5. (Hastie 5.15)
(a) Keep in mind what the inner product on this space is: if\(f(\mathbf{x}), g(\mathbf{x}) \in \mathcal{H} \) with
\[
f(\mathbf{x}) = \sum_{i=1}^{\infty} a_i \phi_i(\mathbf{x}), \quad g(\mathbf{x}) = \sum_{i=1}^{\infty} b_i \phi_i(\mathbf{x}), \quad \text{then} \quad \langle f, g \rangle = \sum_{i=1}^{\infty} \frac{a_i b_i}{\gamma_i}.
\]
You can write
\[
K(\cdot, \mathbf{x}_i) = \sum_{i=1}^{\infty} \{\gamma_k \phi_k(\mathbf{x}_i)\} \phi_k(\cdot) ; \quad f(\cdot) = \sum_{k=1}^{\infty} a_k \phi_k(\cdot);
\]
how does it follow that (a) holds just using definitions?
(b) Use a similar representation to that in (a)
(d) When is \(\rho(\cdot) \in \mathcal{H} \) orthogonal (in \(\mathcal{H} \)) to \(K(\cdot, \mathbf{x}_i) \) for fixed \(\mathbf{x}_i \) (i.e. they have dot product 0 in the active variable)? Show \(\rho(\mathbf{x}_i) = 0 \). How does this affect the Lagrangian \(\sum_{i=1}^{N} L(\hat{f}(\mathbf{x}_i), y_i) \)? What happens to \(||\hat{f}||^2_{\mathcal{H}} \) ?

6. (More on RHKS).
Note that we have two Hilbert spaces here. \(L^2(F) \) is the Hilbert space of all square integrable functions, i.e. such that \(\int_{F} f^2(x)dx < \infty \). The inner product on \(L^2(F) \) is defined as \(\langle f(x), g(x) \rangle_{L^2(F)} = \int_{F} f(x)g(x)dx \). Note that the inner product in the smaller subspace \(\mathcal{H} \subset L^2(F) \) is \(\langle f(x), g(x) \rangle_{\mathcal{H}} \). Also, we assume function \(f \in \mathcal{H} \) iff \(||f||^2_{\mathcal{H}} = \langle f, f \rangle < \infty \). Note that in general the values of \(\gamma_k \) are assumed to go to 0, so that convergence of the norm \(||g||^2_{\mathcal{H}} = \sum_{k} a_k^2 / \gamma_k \) of the function \(g(x) = \sum_{k} a_k \phi_k(x) \) requires the coefficients \(a_k \) to go to 0 faster than the condition of finiteness of \(||g||^2_{L^2(F)} = \sum_{k} a_k^2 \). Consider the example where the functions \(\phi_k \) are just the Fourier series functions \(\sin kx \) and \(\cos kx \) on the interval \(F = [-\pi, \pi] \subset \mathbb{R} \).

If we require the coefficients \(a_k \) and \(b_k \) to go to 0 rapidly in the Fourier series \(g(x) = \sum_{k} a_k \cos kx + b_k \sin kx \), this (as we have shown) will make \(g \) smoother. Thus the condition that \(g \in \mathcal{H} \), i.e., that \(||g||^2_{\mathcal{H}} = \sum_{k} a_k^2 / \gamma_k < \infty \), is a smoothing condition and essentially requires that our Hilbert space \(\mathcal{H} \) be a space of smooth functions on the same domain \(F \) as \(L^2(F) \).

Note more generally that the requirement in the Lagrangian that \(||g||^2_{\mathcal{H}} \) be small is a requirement that that \(a_k \) go to 0 faster as \(k \to \infty \), the bigger the \(1/\gamma_k \) are. Again this becomes a smoothness requirement, since the 'unsmooth' parts of \(g \) are the components with high \(k \).
(a) Again show it is closed under addition, etc., and that the inner product defined satisfies the right properties.
(b) For \(\mathcal{H} \) to be an RKHS, the linear functional \(l(f) = f(x) \) must be bounded for any fixed \(x \) (see notes). Show for fixed \(x \) we need \(|f(x)| \leq C||f||_{\mathcal{H}} \) (for all \(f \)). Show it suffices that
\[
\sum_k \gamma_k \phi(x_k)^2 < A < \infty \quad \text{for all } x_1 \in F \text{ with some constant } A. \quad (1)
\]

How can you simplify condition (1)? Note that if \(\sum \gamma_k < \infty \) then
\[
\sum_k \gamma_k \phi(x_1)^2 \leq M^2 \sum_k \gamma_k.
\]

Note also the Schwarz inequality
\[
\left| \sum_k a_k b_k \right| \leq \sqrt{\sum_k a_k^2} \sqrt{\sum_k b_k^2}.
\]

Show that then that if \(f(x) = \sum_k c_k \phi_k(x) \), then
\[
|f(x)| = \left| \sum_k c_k \phi_k(x) \right| = \left| \sum_k \frac{c_k}{\sqrt{\gamma_k}} (\sqrt{\gamma_k} \phi_k(x)) \right| \leq \left(\sum_k \frac{c_k^2}{\gamma_k} \right) \left(\sum_k \gamma_k \phi_k^2(x) \right).
\]

(c) How about \(\sum \phi_k(x) \phi_k(y) \) - does this work? Explain carefully. Show that if \(f = \sum c_k \phi_k(x) \in \mathcal{H} \), then
\[
\langle K(x, \cdot), f(\cdot) \rangle_{\mathcal{H}} = \left\langle \sum_k \gamma_k \phi_k(x) \phi_k(\cdot), \sum l \phi_l(\cdot) \right\rangle_{\mathcal{H}} = f(x).
\]