Gene expression experiments

MA 751
Part 3

Infinite Dimensional Vector Spaces

1. Motivation: Statistical machine learning and reproducing kernel Hilbert Spaces

Gene expression experiments

Question: Gene expression - when is the DNA in a gene \(g \) transcribed and thus expressed (as RNA) in a cell?
Gene expression experiments

One solution: Measure RNA levels (result of transcription)

Method: Microarray or RNA Seq array

Result: for each subject tissue sample s, obtain a feature vector:

$$\Phi(s) = x = (x_1, \ldots, x_{25,000})$$

consisting of expression levels of 25,000 genes.

Can we classify tissues this way?
Gene expression experiments

Goals:

1. Differentiate two different but similar cancers.
2. Understand genetic pathways of cancer

Basic difficulties: few samples (e.g., 30-200); high dimension (e.g., 5,000 - 100,000).

Curse of dimensionality - too few samples and too many parameters (dimensions) to fit them.

Tool: Support vector machine (SVM)
Gene expression experiments

Procedure: look at feature space F in which $\Phi(s)$ lives, and differentiate examples of one and the other cancer with a hyperplane:
Gene expression experiments
Methods needed for full analysis (of SVM and other high-dimensional methods):

Reproducing kernel Hilbert spaces (RKHS)
2. Machine Learning: The role of learning theory

The role of learning theory has grown a great deal in:

- Mathematics
- Statistics
- Computational Biology
- Neurosciences, e.g., theory of plasticity, workings of visual cortex
Source: University of Washington
Kernel methods

Kernel methods are used widely in:

- Computer science, e.g., vision theory, graphics, speech synthesis
Kernel methods

Source: T. Poggio/M
Kernel methods

Face identification:
Kernel methods

People classification or detection:

1848 patterns

Representation: overcomplete dictionary of Haar wavelets; high dimensional feature space (>1300 features)

7189 patterns

Core learning algorithm: Support Vector Machine classifier

pedestrian detection system

Poggio/MIT
Learning theory

We want the theory behind such learning algorithms-

3. The learning theory problem

Given an unknown function \(f(\mathbf{x}) : \mathbb{R}^d \rightarrow \mathbb{R} \), learn \(f(\mathbf{x}) \) from a few examples, i.e., a few inputs \(\mathbf{x} \) where \(f(\mathbf{x}) \) is known.

Determine unknown \(f(\mathbf{x}) \) from knowing its value at several points \(\mathbf{x} \).
Learning theory

Example 1: \(x \) is retinal activation pattern (i.e., \(x_i \) = activation level of retinal neuron \(i \)), and \(y = f(x) > 0 \) if the retinal pattern is a chair; \(y = f(x) < 0 \) otherwise.

[Thus: want concept of a chair]

Given: examples of chairs (and non-chairs): \(x_1, x_2, \ldots, x_n \), together with proper outputs \(y_1, \ldots, y_n \). This is the information:

\[
Nf = (f(x_1), \ldots, f(x_n))
\]
Learning theory

Goal: Give best possible estimate of the unknown function f, i.e., try to learn the concept f from the examples Nf.

But: given pointwise information about f not sufficient: which is the "right" $f(x)$ given the data Nf below?
Learning theory

(a)
Learning theory

[How to decide?]
4. Infinite dimensional vector spaces:

[This material is short course in real/functional analysis; see me if you want more sources]

[Notation: in infinite dimensions generally remove boldface from vectors]

Let H be a vector space with inner product. Recall by definition

$$\langle v, v \rangle = \|v\|^2.$$
Infinite dimensional spaces

Recall \(\|v\| = \text{norm } v = \text{length } v \).

Distance between vectors \(v_1, v_2 \): \(\|v_1 - v_2\| \).

Consider infinite collection

\[
S = \{v_1, v_2, v_3 \ldots \} \subset H.
\]
Infinite dimensional spaces

Define infinite linear combinations by:

\[
\sum_{i=1}^{\infty} c_i v_i = w
\]

if

\[
\left\| w - \sum_{i=1}^{n} c_i v_i \right\| \xrightarrow{n \to \infty} 0.
\]

[Definitions of span, linear independence, basis same except for infinite sums. Henceforth always allow infinite linear combinations.]
Infinite dimensional spaces

Def. 4. All previous linear algebra definitions (e.g. spanning, linear independence, basis) extend directly to the case of infinite numbers of vectors.

Example: A collection \(\{v_1, v_2, \ldots \} \) of vectors spans a vector space \(V \) if every vector \(v \in V \) can be written as a (possibly infinite) linear combination \(v = c_1 v_1 + c_2 v_2 + \ldots = \sum_{i=1}^{\infty} c_i v_i \).

[Henceforth always allow infinite linear combinations.]
Hilbert spaces

Def 5: An inner product space H is **complete** if any sequence\n\[
\{x_i\}_{i=1}^{\infty} \subset H \text{ which is Cauchy, i.e., } \|x_i - x_j\|_{i,j \to \infty} \to 0 \text{ (that is, it should converge) actually converges to some } x \in H, \text{ i.e.}
\]
\[
x_i \to x.
\]

[Thus if the sequence bunches up, there is something for it to converge to.]

Such an inner product space H that is complete is called a Hilbert space.
Example of incomplete space

Ex: Not all inner product spaces are Hilbert spaces since not all are complete. As an example, consider the space

$$P = \{\text{all polynomials on } [0, 1]\}.$$ Define inner product

$$(f, g) = \int_0^1 f(x)g(x)dx.$$

Then resulting norm is

$$\|f(x)\|^2 = \langle f, f \rangle = \int_0^1 f^2(x)dx.$$

This space is not complete: consider the vectors v_N defined by the partial sums of the Taylor series for e^x.
Example of incomplete space

\[v_N = \sum_{n=0}^{N} \frac{x^n}{n!} = \text{a polynomial}. \]
Example of incomplete space

Note that if \(N > M \) then

\[
\|v_N - v_M\| = \left\| \sum_{n=0}^{N} \frac{x^n}{n!} - \sum_{n=0}^{M} \frac{x^n}{n!} \right\| = \left\| \sum_{n=M+1}^{N} \frac{x^n}{n!} \right\| \leq \sum_{n=M+1}^{N} \left\| \frac{x^n}{n!} \right\|
\]

But:

\[
\left\| \frac{x^n}{n!} \right\| = \frac{1}{n!} \left\| x^n \right\| = \frac{1}{n!} \left(\int_{0}^{1} x^{2n} dx \right)^{1/2} = \frac{1}{n!} \left(\frac{1}{2n+1} \right)^{1/2}.
\]
Example of incomplete space

So easy to show \(\sum_{n=0}^{\infty} \| \frac{x^n}{n!} \| < \infty \). Thus it easily follows that

\[
\| \nu_N - \nu_M \| \xrightarrow{N, M \to \infty} 0,
\]

so that the sequence \(\nu_N \) is a Cauchy sequence in \(H \).
Example of incomplete space

But note that by Taylor series

\[v_N(x) - e^x = \sum_{n=0}^{N} \frac{x^n}{n!} - e^x \rightarrow 0 \quad \text{as} \quad N \rightarrow \infty \]

uniformly on [0,1]. Thus easy to show that

\[\| v_N(x) - e^x \| \rightarrow 0 \quad \text{as} \quad N \rightarrow \infty. \]
Example of incomplete space

So:

\[v_N(x) \rightarrow e^x. \]

But: can show that a sequence of functions can't converge to 2 different functions. Thus there is no polynomial \(p(x) \) (i.e. something in our space \(P \)) such that

\[v_N(x) \rightarrow p(x). \]

Thus \(v_N \) do not converge to something in \(P \) and thus \(P \) is not complete!

[Moral: intuitively, complete space is one where any convergent sequence \(P_n \) converges to an element \(P \) of the original space.]
Theorem 4: If \(B = \{v_1, v_2, v_3, \ldots \} \) is a collection of vectors that is orthonormal (i.e., unit lengths and inner product 0), then it is automatically linearly independent.

If \(B \) is a basis for \(H \) and is orthonormal, it is called an **orthonormal basis**.
Examples of Hilbert spaces

Ex 2: \(H = \mathbb{R}^3 = \{ v = (v_1, v_2, v_3) \mid v_i \in \mathbb{R} \} \) is a Hilbert space (i.e., not hard to show that it's complete). Inner product is the usual one for vectors:

\[
(v, w) = v_1 w_1 + v_2 w_2 + v_3 w_3.
\]

This \(H \) is a Hilbert space.

Orthonormal basis:

\[
e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}; \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}; \quad e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.
\]
Examples of Hilbert spaces

Ex 3:

\[H = P^2 = \text{second order polynomials on } [0, 1] = \{ a_0 + a_1 x + a_3 x^2 : a_i \in \mathbb{R} \} \]

forms a Hilbert space.

Inner product:

\[(p_1(x), p_2(x)) = \int_0^1 p_1(x)p_2(x) \, dx. \]
Examples of Hilbert spaces

Note it is not hard to show that H is complete (in fact any finite dimensional vector space is complete).

Thus H is a Hilbert space.

Ex 4: Note $H = \mathbb{R}^\infty = \{ v = (v_1, v_2, v_3, \ldots) | v_i \in \mathbb{R} \}$ is a Hilbert space, if we define the inner product

$$(v, w) = v_1 w_1 + v_2 w_2 + \ldots = \sum_{i=1}^{\infty} v_i w_i$$
Examples of Hilbert spaces

Length of a vector v is

$$\|v\| = \sqrt{\sum_{i=1}^{\infty} v_i v_i} = \sqrt{\sum_{i=1}^{\infty} v_i^2}.$$

Thus to have well-defined lengths we add the condition that

$$\|v\| < \infty$$

to the definition of H. Then can show that H satisfies all the properties of a Hilbert space (in particular it's complete).
Examples of Hilbert spaces

Can show that the set of vectors

\[v_1 = (1, 0, 0, \ldots) \]
\[v_2 = (0, 1, 0, \ldots) \]
\[v_3 = (0, 0, 1, \ldots) \]
\[\vdots \]

is certainly orthonormal, and it spans \(H \), so it is an orthonormal basis for \(H \).