1. Show that there is a homeomorphism $\text{SL}_2(\mathbb{R})/\text{SO}(2) \to \mathcal{H}$.

2. If $\Gamma \subset \text{SL}_2(\mathbb{Z})$ is a finite-index subgroup, then $\Gamma \backslash \mathcal{H}$ is a compact Riemann surface minus finitely many points. Show that the same cannot be true for \mathcal{H} itself. (Hint: There is a bounded nonconstant holomorphic function on \mathcal{H}.)

3. Belyi’s theorem states that an algebraic curve X/\mathbb{C} has a model over a number field if and only if there exists a morphism $X \to \mathbb{P}^1$ whose branch locus has no more than 3 points. Show that if $\Gamma \subset \text{SL}_2(\mathbb{Z})$ is any finite-index subgroup (not necessarily a congruence subgroup), then $\Gamma \backslash \mathcal{H}^*$ has a model over a number field.

4. (You may assume N is prime for the following.) Find the index of $\Gamma_0(N)$ in $\text{SL}_2(\mathbb{Z})$. Find all the branch points of the map of Riemann surfaces $X_0(N) \to X(1) = \mathbb{P}^1$, and compute the ramification index for each one. Use the Riemann-Hurwitz formula to find a formula for the genus of $X_0(N)$. For which N does $X_0(N)$ have genus 0? Genus 1?

5. Fill in the proof that $X_0(N)$ admits a model over \mathbb{Q} as follows.

 (a) Show that for any $\gamma \in \text{SL}_2(\mathbb{Z})$, $j(N\gamma z)$ is a meromorphic function on $\Gamma_0(N) \backslash \mathcal{H}^*$ which is holomorphic on \mathcal{H}.

 (b) Let S be a set of coset representatives for $\text{SL}_2(\mathbb{Z})/\Gamma_0(N)$, and define a polynomial $g(Y)$ by

 $$g(Y) = \prod_{\gamma \in S} (Y - j(N\gamma z)).$$
Show that the coefficients of $g(Y)$ are polynomials in j, so that $g(Y) = F(j(z), Y)$ for a polynomial $F(X, Y) \in \mathbb{C}[X, Y]$. Also show that $g(Y)$ is the minimal polynomial for $j(Nz)$ over the field $\mathbb{C}(j(z))$.

(c) Start with the equation $F(j(z), j(Nz)) = 0$, and consider Fourier coefficients to show that the coefficients of $F(X, Y)$ lie in \mathbb{Q}.

(d) As a bonus, show that the coefficients of F are in \mathbb{Z}, by using the fact that the Fourier expansion of each $j(N\gamma z)$ has coefficients which are algebraic integers.