MA294, Problem Set #3
Fall 2006

P1: Exercises 20.5, #4

P2. Prove that if \(H \) is a proper subgroup of a finite group \(G \), then \(H \) cannot be isomorphic to \(G \).

P3. Show that the function \(f : \mathbb{Z} \to 2\mathbb{Z} \) given by \(f(n) = 2n \) is an isomorphism. (Thus a proper subgroup of an infinite group may be isomorphic to the whole group.)

P4. Show that the function \(\exp : (\mathbb{R}, +) \to (\mathbb{R}^+, \cdot) \) given by \(\exp(x) = e^x \) is an isomorphism.

P5. Exercises 20.7, #3

P6. Find the center of \(D_7 \), the group of symmetries of the regular 7-gon.

P7. Find the center of \(GL(2, \mathbb{R}) \), the set of \(2 \times 2 \) invertible matrices with real number entries.