(p \)-adic metric).

b. Show that every series of the form \(\sum_{n=0}^{\infty} a_n p^n \) with \(a_n \in \mathbb{Z} \) is Cauchy.

c. Does the series \((p-1) + (p-1)p + (p-1)p^2 + \cdots \) converge in \(X \)? If so, what is the limit? Does the series \(1 + p + p^2 + \cdots \) converge in \(X \)?

d. Show that every Cauchy sequence is equivalent to exactly one series of the form

\[\sum_{n=0}^{\infty} a_n p^n, \text{ where each } a_n \in \mathbb{Z} \text{ satisfies } 0 \leq a_n < p.\]

e. Now let \(p = 5 \). Can you find a Cauchy sequence in \(X \) whose square converges to \(-1\)?