Suggestions - Problem set 4

1. In this case

\[\hat{f}(x) = \sum_{j} b_j \cos (V^{(j)}x - \theta_j); \]

Notice that if \(\{b_j\} \) are square summable (i.e. \(\sum_{j=1}^{\infty} b_j^2 < \infty \)), and \(V^{(j)} = j \), and \(\theta_j = 0 \), we get a cosine series, which can clearly approximate any \(L^2 \) function on \([0, \pi]\).

You may use the following version of a basic theorem of Fourier series:

Theorem: Given any function \(f(x) \in L^2(0, \pi) \), the cosine series of \(f \) given by

\[\frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos nx \]

converges to \(f(x) \) in \(L^2 \), if \(a_n = \frac{2}{\pi} \int_{0}^{\pi} f(x) \cos nx \, dx \). That is, given the partial sum

\[f_N(x) = \frac{a_0}{2} + \sum_{n=1}^{N} a_n \cos nx, \]

we have

\[\|f_N(x) - f(x)\|_2 \xrightarrow{N \to \infty} 0. \]

2. What relationship can you prove regarding the two norms \(\|f\|_{\infty} \) and \(\|f\|_p \)? Note that we are assuming that \(f \) is compactly supported, i.e. that its support \(K \) (i.e. where it is non-zero) is a compact (i.e. closed and bounded) set in \(\mathbb{R}^k \).

3. Notice that in such a network, for given input activations \(x_1, \ldots, x_k \), there is a desired output set of activations \(q_1, \ldots, q_m \). Note for example that the given desired output \(q_1 \) for the first neuron in the last layer will depend on the inputs \((x_1, \ldots, x_k) \equiv x \) through a given function \(f_1(x) \). Similarly we will want \(q_2 \) (the desired output of neuron 2) to be a function \(f_2(x_1, x_2, \ldots, x_k) \), so we write \(q_2 = f_2(x) \). In general then show we need \(q_l = f_l(x) \) for all \(l \), with \(f_l(x) \) just the \(l^{th} \) component of the desired full vector input-output function \(f(x) = (f_1(x), \ldots, f_m(x)) \).

Now show (you can use the in-class version of Funahashi’s theorem, for single output neuron) that each of these single output functions \(f_l \) can be approximated as above, i.e.,

\[f_l(x) \approx \sum_{j=1}^{n} w_j H(V_j^r \cdot x - \theta_j^l) = q_l \] \hspace{1cm} (1)

with the proper choice of \(w \)'s and \(V \)'s. Show we need the extra index \(l \) on the right side, since all parameters \(w, V, \) and \(\theta \) may need to be distinct for different i-o functions \(f_l \).
Thus show a family of functions \(f_l(x) \) for \(l = 1, 2, \ldots, m \) representing desired activations of each output \(q_l \) can all be approximated as in (1), with a different choice of \(w, V, \) and \(\theta \)'s for each function \(f_l \).

We then still need to know if there is a neural network which can be constructed so that the outputs \(q_l \) in the final layer are given by formulas as in (1), i.e., an actual neural network that implements the formulas in (1). Show this can be done as follows. Assume that the first layer of our new network still contains the \(k \) neurons (whose activations are) \(x_1 \ldots x_k \). Assume the middle layer is made up of \(m \) collections of neurons \(y_{11}, y_{12}, \ldots, y_{1n}; \quad y_{21}, y_{22}, \ldots, y_{2n}; \quad y_{31}, y_{32}, \ldots, y_{3n}; \quad \ldots \quad y_{m1}, y_{m2}, \ldots, y_{mn} \). Assume that each of these collections is connected to all of the neurons \(x_1 \ldots x_k \) in the first layer, but assume that the \(l \)th collection of hidden neurons \(y_{l1}, \ldots, y_{lr} \) is only connected to the \(l \)th neuron (with activation) \(q_l \) in the third layer. Verify then that this \(l \)th collection of neurons can be chosen to have activations \(H(V_l^j - \theta_j^l) \) for any choice of \(V_l^j \) and \(\theta_j^l \) we might want (since the connections from the input \(x \) to the \(l \)th collection for different \(l \) are completely different from each other, so that the \(V_l^j \) can be chosen independently, as can the \(\theta_j^l \)). Finally show the same for the \(w_j^l \), i.e., that the connections for each group \(y_{l1}, \ldots, y_{lr} \) to the third layer are completely independent for each \(l \), so that for different \(l \) we may choose the \(w_j^l \) completely independently.

Thus show that even for different \(f_l \) as \(l \) varies, we can find approximations
\[
\hat{f}_l(x) = \sum_{j=1}^{n} w_j^l H(V_l^j \cdot x - \theta_j^l)
\]
to these desired outputs which can be implemented in the multi-component network described above.

Finally, this allows you to re-state Funahashi’s theorem for an underlying (target) vector function \(\mathbf{f}(x) : \mathbb{R}^k \rightarrow \mathbb{R}^m \). Now carefully extend the original theorem in class for approximating a function \(\tilde{f}(x) : \mathbb{R}^k \rightarrow \mathbb{R} \) using a single output neuron to the current case of multiple output neurons. This can follow by considering each component function \(f_l(x) \) of \(\mathbf{f}(x) \) and showing that, as above, our single neural network can approximate each \(f_l \) with an \(\hat{f}_l \) within error \(\epsilon \). Show the full vector function \(\tilde{f}(x) \) can be approximated by an \(\hat{f}(x) \) computed by the above network within error \(\epsilon \). Be sure to state this error estimate precisely.

4. Consider using the above relation between \(p \) and \(\infty \) norms.