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“Manifold” in Data Science

Interpolation

(Image from Maple16)
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“Manifold” in Data Science

High-dimensional analogue of 2 dimensional surface in RN

(Image from Sebastian Goldt, Marc Mézard, Florent Krzakala, and Lenka
Zdeborová)
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Manifold : Local-to-Global Principle
Locally Euclidean Space (M,U) with collection of local data U = {(Uα,Φα)}

Modeling Spacetime by Einstein’s theory of relativity

Local-to-Global principle
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Is it really best formulation for dataset?

PCA for MNIST with 2 most important dimensions.
(created by Vijayasaradhi Indurthi)
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Neural Network in Data Science

f = σ2 ◦ L2 ◦ σ1 ◦ L1

Network models gain tremendous success in describing datasets

In classification task, last layer is index-max function.
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Linear Logical Function : Local chart
Motivated from Neural Network.
Example: Directed graph G & Set of affine maps L = {lv1 , lv2 , lv3}
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Linear Logical Function : Local chart

Measurable set D ⊂ Rn, Finite set T .

Directed finite graph G without cycle

Affine maps

L = {lv : v is a vertex with more than one outgoing arrows}

Definition

fG ,L : D → T is a linear logical function of (G , L) if lv ∈ L are affine linear
functions whose chambers in D are one-to-one corresponding to the
outgoing arrows of v .
(G , L) is called a linear logical graph.

Inkee Jung Boston University Evolutions of Logifold Structures on Measure Spaces May 28 - 31 6 / 14



Linear Logical Function : Local chart

Measurable set D ⊂ Rn, Finite set T .
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L = {lv : v is a vertex with more than one outgoing arrows}

Definition

fG ,L : D → T is a linear logical function of (G , L) if lv ∈ L are affine linear
functions whose chambers in D are one-to-one corresponding to the
outgoing arrows of v .
(G , L) is called a linear logical graph.

Linear logical function as “local chart” of dataset.
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Linear logical function in mathematical logic :
Definable function.

Definition (Lou van den Dries)

A structure S on the real line consists of a boolean algebra Sn of subsets
of Rn for each n = 0, 1, . . . , such that

{x ∈ Rn : xi = xj}, 1 ≤ i < j ≤ n ∈ Sn.

Closed under Cartesian product.

Closed under projection (A ∈ Sn+1 → π(A) ∈ Sn).

{(x , y) ∈ R2 : x < y} ∈ S2.

For instance:

Φ := {(x , y) ∈ X × Y : ϕ(x , y)}
πY (Φ) = {y ∈ Y : ∃xϕ(x , y)}

A structure S : Geometric description of “definable sets” in
mathematical logic.
A structure S is o-minimal if every definable subset is finite unions of
intervals and points.
A semilinear set of Rn : Finite unions of

{x ∈ Rn : f1(x) = · · · = fk(x), g1(x) > 0, . . . , gl(x) > 0}
with affines fi and gj .
Semilinear set forms o-minimal structure.

Theorem

A function f : D → T for a finite set T where D ⊂ Rn is semilinear if and
only if it is a linear logical function.

Proof of idea : Systematically construct one-to-one correspondence
between the two categories of functions.
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Universality of Linear logical function

D ⊂ RN with µ(D) < ∞, where µ is the Lebesgue measure.

T is finite

Theorem

For any (Lebesgue) measurable function f : D → T , we have a linear
logical function that approximates to f .

Corollary

There exists a family L of linear logical functions Li : Di → T , where
Di ⊂ D and Li ≡ f |Di

, such that D \
⋃
i
Di is measure zero set.
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Logifold
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Logifold

Definition

A linear logifold is a pair (X ,U) such that

X is a set equipped with a σ-algebra and a corresponding measure µ.

U is a collection of pairs (Ui , ϕi ).

Ui are subsets of X such that µ(Ui ) > 0 and
⋃

i Ui = X .

ϕi are isomorphisms (of measure spaces) between Ui and the graphs
of linear logical functions fi : Di → Ti .

Di ⊂ Rni are a measurable subsets and Ti are finite sets.
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Example of logifolds

M ⊂ R× {0, 1}
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Example of logifolds

M ⊂ R× {0, 1}

Machine learning on {Logifolds}

? −→ {Logifolds}
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Motivation : Framed Quiver Moduli Space
Q : Directed graph
E (Q) : Arrows of Q
V (Q) : Vertices of Q

v1 v2 v3
a b

A3 Quiver

Theorem (Nakajima(‘96), Reineke(‘08))

Framed quiver moduli space is smooth compact variety.

Theorem (Lau & Jefferys‘21))

Framed quvier moduli space has the natural kähler metric.

Framed A3 moduli space −→ {Logifolds}.
Problem : Trivial gradient
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Motivation : Non-archimedean analysis
Introduce formal parameter T to logistic functions.

lim
T→∞

1

1 + e−Tx
=

{
1 (x > 0)

0 (x < 0)
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Motivation : Non-archimedean analysis
Introduce formal parameter T to logistic functions.
For T > 1,

σT (x) :=
1

1+e−Tx .

ReLuT (x) := logT (1 + T x).

SoftMaxT (x1, . . . , xn) :=
(

T
xj∑

i T
xi
: j = 1, . . . , n

)
Smooth, non-trivial gradient in each T

∂σT (x)

∂x
=

TeTx

(eTx + 1)
2

∂ReLuT (x)

∂x
= σT (x)

D (SoftMaxT ) =
[
logT · (SoftMaxT )j · (δij − T xi )

]
i ,j
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Fuzzy linear logical function and fuzzy linear logifold

Definition

A fuzzy linear logifold is a tuple (X ,P,U), where (X ,U) be a logifold and

U is a collection of tuples (ρi , ϕi , fi )

ρi : X → [0, 1] describe fuzzy subsets of X with
∑

i ρi ≤ 1X

Ui = {x ∈ X : ρi (x) > 0} be the support of ρi

In classification problems,

X = Rn × T

P : X → [0, 1] describes how likely an element of Rn × T is classified
as ‘yes’

ρi be the ‘weight’ (or ‘certainty’) of the corresponding linear logical
interpretation.
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Experimental Results : Evolution of fuzzy linear logifolds

Dataset : CIFAR10
Model structures : Version 1 and 2 of ResNet20 and ResNet56

Certainty Threshold Accuracy Coverage

0 0.8316 ± 0.0160 1
0.9526 0.8316 ± 0.0160 0.6728 ± 0.0507
0.9975 0.8316 ± 0.0160 0.1130 ± 0.0484

Table: Logifold with single chart.

Certainty Threshold Accuracy Coverage

0 0.9304 1
0.9526 0.9334 1
0.9975 0.9290 0.6965

Table: Evolved Logifold.
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