1. Prove that if G is a simple group such that $61 \leq |G| \leq 70$, then G is a cyclic group.
 [Feel free to use the Sylow theorems.]
 Referencing the lemmas from homework 9, we can create the following table:

<table>
<thead>
<tr>
<th>Order</th>
<th>Simple/Not Simple</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>Simple</td>
<td>Lemma P</td>
</tr>
<tr>
<td>62</td>
<td>Not Simple</td>
<td>Sylow’s Third Theorem: $n_7</td>
</tr>
<tr>
<td>63</td>
<td>Not Simple</td>
<td>Sylow’s Third Theorem: $n_7</td>
</tr>
<tr>
<td>64</td>
<td>Not Simple</td>
<td>Lemma Z: $64 = 2^6$</td>
</tr>
<tr>
<td>65</td>
<td>Not Simple</td>
<td>Lemma PQ: $65 = 5 \times 13$</td>
</tr>
<tr>
<td>66</td>
<td>Not Simple</td>
<td>Sylow’s Third Theorem: $n_{11}</td>
</tr>
<tr>
<td>67</td>
<td>Simple</td>
<td>Lemma P</td>
</tr>
<tr>
<td>68</td>
<td>Not Simple</td>
<td>Sylow’s Third Theorem: $n_{17}</td>
</tr>
<tr>
<td>69</td>
<td>Not Simple</td>
<td>Lemma PQ: $69 = 3 \times 23$</td>
</tr>
<tr>
<td>70</td>
<td>Not Simple</td>
<td>Sylow’s Third Theorem: $n_7</td>
</tr>
</tbody>
</table>

Notice that the only simple groups are those that have prime order. Since every group of prime order is cyclic, the proof is complete.

2. Let A and B be normal subgroups of a group G such that $A \cap B = \{e\}$. Prove that $ab = ba$ for all $a \in A$ and $b \in B$.
 [Hint: Prove that $aba^{-1}b^{-1} \in A \cap B$.]

 - Note first that for all $a \in A$ and $b \in B$, we have $aba^{-1} \in B$ and $ba^{-1}b^{-1} \in A$. Correspondingly, $(aba^{-1})b^{-1} \in Bb^{-1} = B$ and $a(ba^{-1}b^{-1}) \in aA = A$. Thus, $aba^{-1}b^{-1} \in A \cap B$. Since $A \cap B = \{e\}$, we know that $aba^{-1}b^{-1} = e$, and therefore that $ab = ba$. This completes the proof.

3. Let G be a group of size 15. Let a be an element of order 3 and b be an element of order 5. Set $A = \langle a \rangle$ and $B = \langle b \rangle$.

 (a) Prove that $AB = G$.

 - Since A and B have prime orders 3 and 5, each non-identity element of A and B also has an order of 3 and 5, respectively. Therefore $A \cap B = \{e\}$, for otherwise we could conclude $|A| = 5$ or $|B| = 3$, both of which would be contradictions.

 One way to accomplish our task is to determine if the set $AB = \{ab \mid a \in A$ and $b \in B\}$ has size 15. We can do this using properties of cosets. Let $A = \{e, a_1, a_2\}$. Then $B = eB \neq a_1B$ and $B = eB \neq a_2B$, since $a_1, a_2 \notin B$. Since different cosets are disjoint, the only case in
4. Let G be a group of size pq with p and q distinct primes with $p < q$ and $q \neq 1 \pmod{p}$. Prove that G is cyclic.

[Hint: Mimic the arguments of the last question.]

Let a be an element of order p and let b be an element of order q. Let $A = \langle a \rangle$ and $B = \langle b \rangle$.

• Lemma: $AB = G$.

(a) Since A and B have prime orders p and q, they are cyclic and all non-identity elements generate their respective subgroup. Furthermore, since $p \neq q$, $A \cap B = \{e\}$, for otherwise we could conclude $|A| = q$ or $|B| = p$, both of which would be contradictions.
5. Let \(G \) have size \(12 = 2^2 \cdot 3 \).

(a) If \(n_p \) equals the number of \(p \)-Sylow subgroups in \(G \), prove that \(n_2 = 1 \) or \(3 \) and \(n_3 = 1 \) or \(4 \).

- We use Sylow’s Third Theorem:
 - Since \(n_2 | 12 \), \(n_2 = 1, 2, 3, 4, 6, \) or \(12 \). Of these, only \(1 \) and \(3 \) are equivalent to \(1 \) (mod 2).
 - Since \(n_3 | 12 \), \(n_3 = 1, 2, 3, 4, 6, \) or \(12 \). Of these, only \(1 \) and \(4 \) are equivalent to \(1 \) (mod 3).

(b) Let \(A \) be a 2-Sylow subgroup and let \(B \) be a 3-Sylow subgroup. Prove that either \(A \) or \(B \) is normal.

[Hint: Otherwise \(n_2 = 3 \) and \(n_3 = 4 \). Show that \(G \) isn’t big enough to have so many \(p \)-Sylows.]

- Suppose that neither \(A \) nor \(B \) is normal. Then \(n_2 \neq 1 \) and \(n_3 \neq 1 \), so \(n_2 = 3 \) and \(n_3 = 4 \) by part (a). That \(n_3 = 4 \) means there are \(4 \) distinct 3-Sylow subgroups. The two non-identity elements in any 3-Sylow subgroup generate that subgroup. Thus, any two distinct 3-Sylow subgroups can overlap only in the identity, for otherwise they would be the same subgroup. We conclude that the four distinct 3-Sylow subgroups account for \(4 \cdot 2 + 1 = 9 \) distinct elements of \(G \). Now, choose any 2-Sylow subgroup. Since this subgroup has order 4, the three non-identity elements of \(A \) have orders 2 or 4, and, adding these to the identity and the eight elements of order 3, these bring the total number of elements of \(G \) to 12. Since the three non-identity elements of our 2-Sylow are the only elements of \(G \) with order 2 or 4, any other subgroup of order 4 must contain them, so that there is at most one subgroup of order 4. This contradicts that \(n_2 = 3 \), completing the proof.

(c) Prove that \(A \) and \(B \) are abelian. List all possible groups for \(A \) and \(B \).
First we consider A. Since $|A| = 4$ and 2 is a prime that divides 4, A is guaranteed a subgroup of order 2, call it H. Since $2 \times 2 = 4$, H has index 2 and is therefore normal (see HW 8, question 9.7), and is contained in $Z(A)$ (see HW 8, question 9.66). Since $Z(A)$ is a subgroup of A and has at least 2 elements, either $|Z(A)| = 2$ or $|Z(A)| = 4$. If $|Z(A)| = 4$ then $Z(A) = A$ and we’re done. If $|Z(A)| = 2$ then $Z(A) = H$; form the factor group A/H which has order 2 and is therefore cyclic. By the G/Z Theorem, A is abelian.

For B, note simply that $|B| = 3$, which is prime, so B is cyclic and therefore abelian.

(d) If $n_2 = n_3 = 1$, prove that G is abelian and thus $G = Z_3 \times Z_4$ or $G = Z_3 \times Z_2 \times Z_2$.

• Since $n_2 = n_3 = 1$, the 2-Sylow subgroup, call it A, and the 3-Sylow subgroup, call it B, are both normal. Furthermore, $A \cap B = \{e\}$, since non-identity elements of A have order 2 or 4, whereas those of B have order 3. Using the exact same argument as 3(c), we conclude that G is abelian.

(e) If $G = A_4$, determine A, B and the values of n_2 and n_3.

• Referencing the table for A_4 given in chapter 5, note that there are eight distinct 3-cycles, each of which has order 3. Since the subgroup generated by each 3-cycle α contains three elements, including e, α, and β, where β is also a 3-cycle, we see that each 3-cycle lies in one of four different 3-Sylow subgroups. Thus, $n_3 = 4$. Following the argument presented in part (b), it must be true that $n_2 = 1$. Note that $\{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ forms a subgroup of order 4, so it must be the lone 2-Sylow subgroup.

(f) If $G = S_3 \times Z_2$, determine A, B and the values of n_2 and n_3.

• First note that there is only one 3-Sylow subgroup of S_3 (which happens to be A_3), which is evident by applying Sylow’s Third Theorem on S_3. There are three additional elements of S_3 besides those in A_3, namely $(12), (13)$, and (23), each having order 2. Thus S_3 has an identity, two elements of order 3, and three elements of order 2. Z_2 has just two elements: ϵ, and another of order 2. Since there is no order 4 subgroup in S_3 or Z_2, any order 4 subgroup of G must be formed by order 2 subgroups from both S_3 and Z_2. These subgroups are precisely $\langle(12)\rangle \times Z_2$, $\langle(13)\rangle \times Z_2$, and $\langle(23)\rangle \times Z_2$. Thus, $n_2 = 3$. Similarly, since 3 is prime and the only order 3 subgroup in S_3 or Z_2 is A_3, the only order 3 subgroup of G is $A_3 \times \{\epsilon\}$. Thus, $n_3 = 1$.

(g) (Bonus) Can you find a group of size 12 such that $A = Z_4$, $n_2 = 3$ and $n_3 = 1$?

(h) (Bonus) Can you find a group of size 12 such that $A = Z_4$, $n_2 = 1$ and $n_3 = 4$?

(i) (Bonus) Determine all groups of size 12 up to isomorphism.

6. (Bonus) Determine all groups of size 18 up to isomorphism.