Statistics on Anatomic Objects
Reflecting Inter-Object Relations

Ja-Yeon Jeong, Stephen M. Pizer, and Surajit Ray
Medical Image Display & Analysis Group, University of North Carolina, Chapel Hill

Goal: p(Multi-Object Complexes) Probabilistic Representation

-

- Mixed model: for each object, $\Delta M = \Delta M_{\text{self}} + \Delta M_{\text{ngbr}}$

- ΔM_{self} and ΔM_{ngbr} probabilistically independent

- Neighbor effect divided into neighbor prediction & deviation from prediction

- The effect of neighboring objects is local

- Prediction from nearby medial atoms in neighboring objects

Estimation of self and neighbor effects through iterative steps

1) Compute difference ΔM from a base model

2) Self Step:

 In each training model, remove estimate of effects of neighboring objects from ΔM

 Estimate variation modes and thus shape space of the residues (by Principal Geodesic Analysis (PGA))

3) Neighbor Step:

 In each training model, remove estimates of effects of neighbor-independent changes of objects from ΔM

 Estimate predicting probability distribution

 In each training model, remove prediction

 Estimate probability distribution on deviations from prediction

Iterate self and neighbor steps over all objects until convergence

Prediction:

a) Combine object medial atoms with independent changes in nearby predicting-atoms
b) Find the probability distribution and shape space of that set (via PGA)
c) Prediction = conditional mean, within the shape space, of object atoms given the predicting atoms

Effectiveness of the Method

- Estimation of self and neighbor effect shown in eigenmodes and their variances:

 1) Biologically Realistic:

 bladder: large variation independent from changes of its neighboring object prostate

 prostate: small self variation in its own shape compared to the effect from its neighboring object bladder

 2) Convergence

- Preliminary segmentation results are encouraging

Acknowledgments: Keith Muller, J. Stephen Marron, and Sarang Joshi for scientific discussion. Ed Chaney and Gregg Tracton for male-pelvis data. This work was carried out under the partial support of NIH grant P01 EB02779.