1. Find the following:

(a) \[\int \sin^{100}(x) \cos(x) \, dx \]

(b) \[\int \frac{3x^2 - 16x + 5}{\sqrt{x^3 - 8x^2 + 5x + 3}} \, dx \]

(c) \[\int (x - \frac{3}{2}) \sin(x^2 - 3x) \, dx \]

(d) \[\int x \ln x^3 \, dx \]

(e) \[\int e^{\sqrt{x}} \, dx \]

(f) \[\int_{0}^{2} \tan^5 x \sec^2 x \, dx \]

(g) \[\int_{2}^{4} f'(x) \sin(f(x)) \, dx \]

if \(f \) is a continuous function on the interval \([0, 20]\) such that \(f(0) = 3, f(2) = 1, f(4) = 7, \) and \(f(20) = 5. \)

(h) \[\int_{1}^{3} (2x - 8) e^{-x} \, dx \]

(i) \[\int_{-\infty}^{3} \frac{1}{1 + x^2} \, dx \]

(j) \(\bar{f}, \) the average value of \(f(x) = x^2 \) over the interval \([3, 8]. \)

2. Consider the region \(R \) in the xy-plane where \(x \geq 0 \) bounded by the graphs \(y = x^3 \) and \(y = x^5. \)

(a) Calculate the area of \(R. \)

(b) Calculate the centroid of \(R. \)

(c) Consider the solid \(S \) whose base is \(R \) and whose cross-sections perpendicular to the \(x \)-axis are equilateral triangles. Find the volume \(V \) of \(S. \)
3. Find the arc length of the part of the curve \(y = 2x^2 \) between the points \((1, 2)\) and \((4, 16)\).

4. Consider the region \(Q \) in the xy-plane bounded by the graphs \(y = x \) and \(y = (x - 2)^2 \). Find the volume of the solid obtained by revolving \(Q \) about the x-axis.

5. Consider the differential equation

\[
\frac{dy}{dx} + 2y = e^x.
\]

(a) Verify that

\[
y = Ce^{-2x} + \frac{1}{3}e^x
\]

is a solution for any constant \(C \).

(b) Find the solution which satisfies \(y(0) = 8 \).