 Unless explicitly stated, full credit will be awarded only if the solution is correct and the steps leading up to it are correct.

1. Calculate the following:

 (a) \[
 \lim_{x \to -1} \frac{x^2 - 4x - 5}{x + 1}
 \]

 (b) \[
 \lim_{x \to 3} \frac{5x^2}{2x - 1}
 \]

 (c) \[
 \lim_{x \to 2} \frac{4 - x^2}{|2 - x|}
 \]

 (d) \[
 \lim_{x \to 1} \sqrt{\frac{2x^3 - 3x + 5}{2 - x}}
 \]

 (e) \[
 \lim_{x \to 3} f(x) \quad \text{where} \quad f(x) = \begin{cases}
 x^2 & \text{if } x > 3 \\
 8 & \text{if } x = 3 \\
 12 - x & \text{if } x < 3
 \end{cases}
 \]

 (f) \[
 \lim_{x \to 3} \frac{x + 3}{x^2 - 9}
 \]

2. Consider the function
\[
f(x) = \begin{cases}
 x - c, & \text{if } x > 2; \\
 3x^2, & \text{if } x \leq 2
 \end{cases}
\]

 where \(c \) is a real number.

 (a) What value of \(c \) makes the function \(f \) continuous everywhere?

 (b) Calculate \(f'(7) \)

 (c) Calculate \(f'(-1) \)

 (d) Calculate \(f'(2) \)

3. Compute the derivative of the following functions:

 (a) \[
 f(x) = \pi^4
 \]

 (b) \[
 f(x) = 3x^5 - x^2 + 9
 \]
(c)
\[f(x) = \frac{2}{x^2} - 3\sqrt{x} \]

(d)
\[f(x) = \frac{x^2}{2x - 3} \]

(e)
\[f(x) = x^2 e^x \]

(f)
\[f(t) = t \sin t \]

4. Find the equation for the tangent line to the curve \(y = f(x) \) where through the point \((1, -3)\) where \(f(x) = x^8 - 4x \).

5. Suppose an object is moving along the real line with its position at time \(t \) given by the function \(s(t) = \frac{1}{3}t^3 - 3t^2 - 7t + 10 \).
 (a) When is the object at rest?
 (b) When is the object decelerating?
 (c) Find the velocity of the object at time \(t = 2 \).

6. Consider the function
\[f(x) = x^2 - \sin x \]
 Using your calculator, find the approximate value(s) of \(x \) (out to two decimal places) at which the tangent line to the graph \(y = f(x) \) is horizontal.

7. Consider the graph of \(y = f(x) \) on the next page.
 (a) Where is \(f \) undefined?
 (b) Where is \(f \) not continuous?
 (c) Where is \(f \) not differentiable?
 (d) On what interval(s) is \(f' \) positive? Where does \(f' \) vanish?
 (e) On what interval(s) is \(f \) concave down?
 (f) What are
 i.
 \[f'(6) \]
 ii.
 \[\lim_{x \to 6^+} f(x) \]
 iii.
 \[\lim_{x \to -1} f(x) \]
 iv.
 \[\lim_{x \to -\infty} f(x) \]