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The starting point

Phase space tomography1: recover the coherence of a partially coherent light

▶ Algorithm: restarted accelerated gradient method
▶ Idea: mathematical explanations for the acceleration after restart
▶ Su et al. (2016) provides ODE perspective, but can not fully explain it

1SIIMS 2018; JOSA A 2017
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Nonlinear convex optimization

Model
min

x
f(x) (1)

The objective function f : Rn → R satisfies

Assumptions on f

▶ L-smooth: f ∈ C1 and

∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥, ∀x, y ∈ Rn

▶ µ-strongly convex:

f(x) − µ

2 ∥x∥2 is convex

Define x⋆ to be the unique minimizer of (1) and f⋆ := f(x⋆)
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Gradient descent (GD) method

GD scheme:
xk+1 = xk − s∇f(xk)

where s > 0 is the step size

The convergence rate of GD
▶ µ > 0 and s ∈ (0, 2/(L + µ)]:

∥xk − x⋆∥2 ≤
(

1 − s
2µL

µ + L

)k

∥x0 − x⋆∥2

▶ µ = 0 and s ∈ (0, 1/L]:

f(xk) − f⋆ ≤ 1
2sk

∥x0 − x⋆∥2

Easy implementation, but converges slowly
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Acceleration methods

▶ Heavy ball method (Polyak, 1964)

xk+1 = xk − s∇f(xk)+α(xk − xk−1)

– α and s are constants
– Local linear convergence for strongly convex functions
– Global convergence fails for some choices of s

▶ Anderson acceleration methods (Anderson, 1965)

xk+1 = xk − sk∇f(xk)−(Xk + skRk)Γk

– Xk, Rk are matrices from xk, . . . , xk−mk and ∇f(xk), . . . , ∇f(xk−mk )
– Γk satisfies certain conditions
– Accelerate fixed point iteration in computational physics, etc
– The theoretical properties are underexplored
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Nesterov accelerated gradient (NAG) method

▶ A seminar work proposed in Nesterov (1983)

▶ General NAG framework
xk+1 = yk − s∇f(yk)

βk+1 = (tk+1 − 1)/tk+2

yk+1 = xk+1 + βk+1(xk+1 − xk)

▶ s ∈ (0, 1/L] is the step size and {tk} is a predefined sequence

▶ Easy implementation as GD

▶ Convergence speed depends on the choice of extrapolation
coefficients {tk}
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Case I: µ > 0 is known

tk ≡ t⋆ :=
√

L + √
µ

2√
µ

=⇒ βk ≡ β⋆ :=
√

L − √
µ

√
L + √

µ

If s = 1/L, we have xk+1 := yk − 1
L ∇f(yk)

yk+1 := xk+1 +
√

L−√
µ√

L+√
µ

(xk+1 − xk)
(NAG-sc)

▶ Global R-linear convergence

f(xk) − f⋆ ≤
(

1 −
√

µ

L

)k (
f(x0) − f⋆ + µ

2 ∥x0 − x⋆∥2
)

.

▶ Accurately estimating µ is challenging in practice

7 / 39



Case II: µ = 0 or µ > 0 is unknown

Nesterov’s rule
The sequence {tk} satisfies

t1 = 1, tk ↗ +∞, and t2
k+1 − tk+1 ≤ t2

k, for k ≥ 1

NAG-c: NAG method that satisfies Nesterov’s rule with s ∈ (0, 1/L]

Two common choices of {tk} in NAG-c

1. tk+1 = 1+
√

1+4t2
k

2 =
√

t2
k + 1

4 + 1
2 (Nesterov, 1983)

2. tk+1 = k+r
r , with r ≥ 2 (Lan et al., 2011; Tseng, 2008; Chambolle and

Dossal, 2015; Attouch and Peypouquet, 2016; Su et al., 2016)

NAG-c has wide applications in image processing, machine learning, etc
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Goal of this talk

Two questions related to NAG-c:

1. Whether NAG-c have global R-linear convergence for minimizing
strongly convex problems?

– Simplest case, but still unknown for more than 40 years

2. Can we the mathematical analysis of gradient restarted NAG-c over the
NAG-c?

– Classical acceleration techniques in extrapolation based methods, but
establishing the theoretical advantages may be difficult
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Motivation: numerical perspective

▶ NAG-c is faster than GD in convex setting (O(1/k2) v.s. O(1/k))
▶ NAG-c has global R-linear convergence rather than Q-linear
▶ Fast intial convergence, slow linear asymptotic convergence
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Figure: Numerical comparison between GD, NAG-c and NAG-sc
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Motivation: ODE perspective

Setting tk = k+2
2 , NAG-c reduces to

xk+1 = yk − s∇f (yk)

yk+1 = xk+1 + k

k + 3 (xk+1 − xk)
(2)

Rewrite (2) as

xk+1 − xk√
s

= k − 1
k + r

xk − xk−1√
s

−
√

s∇f (yk)

Define t = k
√

s and xk = X(t), then

Ẋ(t) + 1
2Ẍ(t)

√
s + o(

√
s)

=
(

1 − 3
√

s

t

)(
Ẋ(t) − 1

2Ẍ(t)
√

s + o(
√

s)
)

−
√

s∇f(X(t)) + o(
√

s)
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Ignoring o(
√

s) term, we get a low-resolution ODE (Su et al., 2016){
Ẍ(t) + 3

t Ẋ(t) + ∇f(X(t)) = 0
X(0) = x0, Ẋ(0) = 0

▶ Consistency result

lim
s→0

max
0≤k≤T/

√
s

∥∥xk − X(k
√

s)
∥∥ = 0

▶ If f = 1
2 ⟨x, Λx⟩, it has

f(X(t)) − f⋆ = O

(
∥x0 − x⋆∥2

t3
√

min λi

)

lim sup
t→∞

t3 (f(X(t)) − f⋆) ≥ 2 ∥x0 − x⋆∥2

π
√

L

It rules out the possibility of linear convergence, and contradicts
with our numerical observation
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Current results

▶ Local linear convergence
– Asymptotic linear convergence with rate

√
1 − µ

L
+ ϵ (Tao et al., 2016;

Liang et al., 2017)
– Non-asymptotic linear convergence with rate 1 − (1−Ls)µs

4 when
s < 1/L (Li et al., 2023)

▶ Global convergence:
– Sublinear convergence O(1/poly(k)) (Su et al., 2016; Aujol et al., 2023)

▶ Global linear convergence with additional constraints
– NAG with fixed restarting (O’Donoghue and Candès, 2015)
– NAG required that supk βk < 1 (Wen et al., 2017) .
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Key result: s < 1/L

Define the Lyapunov sequence Ek as

s(tk+1 − 1)tk+1 (f (xk) − f⋆) + 1
2 ∥(tk+1 − 1)(yk − xk) + (yk − x⋆)∥2

Theorem (NAG-c: s < 1/L)

There exists a positive sequence {ρk} such that for all k ≥ 1,

Ek+1 ≤ ρkEk, and f (xk) − f⋆ ≤
∏k

i=1 ρi

(tk+1 − 1)tk+1
· ∥x0 − x⋆∥2

2s
,

with 
ρ̄ : = sup

k≥0
ρk ≤ 1 − (1−Ls)µs

1+max{ µ
L , 1

8 } (Global rate)

ρ∞ : = lim
k→∞

ρk ≤ 1 − (1−Ls)µs
1+ µ

L
(Local rate)
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Comparison for convergence speed

K-step decreasing ratio

▶ GD: (1 − µs)k; NAG-sc: (1 − √
µL)k; NAG-c:

∏k
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(tk+1−1)tk+1
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Figure: Numerical comparison with L/µ = 1000
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Sketch of the proof

▶ Descent property of {Ek}:

Ek+1 − Ek ≤ −
s2t2

k+1(1 − sL)
2 ∥∇f(yk)∥2

− µs(tk+1 − 1)tk+1

2 ∥yk − xk∥2 − µstk+1

2 ∥yk − x⋆∥2

▶ Boundedness of {Ek}: for any a, b > 0, it has

Ek ≤s(tk+1 − 1)tk+1(1 + µ/a)
2µ

∥∇f(yk)∥2 + 1 + 1/b

2 ∥yk − x⋆∥2

+
[

(1 + b)(tk+1 − 1)2 + s(tk+1 − 1)tk+1(a + L)
2

]
∥yk − xk∥2

Similar bound can be proved for Ek+1
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We can prove that

Ek+1 ≤ ρkEk with ρk :=
(

1 − 1
min{Ck, Dk}

)

▶ {Ck} is increasing from C0 = 1/µs to

lim
k→∞

Ck = C∞ := 1 + Ls

µs
+

(Ls)2 +
√

(Ls)4 + 4(1 − Ls)µs

2(1 − Ls)µs

▶ Dk ∈ (1 + 1
1−Ls , 3

(1−sL)µs ) and

lim
k→∞

Dk = D∞ := 1 + µs

µs
+

δ +
√

δ2 + 4(1 − Ls)µs

2(1 − Ls)µs
< C∞

where δ := (L − µ)s + Lµs2

This can easily obtain ρ̄ and ρ∞
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Key result: s = 1/L

Define the Lyapunov sequence as

Ek := λ(f (xk) − f⋆) + 1
2 ∥xk − xk−1∥2

, ∀k ≥ 0

where λ is a number depends on L and µ

Theorem (NAG-c: s = 1/L)

There exists a positive number ρ such that for all k ≥ 1,

Ek+1 ≤ ρEk, and f (xk) − f⋆ ≤ ρk (f (x0) − f⋆)

with ρ = 0 if µ = L, and

0 < ρ <
4L2 − 3Lµ

4L2 − 3Lµ + µ2 < 1 if µ < L
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Remarks

▶ These results can be extended for accelerated proximal gradient
methods (Tseng, 2008; Beck and Teboulle, 2009)

▶ Tightness of this bound is unknown
▶ Does there exists an ODE model consistent with the NAG-c method?

– The high-resolution ODE model (Shi et al., 2022)

Ẍ(t) + 3
t

Ẋ(t) +
√

s∇2f(X(t))Ẋ(t) +
(

1 + 3
√

s

2t

)
∇f(X(t)) = 0

– Distinguish the heavy ball method and NAG methods
– Provable locally linear convergence for s < 1/L

– Global linear convergence is unknown
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Adaptive restart schemes

▶ Motivation: avoid the oscillation phenomenon of NAG-c
▶ Restart: reset βk = 0 if some conditions (O’Donoghue and Candès,

2015; Beck and Teboulle, 2009; Su et al., 2016) are met
– Gradient restart: ⟨xk − xk−1, yk−1 − xk⟩ > 0
– Function value restart: f(xk) < f(xk=1)
– Speed restart: |xk − xk−1| < |xk−1 − xk−2|
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Gradient restarted NAG-c

Recall the low-resolution ODE:{
Ẍ(t) + 3

t Ẋ(t) + ∇f(X(t)) = 0
X(0) = x0, Ẋ(0) = 0

(NAG-ODE)

Gradient restarted scheme: reset t = 0 when

⟨∇f(X(t)), Ẋ(t)⟩ ≥ 0

▶ If f(x) = 1
2 ⟨x, Λx⟩ where Λ ≻ 0, NAG-c has sublinear Convergence

f(X(t)) − f∗ ≥ O(1/t3), (Optimal rate)

▶ Whether the gradient restart scheme has global linear convergence for
strongly convex problems is open (Su et al., 2016)
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ODE for gradient restarted NAG-c

Define the gradient restart time:

T gr(x0; f) = sup
{

t > 0 | ⟨∇f(X(u)), Ẋ(u)⟩ < 0, ∀u ∈ (0, t)
}

.

▶ Let E0 = 0 and r0 = x0, and

Ei+1 = T gr(ri; f) and ri+1 = Yi+1(Ei+1),

where Yi+1(t) solves NAG-ODE with x0 = ri.

▶ The gradient restarted NAG-ODE: Ẍ(t) + 3
t−τi

Ẋ(t) + ∇f(X(t)) = 0, for t ∈ (τi, τi+1] ,

X(τi) = ri, Ẋ(τi) = 0,
(3)

where τi :=
∑i

j=0 Ej , i ≥ 0
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Global R-linear convergence

Assumption (uniform unpper bound)
Given f ∈ Sµ,L, there exists T > 0 such that T gr(x0; f) ≤ T for all x0 ∈ Rn.

Theorem

Assume f ∈ Sµ,L and suppose the above assumption holds, then there exist
positive constants c1 > 0 and c2 ∈ (0, 1), which only depend on L, µ and T ,
such that

f(Xgr(t)) − f⋆ ≤ c1L∥x0 − x⋆∥2

2 e−c2t

where Xgr(t) is the solution of (3)

25 / 39



Validation of the assumption

Consider f(x) = 1
2 ⟨x, Λx⟩, Λ = diag(λ1, · · · , λn) and λ1 ≥ · · · ≥ λn > 0

▶ Define

H(t) = ⟨∇f(X(t), Ẋ(t)⟩ =
n∑

i=1
λiXi(t)Ẋi(t)

where Xi satisfies Ẍi + 3
t Ẋi + λXi = 0 with Xi(0) = x0,i

▶ Validating the uniform upper bound assumption is equivalent to

∃T > 0 independent with x0 and tx0 ∈ (0, T] such that H(tx0) ≥ 0

▶ Xi has the form
Xi(t) = 2x0,i

t
√

λi

J1(
√

λit)

where J1 is the Bessel function of the first kind with order 1
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H(t) =
n∑

i=1
Hi(t) with Hi(t) = −

4
√

λix
2
0,i

t2 J1(
√

λit)J2(
√

λit)

Define G(u) = πuJ1(u)J2(u), then Hi(t) = − 4x2
0,i

πt3 G(
√

λit)

Two key lemmas
▶ Asymptotic behavior of G:

|G(u) − cos(2u)| ≤ ϵ, ∀u > Tϵ

Leads to oscillation phenomenon when t is large

▶ Second form Kronecker’s theorem: Let 1, α1, . . . , αs ∈ R be linearly
independent over rationals, then the set

{frac(να)|ν ∈ N} = {(frac(να1), . . . , frac(ναs)) |ν ∈ N} ⊂ Rs

is dense in [0, 1]s

critical for the high dimensional case when
√

λi/
√

λj /∈ Q
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Consider the quadratic case

f(x) = 1
2 ⟨x, Ax⟩ + ⟨x, b⟩, (4)

where A ∈ Rn×n is a symmetric and positive definite matrix and b ∈ Rn.

Theorem
Let f be defined in (4), and Xgr(t) is the solution of the gradient restarted
NAG-ODE. Then, f(Xgr(t)) converges to f⋆ at a globally R-linear rate

▶ This result partially solves the open problem

▶ But technical difficult remains when extending this proof to the general
strongly convex case
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Non-smooth case

Model
min

x
F (x) = f(x) + g(x)

where f : L-smooth and µ-strongly convex; g: convex

The APG-c (Tseng, 2008; Beck and Teboulle, 2009) has
xk+1 := proxsg(yk − s∇f(yk))

βk+1 := (tk+1 − 1)/tk+2 with tk+2 satisfies Nesterov’s Rule

yk+1 := xk+1 + βk+1(xk+1 − xk)

where the proximal mapping proxg : Rn → Rn of g is defined by

proxg(y) := arg min
x∈Rn

{
g(x) + 1

2∥x − y∥2
2

}
, ∀y ∈ Rn
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Rate comparison

▶ GR+APG: the gradient restarted APG method;

▶ UBC: the condition that the restart intervals are uniformly bounded;

▶ †: we assume that tk satisfies the common choices.

Objective function f + g f + g

Algorithm APG-c
GR+APG-c

Original +UBC
∥xk − x∗∥ O(ρ̄k−1/k)† O(ρ̄k) O(ρ̂k), ρ̂ < ρ̄

Table: Rate comparison between the APG-c and gradient restarted APG if s < 1/L.

Remark: optimal restart interval depends on L, µ and f⋆ (Aujol et al., 2023)
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Multi-step extrapolation based methods

▶ Define rk = −∇f(Xk), Xk and Rk to be

Xk = [∆xk−mk
, ∆xk−mk+1, · · · , ∆xk−1]

Rk = [∆rk−mk
, ∆rk−mk+1, · · · , ∆rk−1]

▶ Anderson acceleration scheme

xk+1 = xk + skrk−(Xk + skRk)Γk

– Type-I: rk − RkΓk ⊥ Range(Xk)
– Type-II: rk − RkΓk ⊥ Range(Rk)

▶ Wide applications in computational physics, etc
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Restart: reset Xk = [ ] and Rk = [ ] if

▶ mk ≤ n

▶ |v⊤
k qk| ≥ τ |v⊤

k−mk+1qk−mk+1|, τ ∈ (0, 1)

▶ ∥rk∥2 ≤ η∥rk−mk
∥2, η ≥ 1

Local convergence results for restarted AM
▶ Type I AM:

θk

√
1 + γ2

kκ2
k min

p∈Pmk
p(0)=1

∥p(A)(xk−mk
− x∗)∥2 + κ̂O(∥xk−mk

− x∗∥2
2),

where γk ≤ L, κk ≤ 1/µ, θk = ∥I − βkA∥2 and A = ∇2f(x∗)

▶ Type II AM:

θk min
p∈Pmk
p(0)=1

∥p(A)rk−mk
∥2 + κ̂O(∥xk−mk

− x∗∥2
2).
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A remark

Important questions mentioned by recent review (100 pages)

▶ The adaptive choice of m

▶ Numerical and model improvements on extrapolation coefficients

▶ The convergence analysis when G is not contractive/nonsmooth

▶ The effects of restart technique
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Summary

▶ Global R-linear convergence of NAG-c in strongly convex setting
– Needs an ODE that consistent with the discretized algorithm

▶ Mathematical analysis for the gradient restarted NAG-C
– Fully solving the open problem in Su et al. (2016) requires new tools

▶ Local convergence rate of restarted Anderson acceleration
– Theoretical analysis for multi-step extrapolation methods is under

explored, such as limited-memory Anderson acceleration, restarted
Halpern iteration
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