Statistics Seminar Series

Connect-The-Dots: How many random points can a regular curve pass through?

Ery Arias-Castro
Department of Statistics
Stanford University
Friday, February 13, 2004, 4:00-5:00pm
Mathematics and Computer Science (MCS) Building, Room 149
111 Cummingston Street, Boston
Tea and Cookies at 3:30pm in MCS 153

Abstract: Suppose n points are scattered uniformly at random in the unit square. Question: How many of these points can possibly lie on some curve of length bounded by L? Answer, proved here: order the square root of n.

We consider a general class of such questions; in each case, we are given a class \(G \) of curves in the square, and we ask: in a cloud of \(n \) uniform random points, how many can lie on some curve \(g \) in \(G \)? Classes of interest include (in addition to the rectifiable curves mentioned above): Lipschitz curves, increasing curves, twice-differentiable curves, smooth curves with \(m \)-bounded derivatives. In each case we get order-of-magnitude estimates; for example, there are twice-differentiable curves containing as many as order \(n^2 \) of the third uniform random points, but not essentially more than this.

We also consider generalizations to higher dimensions and to hypersurfaces of various co-dimensions. Thus, twice-differentiable \(k \)-dimensional hypersurfaces in dimension \(d \) may contain as many as \(n \) to the power \(k/(2d-k) \) uniform random points. We also consider other notions of 'passing through' such as passing through given space/direction pairs. Thus, twice-differentiable curves in 2D may pass through at most order \(n \) to the fourth uniform random points.

We give both concrete approaches to our results, based on geometric multiscale analysis, and abstract approaches, based on epsilon-Entropy.

Stylized applications in image processing and perceptual psychophysics are described.

For directions and maps, please see http://math.bu.edu/research/statistics/statseminar.html. For other information, please contact Eric Kolaczyk (kolaczyk@math.bu.edu) or the main department office at (617)353-2560.)