The following are problems similar to those that may appear on the first mid-term. So doing these problems is a good, but you should also review the homework problems, text, notes, etc.

JUSTIFY ALL ANSWERS. NEATNESS DEFINITELY COUNTS.

1. TRUE or FALSE and GIVE REASON: State if the following is true of false and justify your answer in a sentence (or two at the most).

(a) Suppose you have a sequence a_1, a_2, \ldots that satisfies

$$\lim_{n \to \infty} a_n = 5$$

then

$$\lim_{n \to \infty} a_{2n} = 10.$$

(b) Suppose you have a sequence a_1, a_2, \ldots that satisfies

$$\sum_{n=0}^{\infty} a_n$$

converges, then

$$\sum_{n=0}^{\infty} a_{2n}$$

also converges.

2. Compute

$$\lim_{n \to \infty} \frac{n^2 + 5n + 7}{3n^2 - 4n + \ln(n)}$$

3. Determine if the following converge or diverge. If it converges state the value if you can.

(a)

$$\sum_{n=0}^{\infty} \left(\frac{4}{5}\right)^n$$

(b)

$$\sum_{n=1}^{\infty} (0.3)^{2n}$$

(c)

$$\sum_{n=1}^{\infty} \left(\frac{n + 3}{\sqrt{n^6 + 3n + 2}}\right)$$

4. Use the idea behind the integral test to give an estimate on the size of

$$\sum_{n=1}^{100} \frac{n^2}{n^3 + 3}$$

(Be sure to include a figure which helps to explain what you are doing AND be neat!)

5. What is the radius of convergence of
(a) \[\sum_{n=0}^{\infty} 3nx^n \]

(b) \[\sum_{n=0}^{\infty} \frac{(x-2)^n}{3n!} \]

6. (a) What is the 5th degree Taylor polynomial for \(\sin(x) \) centered at 0?

 (b) What is the maximum error between the 5th degree Taylor polynomial for \(\sin(x) \) centered at 0 and \(\sin(x) \) on the interval \(-2 < x < 2\)?

 (c) What is the maximum error between the 5th degree Taylor polynomial for \(\sin(x) \) centered at 0 and \(\sin(x) \) on the interval \(-1 < x < 1\)?

7. What is the Taylor polynomial of 3rd degree of \(\ln(x) \) centered at \(x = 2 \).

8. The gravitational acceleration on a body near the earth is given by

 \[A(x) = -\frac{GM}{x^2} \]

 where \(G \) is the gravitational constant, \(M \) is the mass of the earth and \(x \) is the distance to the center of the earth. Let \(r_0 \) be the radius of the earth.

 (a) Give the Taylor series expansion of degree 3 for \(A(x) \) centered at \(x = r_0 \). (So your answer will have constants \(G \), \(M \) and \(r_0 \)).

 (b) How close is the 2nd degree Taylor polynomial for \(A(x) \) centered at \(r_0 \) to the value of \(A(x) \) on the interval \(r_0 \leq x \leq 2r_0 \)?