We now initiate the study of automorphic forms on GL_2 as spaces of functions on the quotient $\text{GL}_2(\mathbb{Q})\backslash \text{GL}_2(\mathbb{A}_\mathbb{Q})$. It is this formulation that will allow us to generalize the notion of automorphic form to global fields other than \mathbb{Q} and groups other than GL_2. The presence of archimedean places poses a significant hurdle, though. It will become necessary to devise a notion of admissibility for representations of $\text{GL}_2(\mathbb{R})$ parallel to the notion of admissibility for representations of locally profinite groups G such as $\text{GL}_2(\mathbb{Q}_p)$. One very nice feature of such representations is that their restriction to a maximal compact subgroup K decomposes as a direct sum of irreducible representations of K, each of which appears only finitely many times. One can then classify representations of G according to which irreducible representations of K they contain.

One problem with extending this definition to representations of (say) $\text{SL}_2(\mathbb{R})$ is that such representations, when infinite-dimensional, tend to be really huge (at least uncountable), whereas there are only countably many irreducible representations of the maximal compact subgroup $K = \text{SO}_2(\mathbb{R})$. (Note that $\text{SL}_2(\mathbb{Q}_p)/\text{SL}_2(\mathbb{Z}_p)$ is countable, while $\text{SL}_2(\mathbb{R})/\text{SO}_2(\mathbb{R})$ is the upper half-plane.) The workaround, developed by Harish-Chandra, is the notion of a (\mathfrak{g}, K)-module for a Lie group G. It isn’t actually a representation of G at all!

Here is our motivation: suppose $\pi: G \to \text{GL}(V)$ is a continuous representation of G on a Hilbert space V, but not necessarily a unitary one. Recall that $\text{Lie} G$ is the tangent space to the identity of G, and that each $X \in \mathfrak{g} = \text{Lie} G$ defines a one-parameter subgroup $t \mapsto \exp(tX)$ of G. A vector $v \in V$ is C^1 if, for all $X \in \mathfrak{g} = \text{Lie} G$, the derivative

$$\pi(X)v := \frac{d}{dt} \big|_{t=0} \pi(\exp(tX))v = \lim_{t \to 0} \frac{\pi(\exp(tX))v - v}{t}$$
is defined. The vector \(v \in V \) is \(C^\infty \), or smooth, if \(\pi(X_1) \cdots \pi(X_n)v \) is defined for every sequence \(X_1, \ldots, X_n \) of elements of \(\mathfrak{g} \). Let \(V^\infty \) be the subspace of smooth vectors. It is a representation of \(G \). It will be unlikely that \(V = V^\infty \), but for \(G = \text{GL}_n(\mathbb{R}) \) it is the case that \(V \) is dense in \(V^\infty \) (see Bump, p. 190).

There is a representation \(\pi : \mathfrak{g} \to \text{End} V^\infty \), called the *infinitesimal action*. This places us in the realm of representations of Lie algebras, but there is still a problem in that \(V^\infty \) is very large, yet generally not a Hilbert space.

Let \(K \subset G \) be a maximal compact subgroup of \(G \). By the Peter-Weyl theorem, \(V \) decomposes as a Hilbert direct sum of irreducible unitary representations of \(K \). We say \(V \) is *admissible* if each isomorphism class of irreducible representation of \(K \) appears only finitely often in such a decomposition.

Let \(\pi : G \to \text{GL}(V) \) be an admissible representation; assume that the restriction of \(\pi \) to \(K \) is unitary. (This can always be assumed, by averaging the inner product on \(V \) over \(K \).) We have

\[
V = \bigoplus V[\sigma],
\]

where \(\sigma \) runs over the set of isomorphism classes of unitary irreducible representations of \(K \). Then each \(V[\sigma] \) is finite-dimensional. Let \(V^\text{fin} \) be the algebraic direct sum

\[
V^\text{fin} = \bigoplus V[\sigma].
\]

Vectors lying in \(V^\text{fin} \) are called *\(K \)-finite*. A vector \(v \in V \) belongs to \(V^\text{fin} \) if and only if the space spanned by \(\pi(k)v, k \in K \), is finite-dimensional. \(V^\text{fin} \) has the following virtues (see Bump, p. 197):

1. \(V^\text{fin} \) is dense in \(V \),
2. \(V^\text{fin} \subset V^\infty \),
3. \(V^\text{fin} \) is invariant under the action of \(\pi(\mathfrak{g}) \),

but it also has the vice of not being \(G \)-invariant. Nevertheless, \(V^\text{fin} \) mels together two structures which are both quite algebraic (read: tractable) in nature, namely that it has an action of \(\mathfrak{g} \), and also an action of \(K \) with respect to which it is admissible.

A \((\mathfrak{g}, K)\)-module is a vector space \(V \) together with representations \(\pi : \mathfrak{g} \to \text{End}(V) \) and \(\pi : K \to \text{GL}(V) \) such that:

1. \(V \) is the (algebraic) direct sum of finite-dimensional irreducible representations of \(K \),
2. The infinitesimal action of K on G agrees with the restriction of $\pi : \mathfrak{g} \to \text{End}(V)$ to \mathfrak{k}.

3. For $X \in \mathfrak{g}, k \in K$, we have $\pi(k)\pi(X)\pi(k^{-1}) = \pi((\text{Ad} k)X)$ as operators on V.

Furthermore, V is admissible if each irreducible representation of K appears only finitely many times in V.

1 Classification of admissible (\mathfrak{g}, K)-modules for $\text{GL}_2(\mathbb{R})$

Let $G^+ = \text{GL}_2^+(\mathbb{R})$, $K = \text{SO}(2)$. Then \mathfrak{g} is spanned by $r = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $l = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $h = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$, and $z = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Then z lies in the center of \mathfrak{g}, whereas

\[[h, r] = 2r \]
\[[h, l] = -2l \]
\[[r, l] = h. \]

Let $U(\mathfrak{g})$ be the universal enveloping algebra of \mathfrak{g}, and let

\[-4\Delta = h^2 + 2rl + 2lr \in U(\mathfrak{g}). \]

Then Δ lies in the center of $U(\mathfrak{g})$. Indeed this Δ is the Casimir operator (normalized to agree with convention).

Let (π, V) be an admissible (\mathfrak{g}, K)-module. Since $K \cong \mathbb{R}/2\pi\mathbb{Z}$, V is the direct sum of finite-dimensional spaces $V[k]$ on which \[\begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \] acts as the scalar e^{ikt}.

Notice that if $W = \begin{pmatrix} 1 & -1 \\ 1 & -1 \end{pmatrix}$, and $x \in V[k]$, then

\[\pi(W).x = \frac{d}{dt}\pi(e^{it}W)x|_{t=0} = \frac{d}{dt}\pi \left(\begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix} \right)x|_{t=0} = \frac{d}{dt}e^{ikt}x|_{t=0} = ikx. \]
Thus if
\[H = -iW = \begin{pmatrix} -i \\ i \end{pmatrix} \in \mathfrak{g}_C, \]
then \(\pi(W) \) acts on \(V[k] \) as the scalar \(k \).

The element \(H \) has eigenvalues 1, \(-1\), just like \(h \). The two are conjugate: \(H = C^{-1}hC \), where \(C = \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix} \). After conjugating by \(C \), one arrives at a new basis for \(\mathfrak{g}_C \):

\[
R = \frac{1}{2} \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix} \\
L = \frac{1}{2} \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix} \\
H = \begin{pmatrix} i \\ -i \end{pmatrix} \\
Z = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
\]

(Some of our notation differs from Bump’s, because Bump parametrizes \(SO(2) \) by the rotation matrix \(\begin{pmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{pmatrix} \).) This basis has the same commutation relations as \{r, l, h\}.

Simply write \(Xx \) for \(\pi(X)x \). If \(x \in V[k] \) we have

\[
HRx = (HR - RH)x + RH = [H, R]x + RH = 2Rx + kRx = (k + 2)Rx,
\]
so that \(RV[k] \subset V[k + 2] \). Similarly \(LV[k] \subset V[k - 2] \).

Now assume that \(V \) is irreducible. Then \(\Delta \) must act on \(V \) as a constant, say \(\lambda \). Let \(x \in V[k] \) be nonzero. Let \(U \) be the span of \(x, R^n x, L^n x \) \((n > 0)\). It is easy to show that \(U \) is invariant under both \(\mathfrak{g} \) and \(K = SO(2) \). (Invariance under \(K \) is self-evident, since \(K \) acts as a scalar on each \(V[\ell] \). Invariance under \(Z \) and \(\Delta \) follows from Schur’s lemma, since these guys act as scalars. Say \(\Delta \) acts as \(\lambda \) on \(V \). We have

\[
-4\lambda w = (\ell^2 + 2\ell)w + 4LRw,
\]
implying that if \(w \in CR^n x \), then \(LRw \in CRw \), etc.) Since \(V \) is irreducible, this sum must be all of \(V \). Therefore each \(V[n] \) is at most one-dimensional.
(and is zero unless \(n \equiv k \pmod{2} \)). Some more tinkering shows that if \(x \in V[k] \) is nonzero, and \(Rx = 0 \), then \(\lambda = -\frac{k}{2}(1 + \frac{k}{2}) \). Likewise if \(x \in V[k] \) is nonzero, and \(Lx = 0 \), then \(\lambda = \frac{k}{2}(1 - \frac{k}{2}) \). Indeed, if \(Rx = 0 \), then

\[
-4\lambda x = \Delta x = (H^2 + 2H + 4LR)x = (k^2 + 2k)x,
\]

etc.

Already this shows that if \(V \) is an irreducible \((\mathfrak{g}, K)\)-module, then there are four possibilities:

1. One is that \(V = \bigoplus_{k \equiv \varepsilon \pmod{2}} V[k] \), with each \(V[k] \neq 0 \) one-dimensional, for some \(\varepsilon \in \{0, 1\} \). Here there is no \textit{a priori} restriction on the eigenvalue \(\lambda \).

2. Another is that there is an integer \(k \) with

\[
V = V[k] \oplus V[k+2] \oplus V[k+4] \oplus \ldots,
\]

(all spaces nonzero), such that \(LV[k] = 0 \), in which case \(\lambda = \frac{k}{2}(1 - \frac{k}{2}) \).

3. Similarly there could be an integer \(k \) with

\[
V = V[k] \oplus V[k-2] \oplus V[k-4] \oplus \ldots,
\]

such that \(RV[k] = 0 \), in which case \(\lambda = -\frac{k}{2}(1 + \frac{k}{2}) \).

4. Finally, we could have

\[
V = V[2-k] \oplus V[4-k] \oplus \cdots \oplus V[k-4] \oplus V[k-2],
\]

in which case \(\lambda = \frac{k}{2}(1 - \frac{k}{2}) \) once again.

Now suppose \(G = \text{GL}_2(\mathbb{R}) \); the maximal compact subgroup of \(G \) is \(\text{O}(2) \). \(\text{O}(2) \) is a semidirect product of \(\mathfrak{so}(2) \) by an element of order 2, namely \(w = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \). If \(V \) is an irreducible admissible \((\mathfrak{g}, \text{O}(2))\)-module, then there are two possibilities: either the restriction of \(V \) to \((\mathfrak{g}, \text{SO}(2))\) is still irreducible, or else the restriction of \(V \) to \((\mathfrak{g}, \text{SO}(2))\) is the sum of two irreducibles which are swapped by \(w \). Note that \(w \) swaps \(V[k] \) with \(V[-k] \). There are the following possibilities:
1. \(V = \bigoplus_{k \equiv \varepsilon \pmod{2}} V[k] \), with each \(V[k] \not= 0 \) one-dimensional, for some \(\varepsilon \in \{0, 1\} \).

2. There exists an integer \(k \geq 1 \) with

\[
V = V[\pm k] \oplus V[\pm (k + 2)] \oplus \ldots ,
\]

and \(\lambda = \frac{k}{2}(1 - \frac{k}{2}) \).

3. There exists \(k \geq 2 \) with

\[
V = V[2 - k] \oplus V[4 - k] \oplus \cdots \oplus V[k - 4] \oplus V[k - 2].
\]

In fact all three possibilities occur. In the first case, \(V \) can be modeled on the space of \(K \)-finite vectors in an induced representation \(\pi(\chi_1, \chi_2) \). (It is possible to read off the eigenvalues of \(\Delta \) and \(z \) on \(V \) from the \(\chi_i \), but not necessary for us now.) This is the principal series.

In the second case, \(V \) can be modeled (up to twisting by a 1-dimensional character) on the space of \(K \)-finite vectors in a certain representation \(D_k \) of \(\text{GL}_2^+(\mathbb{R}) \) defined as follows: \(D_k \) is the space of holomorphic functions \(f \) on the upper half plane which satisfy

\[
\int_{\mathcal{H}} |f(z)|^2 y^k \frac{dx \, dy}{2} < \infty,
\]

with the action of \(g \in \text{GL}_2^+(\mathbb{R}) \) defined by \(f \mapsto f|_{g^{-1}, k} \). (If \(l \geq k \) has the same parity as \(k \), one can write down a nonzero vector \(f \in D_k[l] \) in terms of the coordinate \(w \) on the open unit disk, by \(f(w) = w^{(l-k)/2} \).) This is the discrete series (if \(k = 1 \) it is the limit of discrete series).

In the third case, \(V \) can be modeled (up to twisting by a 1-dimensional character) on the representation of \(G \) on the space of homogeneous polynomials of degree \(k - 2 \) in 2 variables.