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Symmetry-breaking arises when systems have certain symmetries,
but interesting attractors (or states) do not share these.



Symmetry breaking
P elementary particle physics
» coupled chemical oscillators
» networks of phase oscillators
» chimeras
» pattern formation
» synaptically coupled neurons, ......

Symmetry-breaking arises when systems have certain symmetries,
but interesting attractors (or states) do not share these.

Many known symmetry breaking states are close to symmetric
states, such as in-phase or anti-phase



Symmetry breaking
P elementary particle physics
» coupled chemical oscillators
» networks of phase oscillators
» chimeras
» pattern formation
» synaptically coupled neurons, ......

Symmetry-breaking arises when systems have certain symmetries,
but interesting attractors (or states) do not share these.

Many known symmetry breaking states are close to symmetric
states, such as in-phase or anti-phase

Strong symmetry breaking: substantially different amplitudes or
qualitatively different types of oscillations.



Symmetry breaking
P elementary particle physics
» coupled chemical oscillators
» networks of phase oscillators
» chimeras
» pattern formation
» synaptically coupled neurons, ......

Symmetry-breaking arises when systems have certain symmetries,
but interesting attractors (or states) do not share these.

Many known symmetry breaking states are close to symmetric
states, such as in-phase or anti-phase

Strong symmetry breaking: substantially different amplitudes or
qualitatively different types of oscillations.

Awal, Bullara, Epstein Chaos 2019; Awal and Epstein PRE 2020;
Awal and Epstein PRE 2021.



Symmetry breaking
P elementary particle physics
» coupled chemical oscillators
» networks of phase oscillators
» chimeras
» pattern formation
» synaptically coupled neurons, ......

Symmetry-breaking arises when systems have certain symmetries,
but interesting attractors (or states) do not share these.

Many known symmetry breaking states are close to symmetric
states, such as in-phase or anti-phase

Strong symmetry breaking: substantially different amplitudes or
qualitatively different types of oscillations.

Awal, Bullara, Epstein Chaos 2019; Awal and Epstein PRE 2020;
Awal and Epstein PRE 2021.

Awal, Epstein, Kaper, Vo: Journal of Nonlinear Science 2024
(April) volume 34, article 53



OlJC-Ell-plN,Edentical, fast-slow oscillators

3 examples: Lengyel-Epstein oscillators; van der Pol oscillators;
Koper oscillators

Classical in-phase and anti-phase rhythms (symmetric states)
Strong symmetry breaking rhythms: SAO-LAO
Key folded nodes and folded saddles: ““traffic officers”

Explosion of strong symmetry breaking limit cycle canards
(SAO-LCC)

Strong symmetry breaking rhythms: SAO-MMO, MMO-MMO,
LAO-MMO

Key folded nodes and folded saddles: “traffic officers”
Conclusions and current work

Abbreviations: SAO = small-amplitude oscillation, LAO =
large-amplitude oscillation, MMO = mixed-mode oscillation.



Coupled identical van der Pol relaxation oscillators
Vi = Qv — hvf’ — wy,
Wl :E(V1—9+d(W2—W1)),

Vo= vy — hvg’ — Wy,

WQZE(V2—6—d(W2—W1)).

(a)

9 patches on critical manifold; folded singularities are on Ly 4+, L5 4.



Strong symmetry breaking SAO-LAO rhythms (vdP)
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The Lengyel-Epstein oscillatolllr (CIMA and CDIMA)
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The Lengyel-Epstein oscillator (CIMA and CDIMA)
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Canard point at (uc, Ve, ac) = <\/;, %,5 g) (singular limit)

2c(8) = 5\/5 + 58+ O(F?) for 0 < f < 1
Limit Cycle Canards: transition f. p. — relaxation oscillation

(Note: 5\/§ = 6.454972...)



Coupled identical Lengyel-Epstein oscillators

. duivi
h=a—u — + dy(u2 — 1),
1 1 1_{_“% u(u 1)
. uivi
— — d,(vo —
Vi ,B(Ul 1+u%+ V(v V1)>,
dusr vy

—dy(up — u1),

6 patches on the critical manifold: attracting S,, repelling S,,
Ss.
Folded singularities on the fold curves.



Folded singularities of coupled LE oscillators

Folded singularities for a = 6.55,d, = 0.1, and d, = 0.5.

FNs are key traffic officers, and ~s and ~, are key lane markings

Coupled identical van der Pol oscillators have similar types folded
singularities on- and off- the symmetry axis.



Classical in-phase and anti-phase oscillations (LE)
In-phase (IP) rhythms: IP SAO-SAO, IP LCC-LCC, IP' LAO-LAO.

Anti-phase (AP) rhythms: AP SAO-SAO, AP LCC-LCC, AP
LAO-LAO.

27




Strong symmetry breaking SAO-LAO (LE: ;)

Oscillator 1: two SAOs, oscillator 2: one LAO, per period.
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Orbit (black): close to 7s (blue, double arrows) of the FN.

FN = key mechanism responsible for strong symmetry breaking
Oscillator 1 remains near local min, oscillator 2 makes anan LAO
Timing: first SAO of oscillator 1 before the up-jump of oscillator 2
(a=6.54,d, =8 x 107*, d, = 1.0588 with 3 = 0.003)



Strong symmetry breaklng SAO LAO (LE: ~,)
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Passage through neighbourhood of FN is near ,,.
FNs are key traffic officers, and ~s and ~, are key lane markings
First maximum in oscillator 1 occurs after the up-jump of osc. 2

(a=6.47,d, =8 x 107%, d, = 0.5, and 3 = 0.001)



SAO-LAO exist in regions Va-c, created by FNs (LE)
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Bifurcation diagram for folded singularities (coupled LE)



How are SAO-LAOs created? Through an explosion
of symmetry breaking SAO-LCC rhythms! (vdP)
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SAO-LCCs: transition between asymmetric SAO-SAOQ attractors
and strong symmetry breaking SAO-LAO attractors

Multi-stability with In-phase (IP) solutions
Strong symmetry breaking SAO-MMO attractors (0513)
(e =0.01,a=15,h=2, and d = 0.0137638.)



Explosion of strong symmetry breaking SAO-LCC
rhythms (LE)
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Primary asymmetric canard explosion: creates 0219 SAO-LAO
rhythms.
(dy =8 x107* d, = 0.5, and 3 = 0.001.)



Geometric desingularization: SAO-LCC explosions

One oscillator undergoes an explosion of limit cycle canards (LCCs)
while the other exhibits SAOs.

van der Pol:
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What else? Strong symmetry breaking SAO-MMQOs

0913 SAO-MMO attractors (coupled, identical van der Pol
oscillators)
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The FN on Lj_ is again the key singularity, and the trajectory is in
¢ = 3 rotational sector of the FN funnel.

(e =0.01,a0 =1.5,h=2,d = 0.0137638, § = —0.4997099.)



Strong symmetry breaking SAO-MMO (vdP)
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Strong symmetry breaking SAO-MMO attractors (0°13)
Exist near the asymmetric explosion of SAO-LCCs

(e =0.01,a=15,h=2, and d = 0.0137638.)



Secondary canards and rotation sectors of FNs (LE)

uq uq
Example: the non-symmetric FNs have eigenvalue ratio y ~ 0.187.
Hence, for each FN, also exist two secondary canards.

(a=6.5,d, =0.15,d, = 0.5, and 8 = 0.001.)

Coupled identical van der Pol oscillators also have two such key
FNs, and depending on parameters these can have secondary
canards.



Strong symmetry breaking SAO-MMO rhythms (LE)
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Strong symmetry breaking 0813 SAO-MMO rhythm.

The orbit has a segment near the true canard (blue to green
ducky); there, oscillator 1 attains the maximum of its largest SAO.

(a =6.46174,d, = 8 x 10*,d, = 0.5, 3 = 0.001. )



Strong symmetry breaking SAO-MMO rhythms (LE)

2,0
4.31 0219
0512
£ 6,3
S 4z o 01418
2 a
L 036,21 s ol48 l 0116
) 0148 ——
~ 0148 et N
4.23 ~ - -
212 4424 s @
0 o 01413/(,11 13 ol8yll
1 2 3 4 5 6 7 8 9 10 1 12
a (x1075) + 6.4617
o 02817 01418 ]
4.26 .
24415 18411
E 024 081 ol116
S 14,8 — 0148
2 - — ,24,15 01418 — — 014
5 4240 148 -~ 2415 o8 T 02415 -
R M il - -
0210 - . B otfilt
44124 2 = 14,8
4.22 0% 0 811 7 02415 ol4 021113
45 55 6.5 7.5 8.5

(x1075) + 6.4617

A veritable menagerie of SAO- MMO rhythms in an O (63/2)
neighbourhood of the leftmost asymmetric canard explosion,

dasym,c (5 )

(dy =8 x107* d, = 0.5, and 3 = 0.001.)



Symmetrically-coupled, identical Koper oscillators

ex1 = y1 — fi(x1) + di(x2 — x1)
v1=gi(x1,y1,21) +dy(y2 — y1)
z1 = h(x1, y1,21) + dz(22 — 21)

exa = y2 — h(x2) — d(x2 — x1)
V2 = g(x2, y2,22) — dy(y2 — y1)
z2 = h(x2, 2, 22) — dz (22 — 21)

fi(x;) = x? — 3x; (cubic fast nullcline)

gi(xi,yi,zi) = kxi = 2(yi + \) + z

hi(xi,yi,zi) = X+ y; — z for i =1,2.

Parameters: 0 < ¢ <« 1, A, and k identical in both oscillators

Linear, diffusive coupling: d, d,, and d, non-negative



Coupled Koper oscillators: critical manifold, fold
sets, and folded singularities
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FN and its rotation sectors (Koper)
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Maximal canards, v; for i =0,1,2,3,4, and w, of a FN.

Sector R; (grey shaded) between 7o (black) and ;1 (green):
one SAO (grey curve) about 7, (black)

Sector Ry (blue shaded) between ;1 (green) and 72 (purple):
two SAOs (blue curve) about 7,

Rs3 sector (red-shaded) and Ry sector (green-shaded)



Strong symmetry breaking SAO-MMO rhythms
(coupled Koper)
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SAO-MMO CLASSIFICATION: Primary-, secondary-, tertiary-, and
quaternary SAO-MMO attractors

With 2 slow variables in each Koper oscillator, there are so many
more types of strong symmetry breaking rhythms.....



Strong symmetry breaking MMO-MMO attractors
(coupled Koper)
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A =6.910, k = —-10, € = 0.01, d, = 14.



Strong symmetry breaking MMO-MMO rhythms
(coupled Koper)
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A=17.219, k=-10,¢=0.01, d, = 14.



Multi-stability in the coupled Koper oscillators
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Strong symmetry breaking LAO-MMO rhythm
(coupled Koper)
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Conclusions and current work
Coupled, identical relaxatio (fast-slow) oscillators

Strong symmetry breaking SAO-LAO and SAO-MMO rhythms in
van der Pol and LE (each osc. has 1 fast and 1 slow variable)

Strong symmetry breaking SAO-LAO, SAO-MMO, MMO-MMO,
and LAO-MMO rhythms in Koper oscillators (each osc. has 1 fast
and 2 slow variables)

Folded singularities: FNs, double folded nodes, FSN-II points =
primary mechanisms creating the strong symmetry breaking

Types and timing of strong symmetry breaking attractors
pidetermined by passage near the canards of the folded singularities

Geometric desingularization analysis of the explosion of asymmetric
LCCs (limit cycle canards)

Natural extensions to systems with three (or more) coupled
identical oscillators

Natural extensions to oscillators with multiple slow and/or fast

variahlac
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Spliced MMO-MMOQO
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Strong " splicing” symmetry breakintg MMO-MMO rhythms
(time-periodic). (a) A = 7.120, (b) A = 7.134, (c) A = 6.970, and

(d) A =6.973. (a) A 1213110-131116 rhythm. (b) A
12131110(1213)3-131118(1312)3 rhythm, which is more complex




Canardioids (LE)
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A weak symmetry breaking canardioid: near a quasiperiodic AP 13

(a=6.54,d, =8 x 107%,d, = 1.0588, and 3 = 0.014.)



