Building a QKD Network
out of Theories and Devices

December 17, 2005

David Pearson
BBN Technologies
dpearson@bbn.com
Why QKD? Why now?

- Unconditional security, guaranteed by the laws of physics, is very compelling
- Public-key cryptography gets weaker the more we learn – even for classical algorithms
- If we had quantum computers tomorrow we’d have a disaster on our hands.
- Future proofing – secrets that you transmit today using classical cryptography may become vulnerable next year (RSA ’78 predicted 4×10^9 years to factor a 200-digit key, but it was done last May)
- The technology of QKD seems to be mature enough that we can start to create usable systems.
We are designing and building the world’s first Quantum Network, delivering end-to-end network security via high-speed Quantum Key Distribution, and testing that Network against sophisticated eavesdropping attacks.

As an option, we will field this ultra-high-security network into commercial fiber across the metro Boston area and operate it between BU, Harvard, and BBN.
‘Mark 2’ Weak Coherent QKD Links
4 Nodes Continuously Operational Since October 2003

- Polarization Independent
- Sync & Data at 1550 nm
- Active Path Length Control

Transmitter (Alice)

1550.12 nm QKD Data Laser
50 / 50 Coupler
Adjustable Air Gap Delay
Optical Attenuator
Polarizer
Delay Loop
1550.92 nm Sync Laser
E-O Phase Shifter
Signal Splitter
Gate
Amp
DAC
Pulse Generator
10 MHz Clock
14 Bits
Buffering
Pulse Generator
SYNC
14 Bits
Buffering
Pulse Generator
3-Way Splitter
TTL Pulse Threshold
Amp
DAC
3 Pulse Generators
NIM
Delay Line
50 / 50 Coupler
Circulator
Faraday Mirrors
E-O Phase Shifter
50 / 50 Coupler
Adjustable Air Gap Delay
Delay Loop
Link Fiber
DWDM
Circulator
50 / 50 Coupler
Adjustable Air Gap Delay
Delay Loop
Link Fiber
DWDM

Receiver (Bob)

1550.12 nm QKD Data Laser
50 / 50 Coupler
Adjustable Air Gap Delay
Optical Attenuator
Polarizer
Delay Loop
1550.92 nm Sync Laser
E-O Phase Shifter
Signal Splitter
Gate
Amp
DAC
Pulse Generator
10 MHz Clock
14 Bits
Buffering
Pulse Generator
SYNC
14 Bits
Buffering
Pulse Generator
3-Way Splitter
TTL Pulse Threshold
Amp
DAC
3 Pulse Generators
NIM
Delay Line
50 / 50 Coupler
Circulator
Faraday Mirrors
E-O Phase Shifter
50 / 50 Coupler
Adjustable Air Gap Delay
Delay Loop
Link Fiber
DWDM
Circulator
50 / 50 Coupler
Adjustable Air Gap Delay
Delay Loop
Link Fiber
DWDM

Building the DARPA Quantum Network
Copyright © 2005 by BBN Technologies.
QKD Software Suite and Protocols

QKD Endpoint

- IPsec
- IKE
- SPD
- SAD
- IP
- Ethernet Device Driver
- Ethernet Device Driver
- Interface
- Optical Process Control
- Optical Hardware
- VPN
- Internet (public channel)

QKD Protocols

- Authentication
- Privacy Amplification
- Entropy Estimation
- Error Detection and Correction
- Sifting
Status as of 3½ Years Ago
The Year 1 Weak-Coherent Link
The Cooled Detector Package

- 2 Epitaxx detectors (EPM 239 AA SS)
- Dual Peltier coolers
- Approx. 2×10^{-2} Torr
- Operates near -60 C, achieves -80 C max
First Days Up and Running

Mean emission = 0.1 photons/pulse;
Perfect results would be 0.05; 10% quant. Eff. would be 0.005
Bounding Eve’s Information
(the heart of QKD)

Information Eve learns:
- t Bits from probing single-photon pulses
- q Classical bits leaked
- ν Bits from imperfect quantum channel

After we get the bound, we use privacy amplification to reduce Eve’s knowledge to $\varepsilon << 1$
Imperfections in the Quantum Channel (taking security proofs w/ a grain of salt)

- Multi-photon pulses (weak coherent ≠ single photon)

Eve splits off one photon from any multi-photon pulse, keeps one in a quantum memory and sends the other through to Bob over a special low-loss channel. If she doesn’t get a photon, she blocks the pulse. When bases are announced she measures her stored qubit in the correct basis.
Imperfections in the Quantum Channel
(taking security proofs w/ a grain of salt)

- Multi-photon pulses (weak coherent ≠ single photon)
- Unbalanced detectors
Imperfections in the Quantum Channel
(taking security proofs w/ a grain of salt)

- Multi-photon pulses (weak coherent ≠ single photon)
- Unbalanced detectors
- Timing imperfections in detectors

Detector sensitivity

Time

Eve injects pulse here

D0

D1
Imperfections in the Quantum Channel (taking security proofs w/ a grain of salt)

- Multi-photon pulses (weak coherent ≠ single photon)
- Unbalanced detectors
- Timing imperfections in detectors
- Active probes of Alice/Bob interferometers (OTDR)

![Diagram of quantum network components]
Imperfections in the Quantum Channel (taking security proofs w/ a grain of salt)

- Multi-photon pulses (weak coherent ≠ single photon)
- Unbalanced detectors
- Timing imperfections in detectors
- Active probes of Alice/Bob interferometers (OTDR)
- Breakdown flash from APDs

A consensus list of vulnerabilities would be a very valuable thing!

Some of the vulnerabilities we want to fix in the optics, some by monitoring, and some by privacy amplification (with extensions to the proofs)
Imperfections in the Quantum Channel
(taking security proofs w/ a grain of salt)

- Multi-photon pulses (weak coherent ≠ single photon)
- Unbalanced detectors
- Timing imperfections in detectors
- Active probes of Alice/Bob interferometers (OTDR)
- Breakdown flash from APDs
- Memory effects of APDs

A consensus list of vulnerabilities would be a very valuable thing!

Some of the vulnerabilities we want to fix in the optics, some by monitoring, and some by privacy amplification (with extensions to the proofs)
Howard Brandt’s entangling probe for BB84

(quant-ph/0509088)

Uses an entangling probe with a POVM which can sometimes unambiguously discriminate between 0 (in either basis) and 1. With loss, allows PNS-type attack for true single-photon source

Shapiro showed that Brandt left out part of the error rate (thank goodness!)

But it was plausible that the attack worked, despite the proofs
Quantum Networking
Quantum Networking

• Without a network, QKD will never “take off”
• The holy grail: using quantum teleportation and quantum memory to switch qbits
 – Could extend range of quantum communication through entanglement purification
 – At least 10 years off
• An interim solution: circuit-switched quantum links using optical switches
• Another useful technology: key relay through trusted intermediate nodes
Two Kinds of QKD Networking
Currently Operational in DARPA Quantum Network

- **Switched networks**
 - Share infrastructure
 - Quite secure
 - Requires compatible technology
 - Limited in range

- **Trusted networks**
 - Can extend range
 - Allow different kinds of QKD to play together
 - Robust and redundant
 - Nodes *must* be kept secure
Optical Switching in DARPA Quantum Network
Nodes Do Not Need to Trust the Switching Network

- Alice
- Bob
- Anna
- Boris

Quantum Optical Network

Pairwise QKD Key Material Built Up Between . . .
 - Alice & Bob
 - Anna & Bob
 - Alice & Boris
 - Anna & Boris

Suitable for Compatible QKD Nodes at Metro Distances
Key Relay in DARPA Quantum Network

Nodes Do Need to Trust the Relays

Pairwise QKD Key Material Built Up Between . . .
- Alice & Ali (via Boris as relay)
- Bob & Boris (via Alice or Anna as relay)

Suitable for Incompatible QKD Nodes or Long Distance Relay
The DARPA Quantum Network
Operating Continuously Across Cambridge Since 6/2004

+ Freespace link
+ Entangled link
Alice / Bob (Within BBN)
0 dB, 0 km
QBER ~ 2%
~ 13,000 bits/sec

Anna / Bob (Harvard-BBN)
5.1 dB, 10.2 km
mu = 0.5
QBER ~ 3.5%
~ 1,000 bits/sec

Alice / Boris (BBN-BU)
11.5 dB, 19.6 km
mu = 1.0
QBER ~ 7.6%
~ 160 bits/sec

Anna / Boris (Harvard-BBN)
16.6 dB, 29.8 km
mu = 0.5
QBER: N/A
0 bits/sec
Many connectors in current path to BU (Boris) resulting in high attenuation. Will splice in coming months, but this gives a preview of mid-distance (~50 km) performance.
Routing and Key Relay

- Determines topology of network
- Chooses paths with small number of nodes, and ample key material
- Uses one-time-pad encryption of new key
- Transports keys, not data

- Each node knows full network topology
- Can choose shortest path
- Or multiple independent shortest paths
Open Testbed for QKD Networking
BBN’s QKD Protocols
Modular Suite of QKD Protocols

- **Authentication**
 - ✓ Public Key
 - ✓ Secret Key

- **Privacy Amplification**
 - ✓ GF[2^n] Universal Hash
 - ✓ BBBSS 92
 - ✓ Slutsky
 - ✓ Myers / Pearson
 - ✓ Shor / Preskill

- **Entropy Estimation**
 - ✓ BBN Cascade
 - ✓ BBN ‘Niagara’ FEC

- **Error Detection and Correction**
 - ✓ Traditional
 - ✓ ‘SARG’ Sifting

- **Sifting**

Simple, Open Interface Makes It Easy To “Plug In” Other Teams’ QKD Systems

Building the DARPA Quantum Network
Copyright © 2005 by BBN Technologies.
Open Interfaces
Enable a wide range of Quantum channels

QKD Protocols
- Key Exchange
- Privacy Amplification
- Entropy Estimation
- Error Detection and Correction
- Sifting

QKD emulator
BBN Weak-Coherent link
Std. interface
BBN Entangled link
Qinetiq Free-space link
NIST high-speed free-space link
The ‘Mark 2’ QinetiQ Freespace Link

- Pulse rate: 10MHz
- 0.1 photons per pulse
- Wavelength: 840nm
- Overall attenuation: <30dB
- Detection time jitter: 300ps
- Detected pulse width: 1ns
- Detection window: 1.4ns
- Gated dark count probability: 7x10^-6
- Raw key rate: 1kHz
- Bit error rate: 5%

23 km demonstrated through free space

Background Information
- Based on Successful QinetiQ / Munich Freespace System
- New QinetiQ Transmitter, with Subcontract for Improved Munich Detector

Current Status
- Brassboard Transmitter Demo’d with Old Receiver
- BBN Software Integrated with QinetiQ System
- Continuous Operation across QinetiQ Laboratory
- Delivered and operational March 23, 2005
NIST / BBN Freespace Collaboration
Ali & Baba – What is Currently Integrated in BBN’s Lab

Quantum Telescope 840nm (don’t have)

Classical Telescope 1550nm (not yet)

Ali

Baba

Building the DARPA Quantum Network
Copyright © 2005 by BBN Technologies.
Open Interface to Optics
Enables a wide range of Quantum channels

QKD Protocols
- Key Exchange
- Privacy Amplification
- Entropy Estimation
- Error Detection and Correction
- Sifting

NIST high-speed free-space link: 100 – 300x as fast as other systems.
Currently BBN software discards most frames due to rate mismatch with reconciliation

Bottleneck - Cascade Error Correction
BBN’s ‘Niagara’ LDPC Forward Error Correction
40x Less Comms Overhead, 16x Less CPU than Cascade

Inputs
- Pseudo-random seed
- k (block size)
- D – density profile
- p – number of parity constraints (revealed bits)

Code
- A low-density parity-check matrix
- Random, with constraints on row/column weights

A promising alternative to adding a safety margin is to add more parity bits when decoding fails

<table>
<thead>
<tr>
<th></th>
<th>BBN Cascade</th>
<th>LDPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revealed bits</td>
<td>958</td>
<td>1006</td>
</tr>
<tr>
<td>% of Shannon limit</td>
<td>120%</td>
<td>126%</td>
</tr>
<tr>
<td>Delay (round trips)</td>
<td>68</td>
<td>1</td>
</tr>
<tr>
<td>Communication (bytes)</td>
<td>19200</td>
<td>480</td>
</tr>
<tr>
<td>CPU usage (secs / Mb, 800MHz x86)</td>
<td>17.4</td>
<td>1.1</td>
</tr>
</tbody>
</table>
Detectors
IBM Almaden Collaboration
Newest BBN QKD Systems Incorporate IBM Detectors

Donald S. Bethune, William P. Risk and Gary W. Pabst
IBM Almaden Research Center
San Jose, CA

IBM Almaden supplied Detectors for DARPA Quantum Network QKD systems
Superconducting (4.2 K) NbN hot-electron photodetector (HEP) with picosecond response time, high intrinsic quantum efficiency, negligible dark counts, and the capability to detect single photons from the ultraviolet to the infrared wavelength range.

Goal: Engineer Very High Speed Single Photon Detectors
Why Develop this Detector?

<table>
<thead>
<tr>
<th>Detector Model</th>
<th>Count rate(Hz)</th>
<th>QE (%)</th>
<th>Jitter (ps)</th>
<th>Dark Counts (per ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>InGaAs PFD5W1KS APD (Fujitsu)</td>
<td>5×10^6</td>
<td>>20</td>
<td>>200</td>
<td>6×10^{-6}</td>
</tr>
<tr>
<td>R5509-43 PMT (Hamamatsu)</td>
<td>9×10^6</td>
<td>1</td>
<td>150</td>
<td>1.6×10^{-5}</td>
</tr>
<tr>
<td>Si APD SPCM-AQR-16 (EG&G)</td>
<td>5×10^6</td>
<td>0.01</td>
<td>350</td>
<td>2.5×10^{-8}</td>
</tr>
<tr>
<td>Mepsicron-II (Quantar)</td>
<td>1×10^6</td>
<td>0.01</td>
<td>100</td>
<td>1×10^{-10}</td>
</tr>
<tr>
<td>Transition Edge Sensor (NIST)</td>
<td>2×10^4</td>
<td>>80</td>
<td>N/A</td>
<td>~0</td>
</tr>
<tr>
<td>SSPD projection (R. Sobolewski)</td>
<td>3×10^9</td>
<td>>10</td>
<td>18</td>
<td>1×10^{-11}</td>
</tr>
</tbody>
</table>

Ideal Characteristics for Quantum Key Distribution

Very Fast (> 1 GHz), Low Dark Count (< 1/s), Good QE (>10%)
Theories vs. Devices

When you sit down to engineer a QKD system to meet those security guarantees, you constantly have to bridge the abstract world of the proofs and the messy world of devices.

Justice? You get justice in the next world, in this world you get the law. – William Gaddis

Proofs? You get proofs in the next world, in this world you get devices. – Chip Elliott
Active Collaborations in Year 4

Harvard University

BBN Technologies
A Verizon Company

DARPA

QinetiQ

MITRE

NIST

IBM®
The Team

Boston University
- Prof. Alexander Sergienko
- Prof. Mal Teich
- Prof. Bahaa Saleh
- Prof. Gregg Jaeger
- Dr. Martin Jaspan
- Dr. Gianni Di Giuseppe
- Dr. Hugues De Chatellus

Harvard University
- Prof. Tai Tsun Wu
- Dr. John M. Myers
- Dr. Dionisios Margetis
- Dr. F. Hadi Madjid
- Margaret Owens

University of Rochester
- Prof. Roman Sobolewski

NIST Boulder
- Dr. Aaron Miller
- Dr. Sae Woo Nam
- Dr. Robert Schwall

BBN Technologies
- Dr. Alex Colvin
- Chip Elliott
- Dr. Chris Lirakis
- John Lowry
- Dr. David Pearson
- Oleksiy Pikalo
- John Schlafer
- Dr. Greg Troxel
- Henry Yeh

Visitors
- Rich Cannings (U. Calgary)