Problem Set 4
Due Thurs. 2/24/22

Note that the coming week will have no Tuesday class, and the Monday discussion section will be held on Tuesday because of the changed schedule.

Lectures 7, 8

Study of neural networks for high dimensional approximation predated machine learning, and has now been incorporated into the area. The mathematical models that they provide are a natural extension of the classes of approximators we have considered. They are currently enjoying increased interest in the context of deeper multilayer networks.

Reading: 11.1-11.8, class material

Problems:

1. **Newer activation functions:** Consider a neural network of the type described in class, with activations x_i for the k neurons in the first layer, y_j for the m neurons in the second layer, and q for the single neuron in the third layer. Assume that $k = 3$, $m = 3$. Assume that the activation function has the form $H(x) = \frac{1}{\pi} \tan^{-1} x + 1/2$.

 (a) Let $q = f(x)$ (with $x = (x_1, x_2, x_3)$) be the function which gives the activation of the output neuron q in terms of the input x. Give the general form of $f(x)$ in terms of the function H and any appropriate constants (i.e., V_j, θ_j, w_j) determined by the network.

 (b) Fix values of the above constants to any values you like, and for the values $x_2 = 0$ and $x_3 = 1$, sketch the output q as a function of x_1.

 (c) Show that for $k = 1$ and m fixed, if $H(x) = \cos x$, then for appropriate choices of the constants the function $f(x)$ can approximate any desired input-output function $f(x)$ in $L^2[0, \pi]$ to within any accuracy $\epsilon > 0$, (i.e., $\| f(x) - \tilde{f}(x) \|_2 < \epsilon$) if m (which can depend on ϵ) is sufficiently large. What familiar problem does this reduce to in this case?

2. **Changing error measures:** Let $K \subseteq \mathbb{R}^k$ be a compact subset. Suppose that a neural network is able to compute a certain class of continuous functions \bar{B} on \mathbb{R}^k with the property that given any function $f(x) \in \bar{C}(K)$ (i.e., a continuous function on K) together with an $\epsilon > 0$, there exists a $g \in \bar{B}$ such that

 $$\| f - g \|_\infty < \epsilon,$$

 where for any function h,

 $$\| h \|_\infty \equiv \sup_{x \in K} | h(x) |.$$

 Now let μ be a Borel measure on K. Assuming that (1) holds as stated above, show that (1) above must still then hold if we replace the $\| \cdot \|_\infty$ norm with the norm $\| \cdot \|_p$ for any $1 \leq p < \infty$, where by definition
\[\|h\|_p = \left(\int_K |h(x)|^p d\mu(x) \right)^{1/p}. \]

For notions involving measures you can refer to the introductory probability lecture (see course web page). Note also that if \(f(x) \) is a real-valued continuous function on a set \(K \subset \mathbb{R}^k \) with finite measure \(\mu(K) \) then

\[\int_K f(x) d\mu(x) \leq \|f\|_\infty \mu(K). \]

(1a)

Try proving (1a) either for a general measure \(\mu \), or if you like just for the case of standard Lebesgue measure on \(K = [0, 1] \) (i.e. in 1 dimension).

3. Neural networks with more than one output neuron:

Consider a neural network as developed in class, with \(k \) neurons with activations \(x_i \) in the first layer, \(n \) neurons with activations \(y_j \) in the second layer, and \(m \) neurons with activations \(q \) in the third layer.

In class we have considered the case \(m = 1 \), and Funahashi’s theorem stated that it is possible to approximate any function \(f(x) = f(x_1, x_2, \ldots, x_k) : \mathbb{R}^k \to \mathbb{R} \) (which represents the desired output of the single output neuron) with the neural net input-output (i-o) function

\[\hat{f}(x) = \sum_{j=1}^n w_j H(V^j \cdot x - \theta_j), \]

(2)

where \(H \) is a non-constant nondecreasing function, if the constants \(w_j, \theta_j \), and a collection of vectors \(V^1, V^2, \ldots \) are chosen properly.

To review this, the vector \(x = (x_1, x_2, \ldots, x_k) \) represented the activation levels of neurons in the first layer, and \(q = f(x_1, x_2, \ldots, x_k) \) represented the activation of a single neuron in the third layer (i.e., we set \(m = 1 \) there). We assumed that \(w_i \) represent connection strengths from each neuron in the second layer to the single neuron in the third layer, and \(V^j \) is the vector whose \(i \)th entry is the connection strength from neuron \(x_i \) in the first layer to neuron \(y_j \) in the second layer. We showed that the neural net which we constructed would, given an input \(x \), yield an output \(q \) (in the output neuron) given by the right side of (2), which is supposed to be a good approximation of the desired output \(f(x) \) on the left side.

Show that this result also allows us to generalize to the situation with \(m \) neurons \(q_1, \ldots, q_m \) in the third layer, where \(m > 1 \). That is, given a function \(f : \mathbb{R}^k \to \mathbb{R}^m \) show the new network (now with \(m \) output neurons) can compute a function \(\hat{f}(x) \) such that \(\|\hat{f}(x) - f(x)\|_\infty < \epsilon \), for any required \(\epsilon > 0 \). As usual, the \(l \) component \(f_l(x) \) of \(f(x) \) will be computed by the network as the activation \(q_l \) of the \(l \)th output neuron. Here for any function \(f : \mathbb{R}^k \to \mathbb{R}^m \) on a set \(K \subset \mathbb{R}^k \), we will define

\[\|f\|_\infty = \max_{x \in K} |f_l(x)|, \]

where \(f_l(x) \) is the \(l \)th component of \(f(x) \).
4. Recall that Funahashi proved that any continuous function on a compact set $K \subset \mathbb{R}^k$ can be uniformly approximated by a neural network of the form

$$
\widehat{f}(\mathbf{x}) = \sum_k w_j H(V^j \cdot \mathbf{x} - \theta_j),
$$

(3)

if H is monotone increasing. Prove the Corollary to Funahashi's theorem, namely, that functions of the form (3) are then dense in $L^p(K)$ for $1 \leq p < \infty$. Note that given a set C of functions (e.g. continuous functions) and a subset C' of these functions (e.g. the set of possible neural network functions), the density of the smaller set C' in the larger one C has been defined in the notes. How does our approximability within any ϵ of any $f \in C$ by some $f' \in C'$ prove that C' is dense in C.

5. Problem 11.3 in Hastie, Tibshirani