MA 230 Problem of the Day February 3, 2003

Let

\[f(x, y) = y \cos x. \]

Find the points on the graph of \(f \) where the tangent plane is parallel to the plane

\[x - \sqrt{3} y + 2z = -2. \]

\[\frac{\partial f}{\partial x} = -y \sin x \quad \frac{\partial f}{\partial y} = \cos x \]

Normal vector to the tangent plane is

\[\vec{T} = (-y \sin x) \hat{x} + (\cos x) \hat{y} - \hat{k} \]

Normal vector to plane is

\[\vec{N} = \hat{x} - \sqrt{3} \hat{y} + 2\hat{k} \]

The planes are parallel if \(\vec{T} \) and \(\vec{N} \) are parallel, i.e., \(\vec{T} = \lambda \vec{N} \) for some scalar \(\lambda \). We have

\[
\begin{cases}
- y \sin x = \lambda \\
\cos x = -\sqrt{3} \lambda \\
- 1 = 2 \lambda
\end{cases}
\]

\[\Rightarrow \lambda = -\frac{1}{2} \Rightarrow \cos x = \frac{\sqrt{3}}{2} \Rightarrow \sin x = \mp \frac{1}{2}. \]

We have \(x = \pm \frac{\pi}{6} + 2k\pi \). If \(x = \frac{\pi}{6} + 2k\pi \), then \(y = 1 \), and the point is \((\frac{\pi}{6} + 2k\pi, 1, \frac{\sqrt{3}}{2}) \). If \(x = -\frac{\pi}{6} + 2k\pi \), then \(y = -1 \) and the point is \((\frac{\pi}{6} + 2k\pi, -1, -\frac{\sqrt{3}}{2}) \).