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the growing boundary, as seen in Fig. 2a for a radial growth rate
of 0.50 mm h!1. For slow growth rates, the resulting stripes are
oriented perpendicular to the the growing boundary, as seen
in Fig. 2c for a growth rate of 0.10 mm h!1. Note that there are
also areas of inverted spots (black hexagonal spots with white
borders) in Fig. 2c. This is due to experimental irregularities
such as slight inhomogeneities in the CFUR gel. However, no
concentric ring patterns are observed at the slower growth rates.

For intermediate growth rates (typically rates between 0.35
and 0.15 mm h!1) we observe a striped pattern that is inter-
mediate between concentric rings and perpendicular patterns.
The stripes are oriented across the circular growing domain,
similar to the perpendicular patterns. However, instead of
extending radially from the center of the domain in many
different directions, the stripes form parallel to one another,
with most of the stripes growing in the same direction. An
example of this type of pattern is shown in Fig. 2b for a growth
rate of 0.20 mm h!1. These similarly-oriented stripes indicate
the transition between the striped concentric rings and the
perpendicular patterns shown in Fig. 2a and c, respectively. For
all of the patterns shown in Fig. 2, time-lapse videos of their
growth are provided in the ESI.†

The experimental results shown in Fig. 2 are supported by
numerical simulations using the Lengyel–Epstein model. The
results and space–time plots are shown in Fig. 3. Notably, the
perpendicular stripe pattern in Fig. 3c does not show any
inverted spot patterns, as the simulations lack any inhomo-
geneity present in experiments. In addition, the stability of the
final patterns was tested using the numerical simulations. As

long as a constant light forcing (W = 1.5) was used at the edge of
the domain, the resulting patterns remained stable indefinitely.
Time-lapse videos of the simulated pattern development are
also provided in the ESI.†

The final pattern morphologies seen in Fig. 2 and 3 show
good agreement with the one-dimensional axial growth patterns
observed by Mı́guez et al.21 The concentric rings that are a result of
the fast growth rates are the growing circular domain equivalent to
the stripes that form parallel to the axial one-dimensional growing
boundary. Likewise, for slow growth rates, both the one-dimensional
axial growth21 and the two-dimensional linear radial growth pre-
sented here show patterns forming perpendicular to the growing
boundary. We suggest that the parallel-stripe pattern shown in
Fig. 2b and 3b is the two-dimensional radial growth equivalent to
the oblique stripes shown in ref. 21, as the stripes grow perpendi-
cular to parts of the growing boundary and parallel to other parts.
There is fair quantitative agreement between the two-dimensional
linear radial growth and Mı́guez et al.’s one-dimensional axial
growth,21 as the axial growth rates used by Mı́guez are about twice
the radial growth rates in the experiments presented in Fig. 2. If we
were to consider the growth rate of the diameter of the circular
domains, the growth rates in the two works would be similar. This
indicates that radial growth in two dimensions is analogous to axial
growth in one dimension.

3.2 Growth modes

In addition to differing final pattern morphologies, we also
observe three different Turing pattern growth modes depend-
ing on the domain radial growth rate: outer ring addition,

Fig. 2 Turing patterns on a radially growing domain for fast, intermediate, and slow growth rates. Final Turing pattern (left) and a space–time plot of the
experiment (right) are shown. Each box around the final Turing patterns is 7.66 mm " 7.66 mm. The red lines indicate the location where the space–time plot
information was taken. Radial growth rates (total growth time) are (a) 0.50 mm h!1 (416 min), (b) 0.20 mm h!1 (1041 min), and (c) 0.10 mm h!1 (1386 min).
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Growth and patterns
Examples in both natural and experimental systems   
• Heterogeneities 

• Growth mechanisms 

• Quenching/solidification interfaces 

• Deposition/reaction fronts
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Figure 13. Topography diagram for Ge after Xe+ ion beam
sputtering for different ion energies and ion incidence angles. The
symbols represent the experimental data: —hillock structures,
△—smooth surfaces, ♦—perpendicular-mode ripples,
⊗—parallel-mode ripples + dots, ×—parallel-mode ripples,
!—columnar structures, ◦—dots.

However, there are experimental conditions under which
completely new phenomena are observed. One is the
formation of perpendicular mode ripples with a wavelength
approximately two times larger compared to the wavelength
of parallel mode ripples. Moreover, there is a transition from
ripples to dots with increasing ion energy on Ge surfaces. The
topographical transition between different patterns with ion
incidence angle will be further substantiated in 4.2.

4.2. Time evolution of ripple and dot patterns

In this section results about the evolution of the characteristic
wavelength λ of nanostructures and the surface roughness w

with erosion time (equivalent to the ion fluence ") for different
ion species on Si and Ge will be presented. The ion fluence
equals the total number of ions hitting the surface per unit
area. For a given ion flux the ion fluence " is equivalent to
the sputter time, or with the thickness of the removed layer.
All experiments were conducted under conditions under which
well-ordered ripple and dot structures are formed.

4.2.1. Wavelength evolution. A representative example of
evolving ripple patterns, with increasing ion fluence on Si, is
given in figure 14. The AFM image in figure 14(a) reveals
a parallel-mode ripple topography from the beginning of the
sputtering process with a distinct wavelength, as observed in
the FFT image in figure 14(b). However, the rather broad
radial and angular distribution of the first spot reveal that
ripples have a rather poor lateral ordering (alignment) and
size homogeneity. With increasing ion fluence the ordering
of ripples increases (figures 14 (c) and (d)). The AFM
image shows that ripples are interrupted by defects (denoted
by the circle in figure 14(c)), producing two new ripples or
coalescence of two ripples into one. The number of defects
decreases with ", leading to almost perfectly ordered ripples
with approximately 2 defects per 1 µm2, shown in figure 14(c).

Figure 14. Surface topography on Si after Kr+ ion beam erosion
with Eion = 1200 eV and αion = 15◦; (a) " = 3.4 × 1017 cm−2

(sputter time 180 s), (c) " = 1.3 × 1019 cm−2 (sputter time 7200 s).
The solid circle in (c) indicates an existing defect between ripples.
(b), (d) Corresponding Fourier images.

Figure 15. Ion fluence dependence of wavelength λ and normalized
system correlation length ζ/λ for ripples on Si with Eion = 1200 eV
and αion = 15◦ for different ion species.

Quantitatively, the results for the evolution of λ and
ζ/λ with ion fluence for Ar+, Kr+ and Xe+ ion species are
summarized in figure 15. The ripple wavelength of λ ∼ 50 nm
is constant while ζ/λ increases with ion fluence. At the
beginning (up to an ion fluence " = 2 × 1018 cm−2) there

9

Figure 1.1: Shape and alignment of patterns arising in Langmuir-Blodgett transfer of a homogeneous L-↵–

dipalmitoylphosphatidylcholine Langmuir transfer; reproduced with permission from [5]. Copyright 2007, ACS.”

monolayer (right). Liesegang rings and helices formed through recurrent precipiation in tube-in-tube experiments

Cu2+
(aq) + CrO2

4(aq) ! CuCrO4(s) in 1% agarose gel, schematic of relation to 2d-patterning, and numerical simuila-

tions; reproduced with permission from [26], Copyright 2013, APS.

where µ(x) = �sign (x), c > 0, (x, y) 2 R2, subscripts denote partial derivatives, and we dropped the tilde for
ease of notation. Our focus will be on stationary solutions, ut = 0, and we will only briefly comment on relevant
solutions with nontrivial time dependence. Throughout, we will be thinking of c > 0 small as a perturbation
parameter, starting from the zero speed case.

We are not aware of a systematic study of directional quenching processes in the mathematical literature. Our
work here is motivated to a large extent by phase separation processes in recurrent precipitation [20, 7, 25, 26],
studies of patterning in LangmuirBlodgett transfer [5, 18, 28], and numerical studies in [9].

Both experimentally and numerically, a plethora of patterns can be observed depending on initial conditions and
parameter values. One particular question of interest there is the orientation of interfaces: depending on system
parameters and initial conditions interfaces parallel, perpendicular, as well as slanted relative to the quenching
boundary {x = 0} are observed. Our results can roughly be understood as establishing the existence of stripes
perpendicular to the interface and ruling out slanted stripes. Stripes parallel to the interface were found in an
asymptotic analysis in [17] for the Cahn-Hilliard equation. We rule out the creation of stripes parallel to the
interface in the Allen-Cahn equation.

In the case of zero speed, solutions to the Cahn-Hilliard equation solve

�u+ µ(x)u� u
3 = ⌫, (1.4)

where ⌫ is usually referred to as the chemical potential. If we require zero mass, u ! 0 as x ! 1, we find ⌫ = 0
and we recover the Allen-Cahn problem at c = 0

�u+ µ(x)u� u
3 = 0, (1.5)

As a consequence, much of the present work treats both cases simultaneously. We note here that the unbalanced
cases, ⌫ 6= 0, as well as more generally unbalanced or even non-odd nonlinearities pose significant obstacles to
the analysis here and likely give rise to di↵erent phenomena.

We remark here that somewhat related problems arise in the context of ecology, where a change of stability of the
trivial state encodes a spatial boundary to the habitat of a species, that is, to the region, where small populations
can grow and spread. Much recent work has focused on the e↵ect of shifting habitats due to say climate change,
and the question whether species can follow the spatial shift; see for instance [1, 2, 3, 19, 27] and the references
therein. As we explained above, the main thrust of the present work is towards the characterization of patterns
in the wake of such shifting boundaries, slightly di↵erent from the major questions arising in the context of
ecology.

2

Ion bombardment of alloys
Chemical precipitation

was due to the fact that the average spacing of the system
was larger than usual in these experiments (see below),
but the reason of this fact itself (the larger average spac-
ing) was unclear, except that it occurred only in samples
in which the experimental imperfections happened to be
particularly weak.

The transition from symmetrical to zigzag patterns
was studied as follows. An almost uniform zigzag pattern
was obtained in a large (about 1-mm wide) eutectic grain
after a 4 h pulling at V ! 0:5 !ms"1. It was then sub-
mitted to a sequence of four V jumps separated by 30 min

pullings at constant V. We first decreased V to 0.39 and
0:3 !ms"1 and then reincreased it to 0.39 and
0:5 !ms"1. The first three steps of the sequence are
illustrated in Fig. 4. We extracted the local values of ",
the amplitude A, and the wavelength L of the zigzag
modulation by fitting the skeletonized image of the la-
mellae with a sine function over some space periods in
different regions of the micrographs. We assumed that the
control parameter of the instability is "="m, as it is for the
1D instabilities. The measured values of A and L are
plotted as a function of "="m in Fig. 5. Despite the
dispersion of the data, it is clear that there exists a
threshold "c, located between 0:85"m and 0:95"m, below
which no zigzag pattern was observed, and above which A
increased as "="m increased. This is a clear sign of a
bifurcation, although the character (supercritical or
slightly subcritical) of this bifurcation could not be de-
termined. The existence of a region without zigzags at the
lowest values of V in Fig. 4 does not necessarily mean
that the bifurcation was subcritical. The zigzag pattern
actually exhibited a slow global (upward) drift along the
y axis, at a velocity vd of about 0:05 !ms"1 for V !
0:5 !ms"1. Most probably, this was not an intrinsic
property of the pattern, but the consequence of a thermal
bias, which was comparable to tan"1#vd=V$ ! 5:7% in
this experiment. This external forcing can explain the
persistent absence of zigzags up to a certain distance
(which increases as "" "c decreases) from the colder
wall, as observed in Figs. 4(b) and 4(c). Finally, Fig. 5(b)
shows that L steeply increased when V was diminished
and redecreased with some hysteresis as V was switched
back to its initial value. This is a characteristic behavior
of the zigzag instability, as studied, for instance, in
Rayleigh-Bénard convection, which originates from its
‘‘diffusive’’ character, i.e., from the fact that its amplifi-
cation coefficient ! and wave vector k are related by ! !
"D#!$k2 at small k, where ! ! #"" "c$="m is the dis-

FIG. 4. Top views of zigzag patterns (a) V ! 0:5 !ms"1.
Solidification time: 4 h; (b) V ! 0:39 !ms"1. Solidification
time: 30 min; (c) V ! 0:3 !ms"1; solidification time: 30 min.
Sample thickness 300 !m. Horizontal width 440 !m.
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FIG. 5. (a) Amplitude A and (b) wavelength L of the zigzags
vs the reduced spacing "="m. Filled (open) symbols: data
obtained by decreasing (increasing) V. The error bars represent
the experimental dispersion.

FIG. 3. View of a pattern after 10 min at V ! 0:5 !ms"1, and
35 min at V ! 1 !ms"1 in a 300-!m-thick sample. Lamellar
domains are separated by disordered regions containing topo-
logical defects, and rods. Horizontal width 440 !m.
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Quenching/solidifcation in Eutectic 
Lamellar Crystals

with constant velocity. Thus, the illuminated zone (with no
patterns) decreases its size at the expense of the nonillumi-
nated region (in which patterns can arise).

All the experiments shown here are performed in the
absolutely unstable domain [35,36], which means that the
velocity of the moving boundary of illumination (!) is
smaller than the spontaneous spreading velocity of the
Turing pattern, estimated as !spon ! 1:8" 0:1 mm=h for
the concentrations used. Under these circumstances, the
pattern always arises close to the moving boundary.
Ongoing experiments in the convective unstable domain
reveal other interesting behavior, which is outside the
scope of this Letter.

Quasi-one-dimensional experiments are performed to
investigate the dependence of the wavelength of the pattern
on the growth velocity in a simple configuration. For this
quasi-one-dimensional experiment we use a concentration
of #MA$0 % 1 mM, which produces a pattern composed of
hexagonal spots with an intrinsic wavelength value of " %
0:51" 0:05 mm.

The geometry of the nonilluminated region in which
patterns can form is carefully selected. In fact, the system

is two dimensional but the length of one (transverse)
dimension is short and fixed to be slightly larger than
1 full intrinsic wavelength of the Turing pattern. The other
(longitudinal) dimension of the nonilluminated domain is
continuously growing.

This geometry only allows the development of a single
array of spots as shown in Fig. 2. The results of these quasi-
one-dimensional experiments reveal that the wavelength of
the Turing spot pattern depends on the moving boundary
velocity. Figure 2(d) shows that the wavelength decreases
with the growth velocity.

In the two-dimensional experiment, the fixed transverse
dimension of the nonilluminated area is significantly larger
than the intrinsic wavelength of the Turing patterns, and
therefore the Turing patterns can develop in a full two-
dimensional space. The concentration of malonic acid used
in the two dimensional experiments is #MA$0 % 1:2 mM,
which spontaneously produces stripes without preferential
ordering [21] and with " % 0:54" 0:05 mm.

Stripes parallel to the growing axis arise in the system
for relatively small values of the growth velocity [! %
0:21" 0:01 mm=h in Figs. 3(a) and 3(b)]. The wavelength
of the stripes is equal to the intrinsic wavelength of the
spontaneously formed labyrinthine stripes, " % 0:54"
0:05 mm. The length of the stripes increases with the speed
of the moving boundary.
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FIG. 2. Turing pattern formation in a quasi-one-dimensional
system with moving boundary. (a)–(c) Snapshots of Turing
patterns taken at intervals of 2 h. The shaded (nonilluminated)
domain is growing from left to right. The velocity of the moving
boundary is ! % 0:62" 0:02 mm=h The bar in (c) corresponds
to 1 mm. (d) Plot of the wavelength versus the moving boundary
velocity for the experiments. (e) Wavelength vs velocity for the
numerical simulations in the one-dimensional system.

FIG. 3. Turing pattern formation in a two-dimensional system
with moving boundary. Snapshots at two different times for
different velocities of the moving boundary: (a),(b) ! %
0:21 mm=h; (c),(d) ! % 0:43 mm=h; and (e),(f ) ! %
1:26 mm=h. The boundary between the illuminated and non-
illuminated zones moves from left to right. Size of each snap-
shot: 3:8& 6 mm.
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Outline: Fronts and slow parameter ramps

Slow parameter ramps control front formation through various dynamic bifurcations, depending on ramp speed. 

1. Motivating Examples: coherent structures in presence of slow ramps 
2. Fronts in Allen-Cahn model 

i) Moving parameter ramp: absolute/convective instability, and slow passage through a fold 
ii) Stationary parameter ramp, Painlevé-II and slow passage through a pitchfork bifurcation 
iii) Stability (in 2 slides) 
iv) Gluing the two regimes: Painlevé-II with drift 

3.  Homogeneous Ramps: fronts and patterns 
4. Outlook
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Experiments on Wave Number Selection in Rotating Couette-Taylor Flow

David S. Cannel. l. , M. A. Dominguez-Lerma, and Guenter Ahlers
DePartment of Physics, University of California, Santa Barbara, Santa Barbara, California 93106

{Beceived 7 February 1983)

Experimental results are reported for the selection of axial wavelengths of Taylor
vortices in a system where the Reynolds number, R, is "ramped spatially from above
to below the critical value, R, , for the onset of vortex flow. It is found that a sufficient-
ly slow ramp connecting the supercritical region {containirg vortices) to a subcritical
region {ofpurely azimuthal Qow) results in the selection of a unique wavelergth. A more
rapid ramp results in a small R-dependent band of allowed wavelengths which grows in
width as R R, from above.

PACS numbers: 47.20.+m, 05.70.Ln

In nonlinear dissipative systems subjected to
an external stress, R, a transition frequently oc-
curs to a state of reduced symmetry having a spa-
tial structure with a characteristic wavelength.
Examples are Rayleigh-Bernard convection, ' Tay-
lor vortex flow, ' ' certain chemical reactions, '
flame-front propagation, ' and crystal growth. '
The equations governing systems of infinite spa-
tial extent usually possess a continuum of linearly
stable solutions, ' corresponding to a band of wave
numbers having a width which varies as E"' (E
=—R/R, —1, and R, is the value of the stress pa-
rameter at the transition). Imposition of nonperi-
odic boundary conditions may reduce the width of
the allorved band to order e,' "but for the investi-
gated cases a finite band remains. Such finite
systems generally select discrete states from the
band of stable solutions, with the selected wave
numbers dependent upon the particular boundary
conditions imposed.
For Taylor vortex flow (TVF) between concen-

tric rotating cylinders, the multiplicity of stable
states was first explored in detail by Coles' and
Snyder. " They observed TVF to be stable for a
range of axial wavelengths when the Reynolds
number, R, was above R„ the value for vortex
formation, but below the value where azimuthal
waves appear. The observable range of wave-
lengths"" is roughly equal to that expected theo-
retically, "but the factors determining the wave-
length selected in a particular experiment are not
understood. It has been suggested quite recent-
ly, ' "however, that a gradual axial variation of
E from positive to negative values (a spatial ramp)
could permit a continuous wavelength adjustment
mechanism to become effective, which might re-
sult in the selection of a unique although possibly
e-dependent state. The question of the existence
and nature of such selection processes is largely
unexplored. One might expect that their nature

ik
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FIG. 1. Schematic diagram of the apparatus {not to
scale).

would have a strong influence on the development
of temporally nonperiodic (or turbulent) behavior
in large real systems. " More specifically, we
would expect a "weak" selection mechanism to
render the primary modes of the system relative-
ly sensitive to the influence of noise and other
degrees of freedom of the system.
To investigate wavelength selection experimen-

tally, we used apparatus in which the gap between
the cylinders tapered linearly from supercritical
to subcritical values as shown in Fig. 1. The
working fluid was a 30%%uD solution of glycerol in
water by volume with 0.6%%uo by volume of Kalliro-
scope suspension added for flow visualization.
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Taylor-Couette Flow 
[Cannell 1983]

parameter choice, and further investigation is required to
comment on the robustness of stripe orientation more generally.
Despite the diversity and complexity of the different mecha-

nisms studied, our work shows that three types of stripe
orientation appear to be common to many mechanisms in
certain parameter regimes and are consistent with a much
simpler model. However, this does not rule out there being
more complicated mechanisms to orient stripes that are not
captured by Equation 1. For example, we found parameter re-
gimes in the chlorite-iodide-malonic acid (CIMA) system where
stripes are oriented by oscillations, and in the two-component
reaction-diffusion system where stripes are oriented by trav-
eling waves (see Supplemental Information, section S1C).
However, these are qualitatively distinct mechanisms and
thus should be distinguishable by specifically designed biolog-
ical experiments.

CONCLUSIONS

In this article, we have addressed the question of how Turing-like
stripes are oriented. By analyzing a genericmodel of stripe orien-
tation that applies given a limited set of assumptions, we have
found three qualitatively distinct types of orientation mechanism.
These can be concisely summarized by rewriting Equation 1 as

vf

vt
= aðxÞf# L

!
v2x ; v

2
y

"
f# df3 + hðxÞ: (Equation 17)

Here, (1) hðxÞ is a production gradient, (2) aðxÞ is a parameter
gradient, and (3) Lðv2x ; v

2
yÞ represents anisotropies. We find that

(1) production gradients orient stripes perpendicular to the
gradient; (2) parameter gradients orient stripes parallel to the
gradient; and (3) anisotropies orient stripes along the direction
of the anisotropy.

Overall, this analysis provides an intuition for understanding
general features of stripe orientation. It can explain and unify ex-
isting results that have simulated specific models. It can also be
readily applied to new biological scenarios and can be used to
critically evaluate existing hypotheses. We discuss these fea-
tures in the context of limb development in the case study
section. We thus hope that the results in this article provide an
intuition for the simple and universal features of stripe orientation
amidst the complexities and variety of the underlying biology.
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and one table and can be found with this article online at http://dx.doi.org/
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1984a) reveal common features of stripe orientation that are consistent with the simpler model presented here.
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ut = − (1 + ∂2
x)2u + μ(x)u − u3

μ(x) = − μ0 tanh(ϵx)

0 2 4 6 8 10
-14

-12

-10

-8

-6

-4

-2

δ = ϵ−1

ϵ = ∞

ϵ = 0.1

: Strain-Displacement relations,  -> [Weinburd, Morrissey, Scheel] ->c = 0 ϵ = ∞

— Re 4μ0/3

— u

Wavelength: 2π/kx

Front solutions: as  
 as 

u(x) → 4μ0/3 cos(kxx + ϕ) + O(μ0) x → − ∞
u(x) → 0 x → + ∞

  

 up( ,k) g( ) 

 
 

Ws
+(0)

Wuu
-( ,k)

Wcu
-

Ramp slope: ϵ



Swift-Hohenberg - moving ramp

ut = − (1 + ∂2
x)2u + μ(x − ct)u − u3

μ(ξ) = − μ0 tanh(ϵξ), ξ := x − ct
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Increasing c —
>

c = 0

— Re 4μ0/3
— u

Front solutions with: 
 as , frequency  

 as  

u(ξ, ωt) → 4μ0/3 cos(kxξ + ωt) + O(μ0), x → − ∞ ω = ckx

u(ξ, ωt) → 0 x → + ∞

u(ξ, τ + 2π) = u(ξ, τ)

  —> [RG, Scheel, ’18, ’23]ϵ = + ∞



Swift-Hohenberg - moving ramp

ut = − (1 + ∂2
x)2u + μ(x − ct)u − u3

μ(ξ) = − μ0 tanh(ϵξ), ξ := x − ct
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Increasing c —
>

c = 0

ϵ = 0.01

ϵ = + ∞

: wavenumber selectionc > 0

— Re 4μ0/3
— u

Front solutions with: 
 as , frequency  

 as  

u(ξ, ωt) → 4μ0/3 cos(kxξ + ωt) + O(μ0), x → − ∞ ω = ckx

u(ξ, ωt) → 0 x → + ∞

u(ξ, τ + 2π) = u(ξ, τ)

  —> [RG, Scheel, ’18, ’23]ϵ = + ∞



First step: Allen-Cahn model
ut = uxx + μ(x − ct)u − u3, (x, t) ∈ ℝ × ℝ+

μ(ξ) = − tanh(ϵξ), 0 < ϵ ≪ 1

ϵ = 0.0025

  
u = 0 temporally unstable,        
μ > 0, ξ < 0

Ramp speed:      Ramp slope:  

Travelling wave solutions: ,       
  

 

c ≥ 0 ϵ

u(x, t) = u(x − ct) ξ := x − ct

lim
ξ→−∞

u(ξ) = 1, lim
ξ→+∞

u(ξ) = 0

lim
ξ→−∞

μ(ξ) = 1, lim
ξ→+∞

μ(ξ) = − 1

   , 
 u = 0 temporally stable        

μ < 0, ξ > 0

u ∼ μ

0 = uξξ + cuξ + μu − u3,

μξ = −ϵ(1 − μ2)



Two generic regimes

 
- Fronts do not (!) take off at instantaneous stability 
transition   
- Leading order: front interface governed by  transition 
between convective and absolute instability 
- Slow ramp induces a further delay, controlled by slow 
passage through a fold (of eigenspaces)

c = 𝒪ϵ(1), 0 < c < 2

μ = 0
μ

 
- Diffusive tail of front into  region 
- Slow passage through a pitchfork bifurcation 

controls front interface 
- Hastings-McLeod connecting solution of Painlevé-II 

equation gives “inner” solution

c ∼ 0
μ < 0

(Technically  )c ≫ ϵ1/3, c ≪ ϵ1/3



1st Regime:  c = 𝒪ϵ(1), 0 < c < 2
Absolute and convective instability vt = vξξ + cvξ + μv =: L(μ, c)v

—> decreasing c —>

ξ

v v

ξ

—> increasing  —>μ

Dispersion relation   transition at .               set λ = ν2 + cν + μ ⟹ μc = c2/4 μ(ξc) = μc

Convective instability μ < μc
Absolute instability μ > μc
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1st Regime:  c = 𝒪ϵ(1), 0 < c < 2
Absolute and convective instability vt = vξξ + cvξ + μv =: L(μ, c)v

—> decreasing c —>

ξ

v v

ξ

—> increasing  —>μ

Dispersion relation   transition at .               set λ = ν2 + cν + μ ⟹ μc = c2/4 μ(ξc) = μc

Convective instability μ < μc
Absolute instability μ > μc

Secondary Delay!





Theorem:  Existence of transverse front solution for  sufficiently small,  positive, monotone, 
 with front interface location given by 

                                          

 —> Smallest positive root of ,    -> Bessel Function of 1st kind 

ϵ u(ξ)

μfr =
c2

4
+ Ω0 (1 −

c4

16 )
2
3

ϵ
2
3 + 𝒪(ϵ log(ϵ))

Ω0 J−1/3(2z3/2/3) + J1/3(2z3/2/3) Jn



Heteroclinic intersection:   Wu(0,0, − 1) ∩ Ws(1,0,1)
ζ = − ξ0 = uξξ + cuξ + μu − u3,

μξ = −ϵ(1 − μ2)

uζ = v

vζ = cv − μu + u3

μζ = ϵ(1 − μ2) .

μu

v
μ=1μ=-1

u = 1

u = 0

Wu(0,0, − 1)

Ws(1,0,1)



μ
v

μ=1μ=-1

μ<μc

μ=μc μ>μcμ=0

ϵ = 0

Geometric singular perturbation theory 

Track  and  by studying  phase portraits: 
-   for  when  is normally hyperbolic 
-  , for  when  is normally hyperbolic 

Fenichel theory   and  persist as slow invariant manifolds for  with strong foliations 
creating  and  

Difficulty: Tracking invariant manifolds through non-normally hyperbolic point at 

Wu
ϵ Wu

ϵ ϵ = 0
Wu

0 = ∪μ Wuu
0 μ < 0 S0 = {(0,0,μ), μ < 0}

Ws
0 = ∪μ Wss

0 μ > 0 S+ = {( μ,0,μ), μ > 0}
⟹ S0 S+ 0 < ϵ ≪ 1

Wu
ϵ Wu

ϵ

(0,0,0)

S+

S0



Desingularization: Blow-up of line (u, v) = 0, μ ∈ [−1,1]
uζ = v

vζ = cv − μu + u3

μζ = ϵ(1 − μ2) .
u = r cos ϕ, v = r sin ϕ, (r, ϕ) ∈ ℝ+ × [0,2π)

r

ϕr = 0

μ = − 1
μ = 1

•  dynamics give flow on 1-Grassmanian, induced by linearized dynamics @  

• : fold of equilibria curves   at , corresponds to real eigenspaces (in  dynamics) colliding in 
Jordan block yielding oscillatory dynamics 

• : Geometric singular perturbation theory [Fenichel]  slow-manifolds  persists,

r = 0 (u, v) = (0,0)
ϵ = 0 Sa

0 , Sr
0 μ = c2/4 u, v

0 < ϵ ≪ 1 ⟹ Sa
ϵ

μ

Sa
ϵ

Wu(0,0, − 1)
μ = μc



Projectivized Flow
Projectivized coordinate chart: z = v/u + c/2, u, θ = μ − c2/4

zζ = − z2 − θ + u2,
uζ = (z + c/2)u,

θζ = ϵ(1 − (θ + c2/4)2) .

u z

=-c/2

Θ

Θ=Θ- Θ=0 Θ=Θ+

U0

S *

z+

0 < ϵ ≪ 1

ϵ = 0

-c/2

Θ=Θ- Θ=0Θ=-c2/4 Θ=Θ+

Slow passage through a fold in  dynamics:U0

 is normally 
hyperbolic invariant manifold
U0 := {u = 0}

μ = μc = c2/4

u

v z

r = 0



Normal hyperbolicity and slow passage through a fold

u

θz
z=-

( gu(u; ))

(- ,gs(θ; ),θ)

s(z*,u*,θ+)

Wu(z+,

S a

[Krupa & Szmolyan, 2001]: 
Geometric blow-up of fold point in  dynamics
—> 
Bifurcation delay of slow manifold  is 

U0

Sa
ϵ 𝒪(ϵ2/3)

…use Fenichel theory, and normal hyperbolicity in the -direction to locate heteroclinic 
intersection in neighborhood of 

u
U0

zζ = − z2 − θ,
θζ ≈ ϵ .



Stationary case, c = 0: slow passage through a pitchfork
uξ = v

vξ = − μu + u3

μξ = − ϵ(1 − μ2)

μu
v

μ=1μ=-1

μ<0

μ=0 μ>0

See also [Haberman ’80, Mareé ’96, Krupa/Szmolyan ’01] for related but different studies

ϵ = 0



Stationary case, c = 0: slow passage through a pitchfork
uξ = v

vξ = − μu + u3

μξ = − ϵ(1 − μ2)
ϵξ = 0.

Quasi-homogeneous blow-up:  ,u = ru, v = r2v, μ = r2μ, ϵ = r3ϵ

Blows-up 
(0,0,0,0) → S3 = {r = 0, u2 + v2 + μ2 + ϵ2 = 1}

μ u,v

=0

S0+

S00

S0
-

 - line of critical equilibria  
 - line of critical equilibria 

S+
0 (u, v, μ, ϵ) = (1,0,μ,0)

S0
0 (u, v, μ, ϵ) = (0,0,μ,0)

… track evolution of invariant manifolds using coordinate charts 
 
 

K1 ∼ μ̄ = 1
K2 ∼ ϵ̄ = 1
K3 ∼ μ̄ = − 1

μ > 0

μ < 0



Crucial part: rescaling chart      K2 ∼ ϵ̄ = 1

u′ 2 = v2

v′ 2 = − μ2u2 + u3
2

μ′ 2 = − 1 + r4
2 μ2

2

r′ 2 = 0.

r2 = 0

u′ 2 = v2

v′ 2 = − μ2u2 + u3
2

μ′ 2 = − 1
r′ 2 = 0.

ũ′ ′ 2 = ξ2ũ2 + 2ũ3
2 .u2 = 2ũ2

Painlevé’s 2nd Equation!!!

[Hastings & McLeod 1980] —> Exists a unique connecting orbit  with 
 

ũ*2
ũ*2 (ξ2) ∼ −ξ2/2, ξ2 → − ∞, ũ*2 (ξ2) ∼ Ai(ξ2), ξ2 → + ∞,
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Restrict to sphere

, and time re-scaling:u = r2u2, v = r2
2v2, μ = r2

2 μ2, ϵ = r3
2

μ u,v

=0

S0+

S00

S0
-

“Inner solution” for front



Rest of proof:

• Use monotonicity of the linearized operator  to obtain transversality of Hastings-McLeod 
orbit  (new!) 

• Use exponential trichotomies and inclination properties of  charts to conclude transverse intersection of 
nearby center-stable and center-unstable manifolds

L0w = w′ ′ − (ξ2 + 3(u*2 )2)w
u*2

K1, K3

μ u,v

=0

S0+

S00

S0
-

Theorem: Existence of heteroclinic orbit for all  
sufficiently small, with inner asymptotics 

 

where  and  is the unique 
Hastings-McLeod connecting solution 

ϵ > 0

u*(ξ) = uHM(ξ) + 𝒪(ϵ2/3), |ξ | ≤ ρϵ−1/3,

uHM(ξ) = 2ϵ1/3wHM(ϵ1/3ξ) wHM



Stability in one slide
Co-moving frame: ut = uζζ − cuζ + μu − u3

Linearize
ℒ0v = vζζ − cvζ + (μ − 3(u*)2)v

•  Stable essential spectrum by study of asymptotic states 

Point-spectrum: 

• Conjugate  

• Apply Sturm-Liouville/maximal eigenvalue argument (with strictly positive eigenfunction) to show all spectrum has 
  

• Note: no translational eigenvalue at zero! 

Standard theory then allows one to conclude linear and nonlinear stability of front  in co-moving frame

ℒcv := (e−cζ/2ℒ0ecζ/2)v = vζζ + (μ −
c2

4
− 3(u*)2)v,

λ < 0

u*

Spectral Stability

Remark: Slow absolute spectrum work by [RG, de Rijk, 2022] or [Carter, Rademacher,Sandstede] 
should yield spectral stability in systems without monotonicity properties



Unstable non-monotonic fronts, 0 < c < 2
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Unstable non-monotonic fronts, 0 < c < 2
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Initial Data with small negative interval 

uτ(ξ,0) =
1, ξ < (c2/4 − 0.1)/ϵ
τ, (c2/4 − 0.1)/ϵ ≤ ξ ≤ (c2/4 + 0.1)/ϵ
0, ξ > (c2/4 + 0.1)/ϵ .

τ = − 9.969 × 10−3 τ = − 9.96975 × 10−3



Gluing the two regimes: c ∼ 0, c = 𝒪ϵ(1), 0 < c < 2
Study the regime , here transition occurs near   c ∼ ϵ1/3 μ = 0,
⟹ μ = − tanh(ϵξ) ∼ − ϵξ

Critical scaling:     u = ϵ1/3ũ, ξ = ϵ−1/3ξ̃, c = ϵ1/3c̃, t = ϵ−2/3t̃,

Singular sphere eqn.     Painlevé-II with drift!      ⟹ 0 = ũξ̃ξ̃ + c̃ũξ̃ − ξ̃ũ − ũ3 ( * )

Theorem: For all , there exists unique monotone decreasing front  of (*) with 

 

 

c̃ ∈ ℝ ũ*(x̃; c̃)

lim
ξ̃→−∞ (ũ*(ξ̃; c̃) − −ξ̃) = 0, lim

ξ̃→∞
ũ*(ξ̃; c̃) = 0.

ξ̃



Gluing the two regimes: c ∼ 0, c = 𝒪ϵ(1), 0 < c < 2
Study the regime , here transition occurs near   c ∼ ϵ1/3 μ = 0,
⟹ μ = − tanh(ϵξ) ∼ − ϵξ

Critical scaling:     u = ϵ1/3ũ, ξ = ϵ−1/3ξ̃, c = ϵ1/3c̃, t = ϵ−2/3t̃,

Singular sphere eqn.     Painlevé-II with drift!      ⟹ 0 = ũξ̃ξ̃ + c̃ũξ̃ − ξ̃ũ − ũ3 ( * )

Theorem: For all , there exists unique monotone decreasing front  of (*) with 

 

 

c̃ ∈ ℝ ũ*(x̃; c̃)

lim
ξ̃→−∞ (ũ*(ξ̃; c̃) − −ξ̃) = 0, lim

ξ̃→∞
ũ*(ξ̃; c̃) = 0.
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Allen-Cahn
P-II with drift

ξ



Outline of proof (in 1 slide)
Dynamics arguments (center manifold expansions, GSPT, blow-up….) : 

(i) Exist front solution for each  
(ii)Exist front solutions for each  

Functional analysis: 
(iii) Linearization  is a negative operator 

(iv) Implicit function theorem  set of monotone fronts is open 
(v) Compactness argument  set of monotone fronts is closed 

 existence for all 

c̃ ≪ − 1
c̃ ≫ 1

ℒc̃ := ∂ξ̃ξ̃ + c̃∂ξ̃ − (ξ̃ + 3ũ2
*)

⟹
⟹

⟹ c̃

Remark: To complete analysis of Allen-Cahn from (*), would need a global heteroclinic gluing 
argument similar to above, (*) does give accurate ``inner” solution!

ξf(c)

P-II with drift 
inner solution



Outlook
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Outlook
• Study fast limit c ≲ 2

• Extend analysis to pattern-forming systems: complex Ginzburg-Landau, Swift-

Hohenberg, Reaction-Diffusion, etc…

• Higher spatial dimensions

• Homogeneous quenches: μ = μ(t) = tanh(ϵt), ϵt



Homogeneous quenches: fronts

Joint with B. Hosek, M. Avery, and 2 
REU students: Odalys Garcia-Lopez, 
Ethan Shade, [in progress]

ut = uxx + μ(t)u − u3, μ(t) = tanh(ϵt),  or μ(t) = ϵt

(a) Unfrozen Front Location and Height over Time (b) Frozen Front Location and Height over Time

Figure 3.3: Locations and heights of the unfrozen (a) and frozen (b) fronts over time.

(a) Unfrozen front profile after 500 seconds (b) Frozen font profile after 1500 seconds

Figure 3.4: Locations and profiles of the unfrozen (a) & (c) and frozen (b) & (d) fronts.

Like in the µ(t) = tanh(✏t) case, we notice that both �1 and �32 predict a negative position at early time.
Again, this is not an issue however because these models are meant for t >> 1.

noticed that �1 predicts a negative position at early time. This is not an issue however because it simply im-
plies we are missing a constant vertical-shift term in �1. This missing constant term can be found by measuring
the di↵erence of �(t) and �1.

20

Naive Prediction: xf(t) ≈ ∫
t

0
2 μ(s)ds

Analysis of Green’s Function of linearization :  vt = vxx + μ(t)v xf(t) ≈ 2(t∫
t

0
μ(s)ds)1/2

Refined predictions using half-line analysis with 
Dirchlet BC  and moving frame :  y = x − xf(t) > 0 {vt = vyy + x′ f(t)vy + μ(t)v, y > 0

v = 0, y = 0

Figure 3.5: Position of Front over Time

While we did not see that any of the �n(t)’s showed a constant error against �(t), we saw that �1(t) showed
semi-constant error against the linear-approximation of the position. However, if we ran for more time than
1500 seconds and found the respective correction of �(t), we could see better behavior against �(t). Still, �1(t)
appears to do a su�cient job at predicting position and velocity for the ut = uxx + ✏t(u� u

2) equation.

(a) Comparison with � (b) Zoomed Comparison with �

Figure 3.6: Comparing each model with the calculated position, �(t) =
R t

0
⌘(⌧)d⌧ over 0  t  1500

21

See [Hamel,Nolen, Roquejoffre, Ryzhik, ’13] 



Homogeneous quenches: patterns
At = (1 + iα)Axx + μ(t)A − (1 + iβ)A |A |2

Linearized Green’s Function analysis,  

•   

•Measure frequency   

•Wavenumber prediction at leading edge through dispersions relation 

 

 

vt = (1 + iα)vxx + μ(t)v,

|v | = c xf(t) ≈ 2((1 + α2)t∫
t

0
μ(s)ds)1/2

arg v = ωf(t) = αμ(t)

ωf(t) = (β − α)kf(t)2 + x′ f(t)k − βμ(t)

(a) Contour Plot of  amp(x, t) (b) Contour Plot of  der(x, t)

(c) Measurement Location at t = 250 (d) Measurement Location at t = 250

(e) Measurement Location at t = 500 (f) Measurement Location at t = 500

Figure 4.5: Locations of Wave Number Evaluation when Shift = 6.

31

•Burgers’ modulation eqn. for bulk 
wavenumber dynamics

Wavenumber

Re A

t ↗
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