Fronts in the wake of a parameter ramp:

 slow passage through folds and pitchforksHow does growth and heterogeneity control pattern formation?

How does growth and heterogeneity control pattern formation?

Growth and patterns

Examples in both natural and experimental systems

- Heterogeneities
- Growth mechanisms
- Quenching/solidification interfaces
- Deposition/reaction fronts

Light-sensing CDIMA

[Miguez, et.al, '12]
[Dolnik, et. al. '19]

Chemical precipitation

[Thomas et.al, '13]

Outline: Fronts and slow parameter ramps

Slow parameter ramps control front formation through various dynamic bifurcations, depending on ramp speed.

1. Motivating Examples: coherent structures in presence of slow ramps
2. Fronts in Allen-Cahn model
i) Moving parameter ramp: absolute/convective instability, and slow passage through a fold
ii) Stationary parameter ramp, Painlevé-II and slow passage through a pitchfork bifurcation
iii) Stability (in 2 slides)
iv) Gluing the two regimes: Painlevé-II with drift
3. Homogeneous Ramps: fronts and patterns
4. Outlook

Collaborators

Tasso Kaper
Boston University
Arnd Scheel
University of Minnesota
Theodore Vo
Monash University

Slow ramps and patterns

Biologically inspired models
[Hiscock \& Megason 2015]

Swift-Hohenberg

$u_{t}=-\left(1+\partial_{x}^{2}\right)^{2} u+\mu(x) u-u^{3}$
$\mu(x)=-\mu_{0} \tanh (\epsilon x)$

Ramp slope: ϵ

Front solutions: $u(x) \rightarrow \sqrt{4 \mu_{0} / 3} \cos \left(k_{x} x+\phi\right)+O\left(\mu_{0}\right) \quad$ as $x \rightarrow-\infty$

$$
u(x) \rightarrow 0 \text { as } x \rightarrow+\infty
$$

Swift-Hohenberg

$$
\begin{gathered}
u_{t}=-\left(1+\partial_{x}^{2}\right)^{2} u+\mu(x) u-u^{3} \\
\mu(x)=-\mu_{0} \tanh (\epsilon x)
\end{gathered}
$$

Ramp slope: ϵ

Front solutions: $u(x) \rightarrow \sqrt{4 \mu_{0} / 3} \cos \left(k_{x} x+\phi\right)+O\left(\mu_{0}\right) \quad$ as $x \rightarrow-\infty$

$$
u(x) \rightarrow 0 \text { as } x \rightarrow+\infty
$$

$\underline{c=0}$: Strain-Displacement relations, $\epsilon=\infty->$ [Weinburd, Morrissey, Scheel]

Swift-Hohenberg - moving ramp

$$
\begin{align*}
& u_{t}=-\left(1+\partial_{x}^{2}\right)^{2} u+\mu(x-c t) u-u^{3} \\
& \quad \mu(\xi)=-\mu_{0} \tanh (\epsilon \xi), \quad \xi:=x-c t
\end{align*}
$$

$-\operatorname{Re} \sqrt{4 \mu_{0} / 3}$

Front solutions with:

$u(\xi, \omega t) \rightarrow \sqrt{4 \mu_{0} / 3} \cos \left(k_{x} \xi+\omega t\right)+O\left(\mu_{0}\right)$, as $x \rightarrow-\infty$, frequency $\omega=c k_{x}$
$u(\xi, \omega t) \rightarrow 0$ as $x \rightarrow+\infty$
$u(\xi, \tau+2 \pi)=u(\xi, \tau)$

Swift-Hohenberg - moving ramp

$$
\begin{aligned}
& u_{t}=-\left(1+\partial_{x}^{2}\right)^{2} u+\mu(x-c t) u-u^{3} \\
& \quad \mu(\xi)=-\mu_{0} \tanh (\epsilon \xi), \quad \xi:=x-c t
\end{aligned}
$$

Front solutions with:
$-u$
$-\operatorname{Re} \sqrt{4 \mu_{0} / 3}$

$u(\xi, \omega t) \rightarrow \sqrt{4 \mu_{0} / 3} \cos \left(k_{x} \xi+\omega t\right)+O\left(\mu_{0}\right)$, as $x \rightarrow-\infty$, frequency $\omega=c k_{x}$
$u(\xi, \omega t) \rightarrow 0$ as $x \rightarrow+\infty$
$u(\xi, \tau+2 \pi)=u(\xi, \tau)$

$c>0$: wavenumber selection

First step: Allen-Cahn model

$$
\begin{gathered}
u_{t}=u_{x x}+\mu(x-c t) u-u^{3}, \quad(x, t) \in \mathbb{R} \times \mathbb{R}_{+} \\
\mu(\xi)=-\tanh (\epsilon \xi), \quad 0<\epsilon \ll 1
\end{gathered}
$$

Ramp speed: $c \geq 0 \quad$ Ramp slope: ϵ

Travelling wave solutions: $u(x, t)=u(x-c t), \quad \xi:=x-c t$

$$
\begin{aligned}
0 & =u_{\xi \xi}+c u_{\xi}+\mu u-u^{3}, \\
\mu_{\xi} & =-\epsilon\left(1-\mu^{2}\right)
\end{aligned}
$$

$\lim _{\xi \rightarrow-\infty} u(\xi)=1$,
$\lim _{\xi \rightarrow-\infty} \mu(\xi)=1$,

$$
\begin{aligned}
& \lim _{\xi \rightarrow+\infty} u(\xi)=0 \\
& \lim _{\xi \rightarrow+\infty} \mu(\xi)=-1
\end{aligned}
$$

Two generic regimes

$$
c=\widehat{O}_{\epsilon}(1), \quad 0<c<2
$$

- Fronts do not (!) take off at instantaneous stability transition $\mu=0$
- Leading order: front interface governed by μ transition between convective and absolute instability
- Slow ramp induces a further delay, controlled by slow passage through a fold (of eigenspaces)

$$
\text { (Technically } c \gg \epsilon^{1 / 3}, \quad c \ll \epsilon^{1 / 3} \text {) }
$$

1st Regime: $c=\mathcal{O}_{\epsilon}(1), \quad 0<c<2$

Absolute and convective instability $\quad v_{t}=v_{\xi \xi}+c v_{\xi}+\mu \nu=: L(\mu, c) v$

Convective instability $\mu<\mu_{c}$
Dispersion relation $\lambda=\nu^{2}+c \nu+\mu \Longrightarrow$ transition at $\mu_{c}=c^{2} / 4$.

Absolute instability $\mu>\mu_{c}$
set $\mu\left(\xi_{c}\right)=\mu_{c}$

1st Regime: $c=\mathcal{O}_{\epsilon}(1), \quad 0<c<2$

Absolute and convective instability $\quad v_{t}=v_{\xi \xi}+c v_{\xi}+\mu \nu=: L(\mu, c) v$

Convective instability $\mu<\mu_{c}$
Dispersion relation $\lambda=\nu^{2}+c \nu+\mu \Longrightarrow$ transition at $\mu_{c}=c^{2} / 4$.

Secondary Delay!

Theorem: Existence of transverse front solution for ϵ sufficiently small, $u(\xi)$ positive, monotone, with front interface location given by

$$
\mu_{\mathrm{fr}}=\frac{c^{2}}{4}+\Omega_{0}\left(1-\frac{c^{4}}{16}\right)^{\frac{2}{3}} \epsilon^{\frac{2}{3}}+\mathcal{O}(\epsilon \log (\epsilon))
$$

$\Omega_{0} \longrightarrow$ Smallest positive root of $J_{-1 / 3}\left(2 z^{3 / 2} / 3\right)+J_{1 / 3}\left(2 z^{3 / 2} / 3\right), \quad J_{n}->$ Bessel Function of 1 st kind

Heteroclinic intersection: $W^{\mathrm{u}}(0,0,-1) \cap W^{\mathrm{s}}(1,0,1)$

$$
\begin{aligned}
& 0=u_{\xi \xi}+c u_{\xi}+\mu u-u^{3}, \\
& \mu_{\xi}=-\epsilon\left(1-\mu^{2}\right) \\
& \longrightarrow
\end{aligned} \quad \begin{aligned}
& u_{\zeta}=v \\
& v_{\zeta}=c v-\mu u+u^{3} \\
& \mu_{\zeta}=\epsilon\left(1-\mu^{2}\right) .
\end{aligned}
$$

Geometric singular perturbation theory

Track W_{ϵ}^{u} and W_{ϵ}^{u} by studying $\epsilon=0$ phase portraits:

- $W_{0}^{u}=\cup_{\mu} W_{0}^{u u}$ for $\mu<0$ when $S_{0}=\{(0,0, \mu), \mu<0\}$ is normally hyperbolic
- $W_{0}^{S}=\cup_{\mu} W_{0}^{s s}$, for $\mu>0$ when $S_{+}=\{(\sqrt{\mu}, 0, \mu), \mu>0\}$ is normally hyperbolic

Fenichel theory $\Longrightarrow S_{0}$ and S_{+}persist as slow invariant manifolds for $0<\epsilon \ll 1$ with strong foliations creating W_{ϵ}^{u} and W_{ϵ}^{u}

Difficulty: Tracking invariant manifolds through non-normally hyperbolic point at ($0,0,0$)

Desingularization: Blow-up of line $(u, v)=0, \mu \in[-1,1]$

$$
\begin{aligned}
u_{\zeta} & =v \\
v_{\zeta} & =c v-\mu u+u^{3} \\
\mu_{\zeta} & =\epsilon\left(1-\mu^{2}\right) .
\end{aligned}
$$

$$
u=r \cos \phi, \quad v=r \sin \phi, \quad(r, \phi) \in \mathbb{R}_{+} \times[0,2 \pi)
$$

- $r=0$ dynamics give flow on 1-Grassmanian, induced by linearized dynamics @ $(u, v)=(0,0)$
- $\epsilon=0$: fold of equilibria curves S_{0}^{a}, S_{0}^{r} at $\mu=c^{2} / 4$, corresponds to real eigenspaces (in u, v dynamics) colliding in Jordan block yielding oscillatory dynamics
- $0<\epsilon \ll 1$: Geometric singular perturbation theory [Fenichel] \Longrightarrow slow-manifolds S_{ϵ}^{a} persists,

Projectivized Flow

Projectivized coordinate chart: $z=v / u+c / 2, u, \theta=\mu-c^{2} / 4$

$$
\begin{aligned}
z_{\zeta} & =-z^{2}-\theta+u^{2}, \\
u_{\zeta} & =(z+c / 2) u, \\
\theta_{\zeta} & =\epsilon\left(1-\left(\theta+c^{2} / 4\right)^{2}\right) .
\end{aligned}
$$

$U_{0}:=\{u=0\}$ is normally hyperbolic invariant manifold

Slow passage through a fold in U_{0} dynamics:

$$
0<\epsilon \ll 1
$$

Normal hyperbolicity and slow passage through a fold

[Krupa \& Szmolyan, 2001]:
Geometric blow-up of fold point in U_{0} dynamics

$$
\begin{aligned}
z_{\zeta} & =-z^{2}-\theta, \\
\theta_{\zeta} & \approx \epsilon
\end{aligned}
$$

Bifurcation delay of slow manifold S_{ϵ}^{a} is $\mathcal{O}\left(\epsilon^{2 / 3}\right)$

...use Fenichel theory, and normal hyperbolicity in the u-direction to locate heteroclinic intersection in neighborhood of U_{0}

Stationary case, $c=0$: slow passage through a pitchfork

$$
\begin{aligned}
& u_{\xi}=v \\
& v_{\xi}=-\mu u+u^{3} \\
& \mu_{\xi}=-\epsilon\left(1-\mu^{2}\right)
\end{aligned}
$$

Stationary case, $c=0$: slow passage through a pitchfork

$$
\begin{aligned}
u_{\xi} & =v \\
v_{\xi} & =-\mu u+u^{3} \\
\mu_{\xi} & =-\epsilon\left(1-\mu^{2}\right) \\
\epsilon_{\xi} & =0 .
\end{aligned}
$$

Quasi-homogeneous blow-up: $u=r \bar{u}, \quad v=r^{2} \bar{v}, \quad \mu=r^{2} \bar{\mu}, \quad \epsilon=r^{3} \bar{\epsilon}$,

Blows-up

$$
(0,0,0,0) \rightarrow S_{3}=\left\{r=0, \bar{u}^{2}+\bar{v}^{2}+\bar{\mu}^{2}+\bar{\epsilon}^{2}=1\right\}
$$

S_{0}^{+}- line of critical equilibria $(u, \nu, \mu, \epsilon)=(1,0, \mu, 0)$
S_{0}^{0} - line of critical equilibria $(u, v, \mu, \epsilon)=(0,0, \mu, 0)$

... track evolution of invariant manifolds using coordinate charts

$$
\begin{aligned}
& K_{1} \sim \bar{\mu}=1 \\
& K_{2} \sim \bar{\epsilon}=1 \\
& K_{3} \sim \bar{\mu}=-1
\end{aligned}
$$

Crucial part: rescaling chart $K_{2} \sim \bar{\epsilon}=1$

$u=r_{2} u_{2}, v=r_{2}^{2} v_{2}, \mu=r_{2}^{2} \mu_{2}, \epsilon=r_{2}^{3}$, and time re-scaling:

$$
\begin{aligned}
u_{2}^{\prime} & =v_{2} \\
v_{2}^{\prime} & =-\mu_{2} u_{2}+u_{2}^{3} \\
\mu_{2}^{\prime} & =-1+r_{2}^{4} \mu_{2}^{2} \\
r_{2}^{\prime} & =0 .
\end{aligned}
$$

$$
\begin{array}{ll}
u_{2}^{\prime}=v_{2} \\
\text { Restrict to sphere } \\
r_{2}^{\prime}=0
\end{array} \begin{aligned}
& v_{2}^{\prime}=-\mu_{2} u_{2}+u_{2}^{3} \\
& \mu_{2}^{\prime}=-1
\end{aligned} \quad \xrightarrow{r_{2}^{\prime}=0 .} \begin{aligned}
& u_{2}=\sqrt{2} \tilde{u}_{2}
\end{aligned} \quad \tilde{u}_{2}^{\prime \prime}=\xi_{2} \tilde{u}_{2}+2 \tilde{u}_{2}^{3} .
$$

[Hastings \& McLeod 1980] \longrightarrow Exists a unique connecting orbit \tilde{u}_{2}^{*} with

$$
\tilde{u}_{2}^{*}\left(\xi_{2}\right) \sim \sqrt{-\xi_{2} / 2}, \xi_{2} \rightarrow-\infty, \quad \tilde{u}_{2}^{*}\left(\xi_{2}\right) \sim \operatorname{Ai}\left(\xi_{2}\right), \xi_{2} \rightarrow+\infty,
$$

Rest of proof:

- Use monotonicity of the linearized operator $L_{0} w=w^{\prime \prime}-\left(\xi_{2}+3\left(u_{2}^{*}\right)^{2}\right) w$ to obtain transversality of Hastings-McLeod orbit u_{2}^{*} (new!)
- Use exponential trichotomies and inclination properties of K_{1}, K_{3} charts to conclude transverse intersection of nearby center-stable and center-unstable manifolds

Theorem: Existence of heteroclinic orbit for all $\epsilon>0$ sufficiently small, with inner asymptotics

$$
u^{*}(\xi)=u_{H M}(\xi)+\mathcal{O}\left(\epsilon^{2 / 3}\right), \quad|\xi| \leq \rho \epsilon^{-1 / 3}
$$

where $u_{H M}(\xi)=\sqrt{2} \epsilon^{1 / 3} w_{H M}\left(\epsilon^{1 / 3} \xi\right)$ and $w_{H M}$ is the unique
Hastings-McLeod connecting solution

Stability in one slide

Co-moving frame: $u_{t}=u_{\zeta \zeta}-c u_{\zeta}+\mu u-u^{3}$

$$
\mathscr{L}_{0} v=v_{\zeta \zeta}-c v_{\zeta}+\left(\mu-3\left(u^{*}\right)^{2}\right) v
$$

Spectral Stability

- Stable essential spectrum by study of asymptotic states

Point-spectrum:

- Conjugate $\mathscr{L}_{c} v:=\left(e^{-c \zeta / 2} \mathscr{L}_{0} e^{c \zeta / 2}\right) v=v_{\zeta \zeta}+\left(\mu-\frac{c^{2}}{4}-3\left(u^{*}\right)^{2}\right) v$,
- Apply Sturm-Liouville/maximal eigenvalue argument (with strictly positive eigenfunction) to show all spectrum has $\lambda<0$
- Note: no translational eigenvalue at zero!

Standard theory then allows one to conclude linear and nonlinear stability of front u^{*} in co-moving frame

Remark: Slow absolute spectrum work by [RG, de Rijk, 2022] or [Carter, Rademacher,Sandstede] should yield spectral stability in systems without monotonicity properties

Unstable non-monotonic fronts, $0<c<2$

Unstable non-monotonic fronts, $0<c<2$

$$
i 00
$$

Initial Data with small negative interval

$$
u^{\tau}(\xi, 0)= \begin{cases}1, & \xi<\left(c^{2} / 4-0.1\right) / \epsilon \\ \tau, & \left(c^{2} / 4-0.1\right) / \epsilon \leq \xi \leq\left(c^{2} / 4+0.1\right) / \epsilon \\ 0, & \xi>\left(c^{2} / 4+0.1\right) / \epsilon\end{cases}
$$

$$
\tau=-9.96975 \times 10^{-3}
$$

Gluing the two regimes: $c \sim 0, \quad c=\mathcal{O}_{\epsilon}(1), \quad 0<c<2$

Study the regime $c \sim \epsilon^{1 / 3}$, here transition occurs near $\mu=0$,
$\Longrightarrow \mu=-\tanh (\epsilon \xi) \sim-\epsilon \xi$

Critical scaling: $\quad u=\epsilon^{1 / 3} \tilde{u}, \quad \xi=\epsilon^{-1 / 3} \tilde{\xi}, \quad c=\epsilon^{1 / 3} \tilde{c}, \quad t=\epsilon^{-2 / 3} \tilde{t}$,

Singular sphere eqn. $\Longrightarrow \quad$ Painlevé-II with drift! $\quad 0=\tilde{u}_{\tilde{\xi} \tilde{\xi}}+\tilde{c} \tilde{u}_{\tilde{\xi}}-\tilde{\xi}_{\tilde{u}}-\tilde{u}^{3}$
Theorem: For all $\tilde{c} \in \mathbb{R}$, there exists unique monotone decreasing front $\tilde{u}_{*}(\tilde{x} ; \tilde{c})$ of $\left({ }^{*}\right)$ with

$$
\lim _{\tilde{\xi} \rightarrow-\infty}\left(\tilde{u}_{*}(\tilde{\xi} ; \tilde{c})-\sqrt{-\tilde{\xi}}\right)=0, \quad \lim _{\tilde{\xi} \rightarrow \infty} \tilde{u}_{*}(\tilde{\xi} ; \tilde{c})=0
$$

Gluing the two regimes: $c \sim 0, \quad c=\mathcal{O}_{\epsilon}(1), \quad 0<c<2$

Study the regime $c \sim \epsilon^{1 / 3}$, here transition occurs near $\mu=0$,
$\Longrightarrow \mu=-\tanh (\epsilon \xi) \sim-\epsilon \xi$

Critical scaling: $\quad u=\epsilon^{1 / 3} \tilde{u}, \quad \xi=\epsilon^{-1 / 3} \tilde{\xi}, \quad c=\epsilon^{1 / 3} \tilde{c}, \quad t=\epsilon^{-2 / 3} \tilde{t}$,

Singular sphere eqn. $\Longrightarrow \quad$ Painlevé-II with drift! $\quad 0=\tilde{u}_{\tilde{\xi} \tilde{\xi}}+\tilde{c} \tilde{u}_{\tilde{\xi}}-\tilde{\xi}_{\tilde{u}}-\tilde{u}^{3}$
Theorem: For all $\tilde{c} \in \mathbb{R}$, there exists unique monotone decreasing front $\tilde{u}_{*}(\tilde{x} ; \tilde{c})$ of $\left({ }^{*}\right)$ with

$$
\lim _{\tilde{\xi} \rightarrow-\infty}\left(\tilde{u}_{*}(\tilde{\xi} ; \tilde{c})-\sqrt{-\tilde{\xi}}\right)=0, \quad \lim _{\tilde{\xi} \rightarrow \infty} \tilde{u}_{*}(\tilde{\xi} ; \tilde{c})=0
$$

__ Allen-Cahn
.-.... P-II with drift

Outline of proof (in 1 slide)

Dynamics arguments (center manifold expansions, GSPT, blow-up....) :
(i) Exist front solution for each $\tilde{c} \ll-1$
(ii) Exist front solutions for each $\tilde{c} \gg 1$

Functional analysis:
(iii) Linearization $\mathscr{L}_{\tilde{c}}:=\partial_{\tilde{\xi} \tilde{\xi}}+\tilde{c} \partial_{\tilde{\xi}}-\left(\tilde{\xi}+3 \tilde{u}_{*}^{2}\right)$ is a negative operator
(iv) Implicit function theorem \Longrightarrow set of monotone fronts is open
(v) Compactness argument \Longrightarrow set of monotone fronts is closed
\Longrightarrow existence for all \tilde{c}
Remark: To complete analysis of Allen-Cahn from (*), would need a global heteroclinic gluing argument similar to above, $\left(^{*}\right)$ does give accurate ``inner" solution!
=-=-=- = \quad P-II with drift

Outlook

\square

都

\qquad
\qquad
2
\qquad

另
\square
？

0
\square

\square
\square

另
\square
\square

路
\qquad

\square
\qquad

Outlook

- Study fast limit $c \lesssim 2$

Outlook

- Study fast limit $c \lesssim 2$
- Extend analysis to pattern-forming systems: complex Ginzburg-Landau, Swift-

Hohenberg, Reaction-Diffusion, etc...

Outlook

- Study fast limit $c \lesssim 2$
- Extend analysis to pattern-forming systems: complex Ginzburg-Landau, SwiftHohenberg, Reaction-Diffusion, etc...
- Higher spatial dimensions

Outlook

- Study fast limit $c \lesssim 2$
- Extend analysis to pattern-forming systems: complex Ginzburg-Landau, SwiftHohenberg, Reaction-Diffusion, etc...
- Higher spatial dimensions
- Homogeneous quenches: $\mu=\mu(t)=\tanh (\epsilon t), \epsilon t$

Outlook

- Study fast limit $c \lesssim 2$
- Extend analysis to pattern-forming systems: complex Ginzburg-Landau, SwiftHohenberg, Reaction-Diffusion, etc...
- Higher spatial dimensions
- Homogeneous quenches: $\mu=\mu(t)=\tanh (\epsilon t), \epsilon t$

Outlook

- Study fast limit $c \lesssim 2$
- Extend analysis to pattern-forming systems: complex Ginzburg-Landau, SwiftHohenberg, Reaction-Diffusion, etc...
- Higher spatial dimensions
- Homogeneous quenches: $\mu=\mu(t)=\tanh (\epsilon t), \epsilon t$

Homogeneous quenches: fronts

$$
u_{t}=u_{x x}+\mu(t) u-u^{3}, \quad \mu(t)=\tanh (\epsilon t), \quad \text { or } \mu(t)=\epsilon t
$$

Naive Prediction: $x_{f}(t) \approx \int_{0}^{t} 2 \sqrt{\mu(s)} d s$

Joint with B. Hosek, M. Avery, and 2 REU students: Odalys Garcia-Lopez, Ethan Shade, [in progress]

Analysis of Green's Function of linearization $v_{t}=v_{x x}+\mu(t) v: x_{f}(t) \approx 2\left(t \int_{0}^{t} \mu(s) d s\right)^{1 / 2}$
Refined predictions using half-line analysis with Dirchlet BC and moving frame $y=x-x_{f}(t)>0$:

$$
\begin{cases}v_{t} & =v_{y y}+x_{f}^{\prime}(t) v_{y}+\mu(t) v, \quad y>0 \\ v & =0, \quad y=0\end{cases}
$$

Homogeneous quenches: patterns

$$
A_{t}=(1+i \alpha) A_{x x}+\mu(t) A-(1+i \beta) A|A|^{2}
$$

Linearized Green's Function analysis, $v_{t}=(1+i \alpha) v_{x x}+\mu(t) v$,

- $|v|=c \quad x_{f}(t) \approx 2\left(\left(1+\alpha^{2}\right) t \int_{0}^{t} \mu(s) d s\right)^{1 / 2}$
- Measure frequency $\arg v=\omega_{f}(t)=\alpha \mu(t)$
- Wavenumber prediction at leading edge through dispersions relation

$$
\omega_{f}(t)=(\beta-\alpha) k_{f}(t)^{2}+x_{f}^{\prime}(t) k-\beta \mu(t)
$$

- Burgers' modulation eqn. for bulk wavenumber dynamics

Thanks!

- RG, T.J. Kaper, A. Scheel, T. Vo, Fronts in the wake of a parameter ramp: slow passage through pitchfork and fold bifurcations, SIADS '23.
- RG, T.J. Kaper, A. Scheel, Fronts in the wake of a parameter ramp: coherent structures in the critical scaling, Stud. App. Math ' 24
- RG, A. Scheel, Growing patterns, Nonlinearity '23
- RG, B. Hosek, M. Avery, O. Garcia-Lopez, E. Shade Invasion fronts under slow homogeneous quenching, in progress
The authors acknowledge the partial support of the NSF during this project

