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Summary
 “Reservoir computing” can predict time-series.
 This may be because “autonomous reservoir ℱ𝑊𝑊out” become 

conjugate with the system 𝑓𝑓 behind the time-series.
 In the proof, classical dynamical system theory plays an essential 

role.
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What is Reservoir Computing?

 A kind of machine learning (not deep but recurrent neural net)
 Originated with

[Jaeger '01] The “echo state” approach to analysing and training 
recurrent neural networks

  [Maass et al. ‘02] Real-time computing without stable states: 
A new framework for neural computation based on perturbations

 A reservoir itself is a dynamical system.
 RC deal with time series data well.



Time-series prediction
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Step1: Listening phase (𝑛𝑛 = 0, … ,𝑇𝑇)
Generate 𝑟𝑟𝑛𝑛 𝑛𝑛=0

𝑇𝑇 ⊆ ℝ𝑁𝑁 by
𝑟𝑟𝑛𝑛+1 = 𝐹𝐹(𝑥𝑥𝑛𝑛, 𝑟𝑟𝑛𝑛) .

Step2: Training 
Compute 𝑊𝑊out to minimize the MSE between 𝑊𝑊out𝑟𝑟𝑛𝑛 𝑛𝑛=𝑇𝑇0

𝑇𝑇 and 

𝑥𝑥𝑛𝑛 𝑛𝑛=𝑇𝑇0
𝑇𝑇 , i.e., 𝑊𝑊out = argmax

𝑊𝑊∈ℝ𝑑𝑑×𝑁𝑁
∑𝑛𝑛=𝑇𝑇0
𝑇𝑇 𝑊𝑊𝑟𝑟𝑛𝑛 − 𝑥𝑥𝑛𝑛 2

2

data 𝑥𝑥𝑛𝑛 𝑛𝑛≥0 ⊆ ℝ𝑑𝑑

*generated by 𝑓𝑓:ℝ𝑑𝑑 ↺
reservoir map 𝐹𝐹:ℝ𝑑𝑑 × ℝ𝑁𝑁 → ℝ𝑁𝑁

Algorithm

target

𝑥𝑥𝑛𝑛

𝑟𝑟𝑛𝑛

reservoir

𝑊𝑊out



Step3: Prediction phase (𝑛𝑛 ≥ 𝑇𝑇 + 1)
Generate 𝑟𝑟𝑛𝑛 𝑛𝑛≥𝑇𝑇⊆ ℝ𝑁𝑁 by

𝑟𝑟𝑛𝑛+1 = 𝐹𝐹 𝑊𝑊o𝑢𝑢𝑢𝑢𝑟𝑟𝑛𝑛, 𝑟𝑟𝑛𝑛
=:ℱ𝑊𝑊out(𝑟𝑟𝑛𝑛)

and get 𝑦𝑦𝑛𝑛 ≔ 𝑊𝑊out𝑟𝑟𝑛𝑛 𝑛𝑛≥𝑇𝑇+1 as prediction.

data 𝑥𝑥𝑛𝑛 𝑛𝑛≥0 ⊆ ℝ𝑑𝑑

*generated by 𝑓𝑓:ℝ𝑑𝑑 → ℝ𝑑𝑑

reservoir map 𝐹𝐹:ℝ𝑑𝑑 × ℝ𝑁𝑁 → ℝ𝑁𝑁

ℱ𝑊𝑊out:ℝ𝑁𝑁 ↺
: autonomous system
(“autonomous reservoir”)

Algorithm
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What we want to prove?
“Thm.”  𝑑𝑑 ≪ 𝑁𝑁, 𝑀𝑀 ⊆ ℝ𝑑𝑑:𝐶𝐶1cpt. mfd., 
𝑓𝑓:𝑀𝑀 ↺: target (diffeo. & 𝐶𝐶1 str. stb.), 
𝐹𝐹:𝑀𝑀 × ℝ𝑁𝑁 → ℝ𝑁𝑁: reservoir map (𝐹𝐹: strongly fiber contracting).
We also suppose the [Hypothesis] (explained later).  
Let 𝑊𝑊ou𝑢𝑢 ∈ ℝ𝑑𝑑×𝑁𝑁 be the “output” obtained by successful learning.

Then the autonomous reservoir ℱ𝑊𝑊out 𝑟𝑟 ≔ 𝐹𝐹 𝑊𝑊ou𝑢𝑢𝑟𝑟, 𝑟𝑟 :ℝ𝑁𝑁 ↺

and 𝑓𝑓 are topologically conjugate.



How can we prove?
Outline of prf.
 Step1(listening phase)

∃𝑈𝑈 ⊆ ℝ𝑁𝑁 , ∃𝛾𝛾:𝑈𝑈 → 𝑀𝑀 (ideal output), s.t., 𝑓𝑓~𝐶𝐶1ℱ𝛾𝛾・・・(*)
 Step2(training)

[Hypothesis] 𝑑𝑑𝐶𝐶1 𝛾𝛾,𝑊𝑊out ≪ 1

 Step3(prediction phase)

ℱ𝛾𝛾~𝐶𝐶0 ℱ𝑊𝑊out・・・(**)

 By 𝑓𝑓~𝐶𝐶1ℱ𝛾𝛾 (*) & ℱ𝛾𝛾~𝐶𝐶0 ℱ𝑊𝑊out (**) , we obtain  𝑓𝑓~𝐶𝐶0 ℱ𝑊𝑊out !

Where ℱ𝛾𝛾 𝑟𝑟 ≔ 𝐹𝐹 𝛾𝛾 𝑟𝑟 , 𝑟𝑟 .
*c.f. ℱ𝑊𝑊out 𝑟𝑟 ≔ 𝐹𝐹 𝑊𝑊out𝑟𝑟, 𝑟𝑟

Notations
・𝑓𝑓~𝐶𝐶0𝑔𝑔: 𝑓𝑓 and 𝑔𝑔 are top. conj.
・𝑓𝑓~𝐶𝐶1𝑔𝑔: 𝑓𝑓 and 𝑔𝑔 are 𝐶𝐶1 conj.

target ideal reservoir

ideal reservoir

actual reservoir



Key ideas
 Step1(listening phase)

∃𝑈𝑈 ⊆ ℝ𝑁𝑁 , ∃𝛾𝛾:𝑈𝑈 → 𝑀𝑀 (ideal output), s.t., 𝑓𝑓~𝐶𝐶1ℱ𝛾𝛾・・・(*)

 𝑓𝑓,𝐹𝐹 :𝑀𝑀 × ℝ𝑁𝑁 ↺ has ∃! 𝐶𝐶1 𝑠𝑠 ≔ 𝑠𝑠 𝑓𝑓,𝐹𝐹 :𝑀𝑀 → 𝑌𝑌.

 Moreover, 𝑠𝑠 is an embedding (especially, inj.) .
*To be precise, this is a generic property. 
*We can prove it by using Whitney/Takens’s technique.

 Because 𝑠𝑠 is inj., 𝛾𝛾: 𝑠𝑠 𝑀𝑀 → 𝑀𝑀 can be defined.

 To prove 𝑓𝑓~𝐶𝐶1ℱ𝛾𝛾 is easy.

invariant section



 Step2(training)
[Hypothesis] 𝑑𝑑𝐶𝐶1 𝛾𝛾,𝑊𝑊out ≪ 1

 Step3(predicting phase)

ℱ𝛾𝛾~𝐶𝐶0 ℱ𝑊𝑊out・・・(**)

 By [Hypothesis], 𝑑𝑑𝐶𝐶1 ℱ𝛾𝛾,ℱ𝑊𝑊out ≪ 1 is easily obtained.

 After some arguments, we obtain ℱ𝛾𝛾: 𝐶𝐶1str. stb.
*This stability is inherited from 𝑓𝑓.

 ℱ𝛾𝛾~𝐶𝐶0 ℱ𝑊𝑊out follows from the definition of str. stb.

Key ideas
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Numerical example:
Hyperbolic Toral Automorphism

 A very GOOD system! (diffeomorphic, structurally stable, 
ergodic w.r.t. Lebesgue measure, ....)

 A system on 𝕋𝕋2 → some numerical technics are required
(𝕋𝕋2 ≅ ℝ2/2𝜋𝜋𝜋2 ≅ 𝑆𝑆1 × 𝑆𝑆1 ℝ4）

Integer matrix 𝐴𝐴 ：det 𝐴𝐴 = 1，|eigen value| ≠ 1
HTA = an auto. on torus induced from 𝑥𝑥 ↦ 𝐴𝐴𝑥𝑥

ex) 𝐴𝐴 = 2 1
1 1 , 𝑓𝑓𝐴𝐴 𝑥𝑥 ≔ 𝐴𝐴𝑥𝑥 (mod 1)

(Arnold’s cat map)
① ②

③ ④
①①

② ②
③

④

③
④

𝑓𝑓𝐴𝐴



Time series prediction (HTA)



Listening phase

1st principle：24.214 % 
2nd principle：22.307 % 
3rd principle：19.827 % 
4th principle：17.756 % 
5th principle：3.306 % 

Predicting phase 
Lyapunov 
spectrum

of reservoir

1 0.962338
2 -0.96136
3 -3.10875
4 -3.51422
5 -4.33653
6 -4.78709

≈ ±0.962423 …
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Summary
 RC can predict time-series.
 This may be because autonomous reservoir ℱ𝑊𝑊out become 

conjugate with the system 𝑓𝑓 behind the time-series.
 In the proof, classical dynamical system theory plays an essential 

role.



Discussion
 [Hypothesis] 𝑑𝑑𝐶𝐶1 𝛾𝛾,𝑊𝑊out ≪ 1 may                 in general. 
 I believe 𝑑𝑑𝐶𝐶0 𝛾𝛾,𝑊𝑊out ≪ 1 is more reasonable and similar 

theorem holds even in this setting. 
*In this case, the conclusion may become not “top. conj.” but “semi-conj.”.

This may be proved by using pseudo orbit tracing arguments.

 The condition “𝑓𝑓: diffeo., 𝐶𝐶1str. stb.” is                   to explain 
typical numerical examples (e.g., logistic map).
 I want a theory including the logistic map case. (feature work)

not holds

too strong
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