The Baily-Borel compactification

November 12, 2013

Let G be a simple algebraic group defined over \mathbb{Q}, and suppose that $X = G(\mathbb{R})/K$ is a hermitian symmetric domain. (Note that this already places restrictions on $G_\mathbb{R}$—the simple factors of its Lie algebra have to be of type A_n, B_n, C_n, D_n, E_6 or E_7.) For instance, G could be SL_2 and X could be \mathcal{H}, the upper half-plane. Or, G could be Sp_{2g} and X could be $G(\mathbb{R})/S(O(2) \times O(n-2))$. In those cases, $G_\mathbb{R}$ was simple, but we do not want to exclude situations where $G_\mathbb{Q}$ is simple but $G_\mathbb{R}$ is not.

We can try to give meaning to the expression $G(\mathbb{Z})$. For instance, one can always embed G into GL_n (as algebraic groups over \mathbb{Q}), and then set $G(\mathbb{Z}) = GL_n(\mathbb{Z}) \cap G(\mathbb{Q})$. Call a subgroup $\Gamma \subset G(\mathbb{Q})$ arithmetic if the intersection $\Gamma \cap G(\mathbb{Z})$ has finite index in both Γ and $G(\mathbb{Z})$. The theorem of Baily-Borel states that for an arithmetic subgroup $\Gamma \subset G(\mathbb{Q})$, the quotient $Y = \Gamma \backslash X$ is a quasi-projective variety. This is proved by constructing a compactification \overline{Y} (as a complex analytic space) and an isomorphism of \overline{Y} with a closed subset of some projective space. By GAGA, \overline{Y} is a projective variety, and therefore Y is quasi-projective.

1 Basic examples: Modular curves and Hilbert modular surfaces

1.1 Modular curves

Suppose $G = \text{SL}_2/\mathbb{Q}$. Let $\Gamma \subset \text{SL}_2(\mathbb{Q})$ be an arithmetic subgroup. Then $Y = \Gamma \backslash \mathcal{H}$ is a can be compactified by adding finitely many cusps. Recall that a cusp for Γ is a coset in $\Gamma \backslash \mathbb{P}^1$. Let \overline{Y} be the topological space obtained
by adding the cusps of Γ to Y. This is given the following structure of a complex manifold by declaring that a basis of neighborhoods of the cusp ∞ is \(\left\{ z \in \mathcal{H} \mid \text{Im} z > B \right\} \cup \{ \infty \} \) (for $B > 0$); for large enough B this set is in bijection with an open subset of \mathbb{C} via $z \mapsto e^{2\pi i/N}$, where N is the index of $\Gamma \cap \left(\frac{1}{1} \mathbb{Z} \frac{1}{1} \right)$ in $\left(\frac{1}{1} \mathbb{Z} \frac{1}{1} \right)$. Then Y is a compact Riemann surface, and therefore a projective curve.

Already we can see a connection between cusps and parabolic subgroups of G. A parabolic subgroup P of an algebraic group G is one for which G/P is a projective variety; in the case of $G = \text{SL}_2 / \mathbb{Q}$, the parabolic subgroups are all conjugate to the subgroup P of upper-triangular matrices, and $G(\mathbb{Q})/P(\mathbb{Q}) = \mathbb{P}^1(\mathbb{Q})$ is the set of all parabolic subgroups of $G(\mathbb{Q})$.

Consider the case of $\Gamma = \text{SL}_2(\mathbb{Z})$ (and brush aside issues arising from the elliptic fixed points). We know that $Y = \mathbb{P}^1$ via the j-invariant, but we can also see this using modular forms. The ring of modular forms of Γ is a graded ring isomorphic to $\mathbb{C}[x, y]$ (where x has weight 4 and y has weight 6). Then we can form $\text{Proj} \mathbb{C}[x, y]$, which is \mathbb{P}^1. In other words: for each even k, we get a map $Y \to \mathbb{C}^N$ by $z \mapsto [f_0(z) : \cdots : f_N(z)]$, where f_0, \ldots, f_N is a basis for the space of weight k forms. For $k = 12$ this morphism separates points and tangent directions: $z \mapsto [E_4(z) : E_4(z)^3 - E_6(z)^2] = j(z)$ (modulo some constants). This is going to be the pattern in general: if we can find enough automorphic forms, we can find an embedding in projective space.

1.2 Hilbert modular surfaces

Now suppose $F = \mathbb{Q}(\sqrt{d})$ is a real quadratic field, with real embeddings i_1 and i_2. Let $G = \text{Res}_{F/\mathbb{Q}}(\text{SL}_2)$, so that $G(\mathbb{R}) = \text{SL}_2 \times \text{SL}_2$; the corresponding hermitian symmetric space is $X = \mathcal{H} \times \mathcal{H}$. This has an action of $G(\mathbb{Q}) = \text{SL}_2(\mathcal{O}_F)$, by $\gamma(z_1, z_2) = (i_1(\gamma)z, o_2(\gamma)z_2)$. For now let’s consider the case of the arithmetic subgroup $\Gamma = \text{SL}_2(\mathcal{O}_F)$. Let $Y = \Gamma \setminus X$. It turns out that $\Gamma \setminus Y$ can be given a moduli interpretation in terms of polarized abelian varieties endowed with an action of an order in F.

Indeed, for $z = (z_1, z_2) \in X$, put

\[
\Lambda_z = \left\{ i_1(\alpha)z_1 + i_1(\beta), i_2(\alpha)z_2 + i_2(\beta) \mid (\alpha, \beta) \in \mathcal{O}_F \times \mathcal{O}_F \right\},
\]

so that $\Lambda_z \approx \mathcal{O}_F \times \mathcal{O}_F$ is a subgroup of \mathbb{C}^2 of rank 4. In fact it is a lattice
in \mathbb{C}^2, because $\Lambda_z \otimes \mathbb{R} = (\mathbb{R}z_1 + \mathbb{R}) \times (\mathbb{R}z_2 + \mathbb{R}) = \mathbb{C}^2$ (since $z_1, z_2 \in \mathcal{H}$). Let $A_z = \mathbb{C}^2/\Lambda_z$. For $r \in F$, define

$$E_r : \mathcal{O}_F^2 \times \mathcal{O}_F^2 \rightarrow \mathbb{Q}$$

by

$$E_r((\alpha_1, \beta_1), (\alpha_2, \beta_2)) = \text{tr}_{F/\mathbb{Q}}(r(\alpha_1\beta_2 - \alpha_2\beta_1))$$

Then E_r is \mathbb{Q}-bilinear alternating, and has integer values if r belongs to $D_{F/\mathbb{Q}}^{-1}$ (the inverse to the different ideal). We have $E_r(\gamma \cdot \alpha, \beta) = E_r(\alpha, \gamma \cdot \beta)$ for all $\gamma \in \mathcal{O}_L$, where $\gamma \cdot (\alpha_1, \alpha_2) = (\gamma \alpha_1, \gamma \alpha_2)$. Consider E_r as a form on Γ_z, and extend \mathbb{R}-linearly to get an alternating form $E_{r,z}$ on the real vector space \mathbb{C}^2.

If we let $H_{r,z}$ be the hermitian form on \mathbb{C}^2 defined by

$$H_{r,z}((x_1, x_2), (y_1, y_2)) = \frac{x_1 y_1 i_1(r)}{\text{im} z_1} + \frac{x_2 y_2 i_2(r)}{\text{im} z_2},$$

then $H_{r,z}$ is positive definite when r is totally positive. We claim $\text{im} H_{r,z} = E_{r,z}$. It is enough to check this on Λ_z, and since E_z is alternating, it suffices to check this on pairs of vectors where the first one is in $\mathcal{O}_F \cdot (z_1, z_2)$ and the second is in $\mathcal{O}_F \cdot (1, 1)$:

$$\text{im} H(((i_1(\alpha)z_1, i_2(\alpha)z_2), (i_1(\beta), i_2(\beta)))) = \text{im} \frac{i_1(\alpha)z_1 i_1(\beta) i_1(r)}{\text{im}(z_1)} + \ldots$$

$$= i_1(\alpha)i_1(\beta) i_1(r) + \ldots$$

$$= \text{tr}_{F/\mathbb{Q}} \alpha \beta r$$

$$= E((\alpha, 0), (0, \beta))$$

$$= E_z(\alpha \cdot (z_1, z_2), \beta \cdot (1, 1))$$

We conclude that A_z is an abelian variety, since (for r totally positive in $D_{F/\mathbb{Q}}^{-1}$) it is polarized by $H_{r,z}$. The form $H_{r,z}$ corresponds to a polarization $\lambda_{r,z} : A_z \rightarrow A_z^\vee$ of degree $N(rD_{F/\mathbb{Q}})^2$. If we choose a particular r with $(r) = D_{F/\mathbb{Q}}^{-1}$, then $\lambda_{r,z}$ is principal. The abelian variety A_z comes equipped with an action of \mathcal{O}_F, and the polarization is $\lambda_{r,z}$ is \mathcal{O}_F-linear.

Theorem 1.2.1. $\Gamma \setminus X$ is in bijection with the set of triples (A, ι, λ), where A/\mathbb{C} is an abelian variety, $\iota : \mathcal{O}_F \rightarrow \text{End} A$ is a homomorphism, and $\lambda : A \rightarrow A^\vee$ is an \mathcal{O}_F-linear principal polarization.
To compactify \(Y = \Gamma \backslash X \), we need to add a cusp for each \(\Gamma \)-orbit of rational parabolic subgroups of \(G/\mathbb{Q} \). As with the modular curve case, the set of such subgroups is a projective space, \(\mathbb{P}^1(F) \). Thus the cusps of \(Y \) are in bijection with \(\Gamma \)-orbits on \(\mathbb{P}^1(F) \). In fact the quotient set is the class group of \(F \). Proof: given a ratio \([\alpha : \beta]\) in \(\mathbb{P}^1(F) \), associate the fractional ideal \(\alpha \mathcal{O}_F + \beta \mathcal{O}_F \). This is well-defined because if you scale \(\alpha \) and \(\beta \) by the same \(\gamma \in \mathbb{F}^\times \), then the ideal changes by a principal ideal, and clearly translating by \(\text{SL}_2(\mathcal{O}_F) \) doesn’t change anything. It is surjective because every ideal is generated by two elements.

For injectivity: say
\[
\alpha \mathcal{O}_F + \beta \mathcal{O}_F = \alpha' \mathcal{O}_F + \beta' \mathcal{O}_F
\]
in the class group of \(F \). After replacing \(\alpha, \beta \) by a scalar multiple, we may assume that this is an equality of ideals. Let \(I^{-1} \) be the common ideal, so that
\[
\mathcal{O}_F = \alpha I + \beta I = \alpha' I + \beta' I.
\]
Let \(a, b, a', b' \) be such that
\[
1 = \alpha a + \beta b = \alpha'a' + \beta'b'.
\]
Let
\[
M = \begin{pmatrix} \alpha & -b \\ \beta & a \end{pmatrix}, \quad N = \begin{pmatrix} \alpha' & -b' \\ \beta' & a' \end{pmatrix},
\]
so that \(\det M = \det N = 1 \). We have
\[
M \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \quad \text{and} \quad N \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} \alpha' \\ \beta' \end{pmatrix},
\]
so that \(NM^{-1} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha' \beta' \).

Let \(\overline{Y} \) be the disjoint union of \(Y \) and \(\text{SL}_2(\mathcal{O}_F) \backslash \mathbb{P}^1(F) \). Turn \(\overline{Y} \) into a topological space by declaring a system of neighborhoods of \((i \infty, i \infty)\) to be
\[
\left\{ (z_1, z_2) \in \mathcal{H} \times \mathcal{H} \mid \text{im } z_i > r \right\}, \quad r \in \mathbb{R}_{>0}
\]
Acting on these by elements of \(\text{SL}_2(F) \), we get neighborhoods for all the cusps. At this point one gives \(\overline{Y} \) the structure of a complex analytic space (but it is quite complicated). It turns out that unlike the case of modular curves, the cusps are actually quite singular.

Hirzebruch constructed a desingularization of \(\overline{Y} \), whose geometry involves the continued fraction expansion of \(\sqrt{d} \). Using this he was able to prove:
Theorem 1.2.2. Let $p > 3$ be a prime with $p \equiv 3 \pmod{4}$. Assume that $h(\mathbb{Q}(\sqrt{p})) = 1$. Write $\sqrt{p} = [a_0, a_1, \ldots, a_s]$ with s minimal. Then

$$h(\mathbb{Q}(\sqrt{-p})) = \frac{1}{3} \sum_{j=1}^{s} (-1)^j a_j.$$