1. Prove that if \(G \) is a simple group such that \(61 \leq |G| \leq 70 \), then \(G \) is a cyclic group.
[Feel free to use the Sylow theorems.]

2. Let \(A \) and \(B \) be normal subgroups of a group \(G \) such that \(A \cap B = \{e\} \). Prove that \(ab = ba \) for all \(a \in A \) and \(b \in B \).
[Hint: Prove that \(aba^{-1}b^{-1} \in A \cap B \).]

3. Let \(G \) be a group of size 15. Let \(a \) be an element of order 3 and \(b \) be an element of order 5. Set \(A = \langle a \rangle \) and \(B = \langle b \rangle \).
(a) Prove that \(AB = G \).
(b) Prove that both \(A \) and \(B \) are normal subgroups.
[Hint: Use the Sylow theorems.]

4. Let \(G \) be a group of size \(pq \) with \(p \) and \(q \) distinct primes with \(p < q \) and \(q \not\equiv 1 \pmod{p} \). Prove that \(G \) is cyclic.
[Hint: Mimic the arguments of the last question.]

5. Let \(G \) have size \(12 = 2^2 \cdot 3 \).
(a) If \(n_p \) equals the number of \(p \)-Sylow subgroups in \(G \), prove that \(n_2 = 1 \) or \(3 \) and \(n_3 = 1 \) or \(4 \).
(b) Let \(A \) be a 2-Sylow subgroup and let \(B \) be a 3-Sylow subgroup. Prove that either \(A \) or \(B \) is normal.
[Hint: Otherwise \(n_2 = 3 \) and \(n_3 = 4 \). Show that \(G \) isn’t big enough to have so many \(p \)-Sylows.]

6. (Bonus) Determine all groups of size 12 up to isomorphism.