1 Admissible representations of a locally profinite group

1.1 Admissibility

Let G be locally profinite. Recall that a representation $\pi : G \to \text{GL}(V)$ is admissible if it is smooth and has the property that V^K is finite-dimensional for all open compact $K \subset G$.

If $\sigma : K \to \text{GL}(W)$ is a representation of K, let $V[\sigma]$ be the σ-isotypic subspace of V. This is the sum of the images of all K-equivariant maps $W \to V$.

Proposition 1.1. A representation $\pi : G \to \text{GL}(V)$ is admissible if and only if the following two conditions hold:

1. For all irreducible representations σ of K, $V[\sigma]$ is finite-dimensional.
2. $V = \bigoplus_\sigma V[\sigma]$, where σ runs over all smooth irreducible representations of K.

Proof. Left as exercise. \hfill \square

1Much of this lecture is adapted from David Rohrlich’s manuscript on automorphic representations.
1.2 Schur’s lemma

As a consequence we have Schur’s lemma for irreducible admissible representations \(\pi: G \to \text{GL}(V) \). This states that \(\text{Hom}_G(V,V) = \mathbb{C} \). Proof: \(f: V \to V \) commutes with the action of \(G \), we would like to show that \(f \) has an eigenvalue \(\lambda \). (Note that the existence of an eigenvector for \(f \) is not at all guaranteed, because \(V \) may be infinite-dimensional.) Then the \(\lambda \)-eigenspace of \(f \) is a nonzero \(G \)-stable subspace of \(V \), hence it is all of \(V \), hence \(f \) acts on \(V \) as \(\lambda \). To show that \(f \) has an eigenvalue, let \(K \) be an open compact subgroup. By the proposition, there is a smooth representation \(\sigma \) of \(K \) with \(V[\sigma] \) finite-dimensional and nonzero. Now observe that \(f \) preserves \(V[\sigma] \). Since \(V[\sigma] \) is finite-dimensional, it has an eigenvalue.

1.3 Admissible unitary representations

Unitary representations \(V \) have the nice property that for \(W \subset V \) a \(G \)-invariant subspace, the complement \(W^\perp \) is also \(G \)-invariant. This suggests that \(V \) should be a direct sum of irreducible \(G \)-invariant subspaces. But this may fail to be true: \(V \) might not even be equal to the direct sum of \(W \) and \(W^\perp \)! It turns out that we are saved by the property of admissibility.

Theorem 1.2. Let \(G \) be locally profinite, and let \(\pi: G \to \text{GL}(V) \) be an admissible unitary representation. Then \(V \) is the orthogonal direct sum of irreducible representations.

This will follow from the following two lemmas:

Lemma 1.3. If \(W \subset V \) is \(G \)-invariant, then \(V = W \oplus W^\perp \).

Lemma 1.4. If \(V \neq 0 \) then \(V \) contains an irreducible \(G \)-invariant subspace.

Given the lemmas, the proof of the theorem proceeds as follows. Let \(\mathcal{S} \) be the set whose members are families of mutually orthogonal irreducible subspaces of \(V \). Put a partial order on \(\mathcal{S} \) under inclusion. Then every chain in \(\mathcal{S} \) has an upper bound, namely the union. Therefore by Zorn’s lemma, \(\mathcal{S} \) has a maximal element \(S \). Put

\[
U = \bigoplus_{W \in S} W.
\]
We claim \(U = V \). Otherwise, the first lemma gives \(V = U \oplus U^\perp \), and the second lemma shows that \(U^\perp \) contains an irreducible representation \(W \). Then \(S \cup \{ W \} \) is strictly greater than \(S \), contradiction.

Now, the proof of Lemma 1: Since \(V \) is admissible, it enough to show that

\[
V[\sigma] = W[\sigma] \oplus W[\sigma]^\perp
\]

for every smooth irreducible representation of \(K \). Since \(V[\sigma] \) is finite-dimensional, we have

\[
V[\sigma] = W[\sigma] \oplus (W[\sigma]^\perp \cap V[\sigma])
\]

We claim that \(W[\sigma]^\perp = W[\sigma]^\perp \cap V[\sigma] \). Certainly \(W[\sigma] \subset V[\sigma] \) and \(W[\sigma]^\perp \subset W[\sigma]^\perp \), so that we have one inclusion, \(W[\sigma] \subset W[\sigma]^\perp \cap V[\sigma] \).

On the other hand, \(V[\sigma] \) is orthogonal to \(W[\tau] \) for all \(\tau \neq \sigma \), and \(W[\sigma]^\perp \) is orthogonal to \(V[\sigma] \), so that the intersection \(V[\sigma] \cap W[\sigma]^\perp \) is orthogonal to

\[
\left(\bigoplus_{\tau \neq \sigma} W[\tau] \right) \bigoplus W[\sigma] = W,
\]

so that \(V[\sigma] \cap W[\sigma]^\perp \subset W^\perp \), which implies that \(V[\sigma] \cap W[\sigma]^\perp \) (since it is \(\sigma \)-isotypic) is contained in \(W[\sigma]^\perp \). This is the other required inclusion.

Proof of Lemma 2: Left as exercise.

2 Representations of restricted direct product groups

Let \(G_v \) be a collection of locally profinite groups. For almost all \(v \), let \(K_v \subset G_v \) be a compact open subgroup. Let \(S_0 \) be the finite set of \(v \) containing those for which \(K_v \) is not defined. We need to make the following important assumption: the Hecke algebra \(H(G_v, K_v) \) is commutative for all \(v \not\in S \). This mimics the situation of \(G_v = \text{GL}_2(K_v), K_v = \text{GL}_2(O_v) \).

For all \(v \), suppose \(\pi_v : G_v \to \text{GL}(V_v) \) be a smooth admissible representation. Assume that for almost all \(v \not\in S_0 \), \(\pi_v \) is “spherical”, in the sense that \(V_v^{K_v} \neq 0 \). Assume that \(S \) contains all those \(v \) for which \(\pi_v \) is not spherical. For \(v \not\in S_0 \), \(\dim V_v^{K_v} = 1 \) is 1-dimensional (because the Hecke algebra is commutative); let \(\xi_v \in V_v \) be a nonzero spherical vector.
Now define the restricted tensor product $\pi = \bigotimes_v' \pi_v$ as follows. For every finite $S \supset S_0$, let
\[\pi_S = \bigotimes_{v \in S} \pi_v; \]
this is a representation of $\prod_{v \in S} G_v$ on a vector space V_S. In fact it is a representation of
\[G_S = \prod_{v \in S} G_v \times \prod_{v \notin S} K_v \]
because the K_v act trivially on V_S. For $S \subset S'$, define a map $V_S \rightarrow V_{S'}$ by tensoring a vector $x \in V_S$ with $\otimes_{v \in S' \setminus S} \xi_v$. This map is compatible with the actions of G_S and $G_{S'}$ and the inclusion $G_S \hookrightarrow G_{S'}$, because the K_v act trivially on the ξ_v. Then set
\[\bigotimes_v' \pi_v = \lim_{S \rightarrow S'} \pi_S; \]
this is a representation of
\[G = \lim_{S \rightarrow S'} G_S. \]
Thus π is the vector space spanned by symbols $\otimes_v x_v$, with $x_v = \xi_v$ for almost all $v \notin S_0$, modulo the usual relations regarding addition and scalar multiplication. Note that it is smooth and admissible (follows easily from the corresponding properties of the π_v). Also, if each π_v is irreducible, then so is π.

Should each π_v be a unitary representation with norm $\|x\|_v$, one can give π the structure of a unitary representation. For this, one assumes that each ξ_v, $v \notin S$, is a unit vector with respect to the inner product on V_v. Then the norm of $\otimes_v x_v$ is defined to be $\prod_v \|x_v\|_v$.

A smooth representation π of G is decomposable if it isomorphic to some $\bigotimes_v' \pi_v$.

2.1 The factorizability theorem

Theorem 2.1. Suppose π is a unitary admissible irreducible representation of $G = \prod_v' G_v$ on a vector space V. Then π is decomposable, and its irreducible factors are uniquely defined.
Proof. The first observation is that for each v, $\pi|_{G_v}$ is the sum of subrepresentations which are all isomorphic to one particular representation, call it $\pi_v: G_v \to \text{GL}(V_v)$. Proof: $\pi|_{G_v}$ is again an admissible unitary representation, so it contains an irreducible G_v-invariant subspace V_v. Let π_v be the representation of G_v on V_v. Then (key observation coming up) $V[\pi_v]$ is preserved by the action of G. Therefore $V = V[\pi_v]$. By the previous theorem, $\pi|_{G_v}$ is the direct sum of representations all isomorphic to π_v.

We claim that π_v is spherical for almost every v. Since π is smooth, an arbitrary nonzero vector in V is fixed by a compact open $K \subset G$. By definition of the topology on G, K contains K_v for almost all v. Since $\pi|_{K_v}$ is the direct sum of representations all isomorphic to π_v, π_v has a K_v-fixed vector for almost all v. Enlarge S_0 to include all the v for which π_v is not spherical. Choose spherical unit vectors $\xi_v \in V_v$ for all $v \notin S_0$.

For each v we may define V^v to be the space of G_v-equivariant linear maps $V_v \to V$ which are smooth with respect to the evident action π^v of $G^v = \prod'_{w \neq v} G_w$. Since π_v embeds into π by its very definition, there do exist nonzero G_v-equivariant linear maps $f: V_v \to V$. Furthermore these are automatically smooth. Indeed, let $x \in V_v$ is a nonzero vector, let $K_v \subset G_v$ fix $f(x)$. Then K^v fixes $f(\pi_v(g)x)$ for all $g \in G_v$ (since the actions of G_v and G^v commute). Since π_v is irreducible, the $\pi_v(g)x$ must span V_v. Thus K^v fixes $f(y)$ for all $y \in V_v$, which is to say that K^v fixes f. Therefore π^v is nonzero.

We have a nonzero G-equivariant map $V_v \otimes V^v \to V$ given by “evaluation”: $x \otimes f \mapsto f(x)$, and since both sides are irreducible, we have an isomorphism $V \cong V_v \otimes V^v$.

This can be generalized: if S is a finite set of indices, let π_S be the representation of $\prod_{v \in S} G_v$ on $V_S = \bigotimes_{v \in S} V_v$; we have a factorization $V \cong V_S \otimes V^S$.

For S containing S_0, we claim that V^S has a unique spherical vector up to scaling. Existence is because V itself has an S-spherical vector, hence so does V^S. Uniqueness is because $\mathcal{H}(\prod'_{v} G_v, \prod_v K_v)$ is commutative (this follows from the local statement). Let ξ^S be a nonzero spherical vector in V^S.

Let π_S be the representation of G_S on V_S, defined by having K_v act trivially for $v \notin S$. Whenever $S \subset S'$, we have a G_S-equivariant map $V_S \to$
$V_{\pi'}$ given by tensoring with $\otimes_{v \in S} \xi_v'$. We have $\otimes' \pi_v = \lim_{\rightarrow} \pi_S$ by definition. We must produce a nonzero G-equivariant map $\otimes' \pi_v \to \pi$. This is done by producing compatible maps $\pi_S \to \pi$ for each $S \supset S_0$ by means of the embedding

$$V_S \subset V_S \otimes V^S \cong V$$

given by tensoring with ξ_S. (One must perhaps rescale the ξ_S to ensure compatibility.)

3 Representations of $GL_2(A_{\text{fin}}^\infty)$ arising from cusp forms

Let $k \geq 1$. Recall we have a space S_k of adelic modular forms. This was the smooth induction from $GL_2^+(\mathbb{Q})$ up to $GL_2(A^\text{fin}_\mathbb{Q})$ of the space of holomorphic functions on \mathcal{H} which vanish at the cusps, under the action $f \mapsto f|_{\gamma^{-1},k}$.

Proposition 3.1. S_k is a unitary admissible representation of $GL_2(A_{\text{fin}}^\infty)$.

Proof. (Sketch) First, admissibility. Let $K \subset GL_2(A^\text{fin}_\mathbb{Q})$ be a compact open subgroup. We want to show that S^K_k is finite-dimensional. First observe that the double coset space

$$GL_2^+(\mathbb{Q}) \backslash GL_2(A^\text{fin}_\mathbb{Q})/K$$

is finite. (By conjugating K one may assume that it is a finite-index subgroup of $GL_2(\mathbb{Z})$.) Then use strong approximation: $GL_2(A^\text{fin}_\mathbb{Q}) = GL_2^+(\mathbb{Q}) GL_2(\mathbb{Z})$.)

Let C be a set of coset representatives for this double coset space. For each $c \in C$, let $\Gamma_c = GL_2^+(\mathbb{Q}) \cap cKc^{-1}$. Then there is a map

$$S^K_k \to \bigoplus_{c \in C} S_k(\Gamma_c)$$

$$\phi \mapsto (\phi(c))_{c \in C},$$

which is in fact an isomorphism (Exercise). Therefore S^K_k is finite-dimensional and S_k is admissible. (In fact M_k is admissible as well, by the same argument.)

To give S_k the structure of an inner-product space, it will be useful to interpret elements of S_k as functions not on $GL_2(A^\text{fin}_\mathbb{Q})$ but on all of $GL_2(A_{\mathbb{Q}})$. First note that

$$GL_2(A^\text{fin}_\mathbb{Q}) = GL_2(\mathbb{Q})(GL_2(A^\text{fin}_\mathbb{Q}) \times GL_2^+(\mathbb{R})), $$

6
where $GL_2(Q)$ is embedded diagonally in $GL_2(A_Q)$.

Given $\phi \in S_k$, define a function Φ on elements

$$g = \gamma(g_{\text{fin}}, g_{\infty}) \in GL_2(Q)(GL_2(A_Q^{\text{fin}}) \times GL_2^+(R))$$

by

$$\Phi(g) = (\phi(g_{\text{fin}})|_{g_{\infty,k}})(i)$$

(Do check this is well-defined!) Then Φ is invariant under left multiplication by $GL_2(Q)$. It is also invariant under right multiplication by an open subgroup $K \subset GL_2(\hat{Z})$ (depending on Φ). Finally, Φ is invariant under multiplication by the group $Z(R)^+$ of diagonal matrices

$$\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \in GL_2(R)$$

with $a > 0$, whereas

$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

transforms Φ into $(-1)^k \Phi$. Let $\phi_1, \phi_2 \in S_k$ have images Φ_1, Φ_2 under this correspondence; we define

$$\langle \phi_1, \phi_2 \rangle = \int_{GL_2(Q)Z(R) \backslash GL_2(A_Q)} \Phi_1(g)\overline{\Phi_2(g)}d\mu(g)$$

Here $d\mu$ is a Haar measure on the locally compact group $Z(R) \backslash GL_2(A_Q)$; the integral is understood to mean the integral over a fundamental domain for $GL_2(Q)Z(R) \backslash GL_2(A_Q)$ inside of $Z(R) \backslash GL_2(A_Q)$. The integral is well-defined because the Φ_i are left $GL_2(Q)$-invariant, and the integrand is $Z(R)$-invariant. It is convergent because the ϕ_i were cusp forms, although we do not check the details here. Finally, $\langle \phi_1, \phi_2 \rangle$ is $GL_2(A_Q^{\text{fin}})$-invariant because $d\mu$ is a Haar measure. If the ϕ_i arose from cusp forms f_i lying in a common space $S_k(\Gamma)$, then $\langle \phi_1, \phi_2 \rangle$ equals the Petersson inner product $\langle f_1, f_2 \rangle$ up to a scalar which only depends on Γ (and on $d\mu$).

As a corollary, we find that S_k decomposes as a direct sum of irreducible representations, each of which is an admissible representation π of $GL_2(A_Q^{\text{fin}})$. By the factorizability theorem, each π is the restricted direct product of representations π_p of $GL_2(Q_p)$, almost all of which are spherical. By Casselmann’s theorem on the new vector, there exists for each p an integer c_p (almost always 0) and a unit vector ϕ_p in the space of π_p for which

$$\pi \begin{pmatrix} a & b \\ c & d \end{pmatrix} \phi_p = \chi_p(a) \phi_p.$$
for all \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{GL}_2(\mathbb{Z}_p) \) with \(c \equiv 0 \pmod{p^{\ell_0}} \). Here \(\chi_p \) is the central character of \(\pi_p \).

Note that \(\phi_p \) is a spherical vector for almost all \(p \), so that \(\phi = \otimes_p \phi_p \) is a well-defined unit vector in the space of \(\pi \). Let \(N = \prod_p p^{\ell_0} \). Then \(\phi \) is invariant under \(K_1(N) \). Since \(K_1(N) \) surjects via the determinant map onto \(\hat{\mathbb{Z}}^\times \), we have \(S_k^{K_1(N)} \cong S_k(\Gamma_1(N)) \), so that \(\phi = \phi_f \) for a classical cusp form \(f \in S_k(\Gamma_1(N)) \). Since the center of \(\text{GL}_2(\mathbb{A}_Q) \) acts on \(\phi \) through \(\chi \), we have \(f \in S_k(N, \chi) \).