MA 412 Complex Analysis
Solutions to Quiz # 2

1. Consider the following set:

\[\{re^{i\theta} | 0 < r < 1 \text{ and } -\pi/2 < \theta < \pi/2 \}. \]

Sketch this set and state if is open or closed, connected or disconnected, a domain or a region, bounded or unbounded.

Answer The region given is open and connected, hence is a domain. It is also a region by definition, and is clearly bounded.

2. Express \(f(z) = z^5 + z^3 \) in polar coordinates of the form \(u(r, \theta) + iv(r, \theta) \).

Answer Let \(z = re^{i\theta} \). As \(\overline{z} = re^{-i\theta} \), we have

\[f(z) = z^5 + \overline{z}^3 = r^5 e^{5i\theta} + r^3 e^{-3i\theta}. \]

By applying De Moivre’s formula,

\[f(z) = r^5 (\cos 5\theta + i \sin 5\theta) + r^3 (\cos 3\theta - i \sin 3\theta). \]

After equating real and imaginary parts, we obtain

\[f(z) = (r^5 \cos 5\theta + r^3 \sin 3\theta) + i(r^5 \sin 5\theta + r^3 \sin 3\theta). \]

3. Let \(f(z) = \overline{z} \), \(g(z) \) be a nonconstant continuous function in \(\mathbb{C} \), and \(F(z) = g(z) \).
1. Show that f is continuous in \mathbb{C}.
2. Show that F is continuous in \mathbb{C}.
3. Show that f is nowhere differentiable.
4. Show that F is not analytic in \mathbb{C}.

Answers

1. A function $f(z) = u(x, y) + iv(x, y)$ is continuous at $z_0 = x_0 + iy_0$ if and only if $u(x, y)$ and $v(x, y)$ are continuous at (x_0, y_0). For the given function, $u(x, y) = x$ and $v(x, y) = -y$ are clearly continuous at any (x, y). It follows that $f(z) = z$ is continuous at any $z \in \mathbb{C}$.

2. By hypothesis, $g(z)$ is continuous in all \mathbb{C}, so is $f(z)$. Since the composition of two continuous functions is continuous, it follows that $F(z) = f \circ g(z)$ is continuous in all \mathbb{C}.

3. Using the contrapositive statement of the Cauchy-Riemann theorem for analytic functions, we just need to show that the functions $u(x, y) = x$ and $v(x, y) = y$ do not hold the Cauchy-Riemann equations at any point. Indeed,

$$u_x(x, y) = 1 \text{ and } v_y(x, y) = -1,$$

at any (x, y), so $u_x \neq v_y$ and we conclude that f is nowhere differentiable.

4. Assume $g(z) = a(x, y) + ib(x, y)$ is a non-constant, continuous and analytic function in \mathbb{C}. Hence the CR equations hold for a and b, that is

$$a_x = b_y \text{ and } b_x = -a_x. \quad (1)$$

Write $F(z) = U(x, y) + iV(x, y)$. Then $U = a$ and $V = -b$ at any point (x, y). If F happens to be analytic, then, the CR equations should also hold. That is $U_x = V_y$ and $V_x = -U_y$. In terms of a and b, we get

$$a_x = -b_y \text{ and } -b_x = -a_y \quad (2)$$

Combining expressions (1) and (2), we obtain

$$a_x = -b_y = b_y \text{ if and only if } b_y = 0, \text{ and so } a_x = 0$$

$$a_y = b_x = -b_x \text{ if and only if } b_x = 0, \text{ and so } a_y = 0$$

That is, the imaginary and the real parts of g are constant, which is a contradiction. Hence, F is not analytic in \mathbb{C}.

4. Let $f(z) = e^z \cos y + i e^z \sin y$. Show that f and f' are analytic in \mathbb{C}.
0.5 pts.
Answer Let \(u(x, y) = e^x \cos y \) and \(v(x, y) = e^x \sin y \). \(f \) is analytic if \(f'(z) \) exists in a neighborhood of \(z \), but \(f' \) exists if \(u \) and \(v \) have continuous first-order partial derivatives and hold the CR equations. As \(e^x, \cos y \) and \(\sin y \) are continuous in \(\mathbb{R}^2 \) their product are also continuous in \(\mathbb{R}^2 \). Hence \(u_x, u_y, v_x \) and \(v_y \) are continuous in the real plane. Moreover

\[
 u_x = e^x \cos y = v_y \quad \text{and} \quad u_y = -e^x \sin y = -v_x
\]

so \(f' \) exists at any \(z = x + iy \). Hence \(f \) is analytic in all \(\mathbb{C} \). As \(f'(z) = u(x, y) + iv(x, y) \) for all \((x, y) \) then \(f' = f \) and it follows that \(f' \) is also analytic.

5. Suppose \(v \) is harmonic conjugate of \(u \) and \(u \) is harmonic conjugate to \(v \). Show that \(u \) and \(v \) must be constant functions.

1 pts.
Answer By definition, \(v \) is harmonic conjugated to \(u \) if \(\Delta u = \Delta v = 0 \) and \(u_x = v_y, u_y = -v_x \) hold. On the other hand, as \(u \) is harmonic conjugated to \(v \), we also have \(v_x = u_y \) and \(v_y = -u_x \). Then,

\[
 u_y = -v_x = v_x \quad \text{implies} \quad v_x = 0 \quad \text{and} \quad u_y = 0
\]

and

\[
 u_x = v_y = -v_y \quad \text{implies} \quad v_y = 0 \quad \text{and} \quad u_x = 0.
\]

Hence, \(u(x, y) \) and \(v(x, y) \) are constant functions.

6. Let \(u(x, y) = 2x(1 - y) \). Show that \(u \) is harmonic and find a harmonic conjugated.

1.5 pts.
Answer Let \(u(x, y) = 2(1 - y) \). As \(u_{xx} = u_{yy} = 0 \) for all \((x, y) \), we have \(\Delta u = 0 \), so \(u \) is harmonic in all the real plane. If \(v \) is harmonic conjugate of \(u \), then by the CR equations, \(v_y(x, y) = 2(1 - y) \). Integrating in terms of \(y \) we obtain

\[
 v(x, y) = \int (2(1 - y))dy = 2y - y^2 + \phi(x).
\]

Also \(u_y = -2x = -v_x \), that is \(v_x = 2x = \phi'(x) \). Integrating in terms of \(x \), we obtain that \(\phi(x) = x^2 + c \), for \(c \in \mathbb{R} \). Thus,

\[
 v(x, y) = 2y - y^2 + x^2 + c.
\]

We can easily check that \(\Delta v(x, y) = 0 \).