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Abstract and Motivation

We study transverse modulational dynamics of striped pattern
formation in the wake of a directional quenching mechanism.

Fig. 1: Induced patterns from
the introduction of a traveling

mask in light-sensitive

CDIMA reaction (Ref. 5).

Such mechanisms have been proposed to control pattern-
forming systems and suppress defect formation in many
different physical settings, such as light-sensing reaction-
diffusion equations, solidification of alloys, and eutectic
lamellar crystal growth. In the context of two prototypical
pattern forming PDEs, the complex Ginzburg-Landau and
Swift-Hohenberg equations, we show that long-wavelength
and slowly varying modulations of striped patterns are gov-
erned by a one-dimensional viscous Burgers’ equation,
with viscous and nonlinear coefficients determined by the
quenched stripe selection mechanism.

Complex Ginzburg-Landau Equation

• Quenched Complex Ginzburg-Landau (CGL) equation with ξ = x− ct

At = (1 + iα)(∂2ξ + ∂2y)A + cAξ + χ(ξ)A− (1 + iγ)A|A|2

A ∈ C, (x, y) ∈ R2, α, γ ∈ R

• Quenching mechanism χ(ξ) = −sign(ξ), controls stability of A ≡ 0.

Fig. 2: Evolution of 2D quenched pattern in (ξ, y) variables with α = 3, γ = 1, c = 2.5, from small random initial data.

• Pure stripes rei(kxξ+kyy−ωt), have nonlinear dispersion relation

r2 = 1− (k2x + k2y), ω(kx, ky) = (α− γ)(k2x + k2y)− ckx + γ

• Stripe-forming front solutions

A(ξ, y, t) = ei(kyy−ωt)Af(ξ; c, ky)

• Travelling wave eqn. with asymptotic boundary conditions

0 = (1 + iα)(∂2ξ − k2y)Af + cAf,ξ + (χ(ξ)+iω)Af − (1 + iγ)Af|Af|2

0 = lim
ξ→−∞

∣∣∣Af(ξ)− reikxξ
∣∣∣ , 0 = lim

ξ→+∞
Af(ξ)

• Fronts with ky = 0 exist (Ref. 3) for c ≲ 2
√
1 + α2.

• ky ̸= 0 is a regular perturbation, so fronts generically persist. ω and kx are
selected by c and ky.

kx,f(ky; c) = kx,f(0) + β2k
2
y +O(k4y), ky ∼ 0,
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Fig. 3: Wave number selection curves with γ = 1 and α = 1.5, 2, 3.

Slow Transverse Modulations

• Slowly-varying transverse phase modulation function Φ(Y, T ) with slow variables
Y = δy, T = δ2t for some small parameter 0 < δ ≪ 1.

A(ξ, y, t) = ei(Φ(Y,T )−ωft)
[
Af(ξ; δΦY (Y, T )) + δ2w1(ξ, Y, T ; δ)

]
.

• Fix ξ = ξ0 directly behind quench with −1 ≤ ξ0 < 0.

• Expand and collect O(δ2) terms. Solvability condition gives a viscous Burgers’ equation
for slowly-varying transverse wave number modulation Ψ := ∂Y Φ

ΨT =
λ′′lin(0)

2
ΨY Y +

ω′′f (0)

2
(Ψ2)Y

• λ′′lin(0) ≈ 2(1 + αγ) and ω′′f (0) given by

∂2kyωf(0) = 2(α− γ) + ∂2kykx,f(0)
(
2(α− γ)kx,f(0)− c

)

Example: Source-Sink Transverse Defect Pair

• Small transverse wave number ky,+ = δq+ for y > 0 and ky,− = δq− for y > 0, with
0 < δ ≪ 1 and q± = O(1).

A(ξ, y, 0) = h(−ξ)
(
h(y)r−ei(kx,−ξ+ky,−y) + h(−y)r+ei(kx,+ξ+ky,+y)

)
• Wave numbers kx,± chosen so that kx,± = kx,(ky,±), r2± =

√
1− (k2x,± + k2y,±).

• Defect speed determined by cd = cg,0 + δc∗ = δ
ω′′f (0)
2 (q− + q+)
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Fig. 4: Source-sink defect pair with α = 3, γ = 1, c = 2.5 obtained from initial condition which connects stripes solutions with

transverse wave numbers ky,− = 0.3, ky,+ = 0.1 and δ = 0.1; Local wave number measured as ψ(y, t) = ImAy(ξ0, y, t)/A(ξ0, y, t).

Example: Phase-Slip Defect Modulation

• Localized defect with ϕ0(Y ) = πerf(Y ) and erf(Y ) = 2π−1/2
∫ Y
0 e−t

2
dt

A(ξ, y, 0) = h(−ξ)
√

1− k2exp [i(kxξ + δy + ϕ0(δy))]

• Choose transverse wave number ky = δ so that

Ψ(Y ) = 1 + 4π1/2e−Y
2
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Fig. 5: Top row: Localized phase-slip defect solution of with c = 2.5, α = 3, γ = 1 and δ = 0.1 as well as L2 error.

Swift-Hohenberg Equation

• Swift-Hohenberg Equation in co-moving frame

ut = −(1 + ∂2ξ + ∂2y)
2u + c∂ξu + µχ(ξ)u− u3, µ > 0

• Front solutions uf(ξ, kyy+ωt), periodic in ζ := kyy+ωt exist (Ref. 4), solve

0 = −(1 + ∂2ξ + k2y∂
2
ζ)
2uf + (c∂ξ − ω∂ζ)uf + µχ(ξ)uf − u3f

• Striped fronts perturb smoothly for ky ∼ 0 and

kx,f(ky) = kx,f(0) + β2k
2
y +O(k4y). β2 =

1

c
⟨2∂2ζ(1 + ∂2ξ)uf(·, ·; 0) , e∗⟩L2η
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Fig. 6: Swift-Hohenberg wave number selection curves for µ = 1, depicting kx,(c, ky) for c fixed, and ky varied, then

ky = 0 fixed and c varied; Example front profiles uf(ξ, ζ ; ky) with c = 3.5 and ky = 0.123, 0.9779; µ = 1.

• Bloch wave theory and concavity of ky in kx imply

λ′′lin(0) = ⟨4(1 + (kx∂z)
2)∂zuf, b∗⟩L2(T2π)

, ω′′f (0) = 2β2c

• Phase-slip initial condition u(ξ, y, 0) =
√
4µ/3 cos(kxx+ kyy+ϕ0(δy))h(−ξ)

• Numerical wave number measurements from Iterative Hilbert Transform;
Gibbs-type oscillations in shocks
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Fig. 7: Localized phase perturbation of striped front with (kx, ky) = (0.993, 0.1); c = 3, µ = 1; Transverse wave

number dynamics at ξ = ξ0 = −1 fixed (solid) plotted against rescaled viscous Burgers’ solution at times

t = 100(blue), 200(orange), 300(purple), 400(red); plot of absolute error.

Future Work

• Far-field dynamics and behavior

• Rigorous approximation arguments

• Effect of domain geometry on pattern growth
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