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Relation to spacecraft trajectory design
This research is related to the spacecraft trajectory design, for example,
to realize a mission that sends a spacecraft from the vicinity of the Earth
to the vicinity of the Moon.

In the theoretical field of spacecraft trajectory design,
! in the past, even for this case, using the two-body problem of a celestial

body and a spacecraft had been common.
! recently, using the three (or more)-body problem has been studied

actively. For this case, the restricted three-body problem is appropriate.

In designing the trajectory, it is hoped that the mission can be accomplished in
a short time and at a low cost. In this case, to design the trajectory at a low
cost, it is necessary to consider whether a transit orbit exists or not.✓ ✏

We give sufficient conditions in a form verifiable by numerical calculations
for the existence of transit orbits in the restricted three-body problem
via variational methods.✒ ✑
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PCR3BP・PER3BP

! The restricted three-body problem (R3BP) is a mathematical model
that describes the motion of an object that is affected by the gravitation
force from two celestial bodies, but whose effect on them is negligible.

! Since the plane identical to the two bodies is an invariant plane, we can
consider the problem that the motion is restricted on this plane (PR3BP).

! The two bodies are assumed to be in a bounded motion of the two-body
problem, i.e., they are in a circular motion (PCR3BP) or a elliptical
motion (PER3BP).
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Lagrangian for PCR3BP・PER3BP

PCR3BP・PER3BP

LC
µ (z,v) :=

1
2
|v|2 +tzJv + Vµ(z) : PCR3BP (Autonomous)

LE
µ (z,v, t) :=

1
2
|v|2 +tzJv + f(t)Vµ(z) : PER3BP (Non-Autonomous)

0 < µ ≤
1

2
(Mass ratio of two bodies), Vµ(z) :=

1

2
|z|2+

1 − µ

|z +t (µ, 0)|
+

µ

|z −t (1 − µ, 0)|
> 0

J :=

(
0 1
−1 0

)
, 0 ≤ e < 1 (Eccentricity of elliptical orbit), f(t) :=

1

1 + e cos t

X

Y

PCR3BP

X

Y

PER3BP
4 / 25



E-L eq.・Lagrange points for PCR3BP・PER3BP

PCR3BP✓ ✏
E-L eq.:

ż = v,

v̇ = 2Jv +∇Vµ(z).

Lagrange point (i.e. the equilibrium point) (z0,v0):

∇Vµ(z0) = 0, v0 = 0.✒ ✑
PER3BP✓ ✏
E-L eq.:

ż = v,

v̇ = 2Jv + f(t)∇Vµ(z).

Lagrange point (i.e. the equilibrium point) (z0,v0):

∇Vµ(z0) = 0, v0 = 0.✒ ✑
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Lagrange points for PCR3BP・PER3BP
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Energy for PCR3BP・PER3BP
PCR3BP✓ ✏
Energy function:

EC
µ (z,v) :=

1
2
|v|2 − Vµ(z).

For the solution of PCR3BP cT : [0, T ] → R2,

d

dt

(
EC

µ (cT (t),
dcT

dt
(t))

)
= 0.

So, energy is preserved.✒ ✑
PER3BP✓ ✏
Energy function:

EE
µ (z,v, t) :=

1
2
|v|2 − f(t)Vµ(z)

For the solution of PER3BP cT : [0, T ] → R2,

d

dt

(
EE

µ (cT (t),
dcT

dt
(t), t)

)
=

∂EE
µ

∂t
(cT (t),

dcT

dt
(t), t) = −

df

dt
(t) Vµ(c

T (t)).

So, energy is not preserved. ( dfdt (t) =
e sin t

(1+e cos t)2
, Vµ > 0)✒ ✑
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Hill Regions for PCR3BP
Hill Regions for PCR3BP✓ ✏

{z ∈ R2 | ∃v ∈ R2 s.t. EC
µ (z,v) =

1
2
|v|2 − Vµ(z) = h}

={z ∈ R2 | h+ Vµ(z) ≥ 0}✒ ✑
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Transit orbits of PCR3BP

Transit orbits of PCR3BP at L1

! Start from the region to the left of L1.

! Reach the region to the right of L1.

! With energy values such that the Hill region has the “tunnel”.✓ ✏
The transit orbit of PCR3BP can be constructed by the solution of
a two-point boundary value problem (2PBVP) with fixed energy condition.✒ ✑

9 / 25

E

E
X



Transit orbits of PER3BP

Transit orbits of PER3BP at L1

! Start from the region to the left of L1.

! Reach the region to the right of L1.

! With energy values such that the Hill region has the “tunnel” at a
certain time.✓ ✏

The transit orbit of PER3BP can be constructed by the solution of
2PBVP with fixed endpoint’s energy condition.✒ ✑10 / 25
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Minimizing methods for 2PBVP (PCR3BP・PER3BP)
For

a compact convex set R ⊂ Ω (:= R2 \ {t(−µ, 0),t(1− µ, 0)}),
zS , zG ∈ R and T > 0,

we define the set of Sobolev curves in R with 2PBV zS , zG and time T

C(zS , zG, T ;R) :=

{
cT ∈ H1,2((0, T ),R2)

∣∣∣∣
cT (0) = zS , cT (T ) = zG,
cT ([0, T ]) ⊂ R

}
.

And we define the action functional of PCR3BP (resp. PER3BP)

A : C(zS , zG, T ;R) → R, A(cT ) :=

∫

[0,T ]

LC
µ (c

T (t), ċT (t)) (resp. LE
µ ) dt

Theorem

For any R, zS , zG and T satisfying the above conditions,
there exists a minimizer cT∗ of A in C(zS , zG, T ;R).

i.e. ∃cT∗ ∈ C(zS , zG, T ;R) s.t. A(cT∗ ) = inf{A(cT ) | cT ∈ C(zS , zG, T ;R)}.

Furthermore, if cT∗ (0, T ) ⊂ int(R) holds, then cT∗ is the classical solution of
PCR3BP (resp. PER3BP).
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Minimizing methods for 2PBVP with fixed energy condition (PCR3BP)
For

h ∈ R, a compact convex set R ⊂ {z ∈ Ω | ∀v ∈ R2, LC
µ (z,v) + h > 0},

and zS , zG ∈ R

we define the set of Sobolev curves in R with 2PBV zS , zG

C(zS , zG;R) :=
⋃

{C(zS , zG, T ;R) | T > 0}

And we define the action functional of PCR3BP with energy

Ah : C(zS , zG;R) → R, Ah(c
T ) :=

∫

[0,T ]

LC
µ (c(t), ċ(t)) + h dt

Main Lemma 1 (PCR3BP)

For any h,R and zS , zG satisfying the above conditions,
there exists a time-free minimizer cT∗

∗ of Ah in C(zS , zG;R).

i.e. ∃cT∗
∗ ∈ C(zS , zG;R) s.t. Ah(c

T∗
∗ ) = inf{Ah(c) | c ∈ C(zS , zG;R)}.

Furthermore, if cT∗
∗ (0, T∗) ⊂ int(R) holds, then cT∗

∗ is the classical solution of
PCR3BP with energy value h.
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Minimizing methods for 2PBVP with fixed endpoint’s energy condition
(PER3BP)

For

h ∈ R, a compact convex set R ⊂ {z ∈ Ω | ∀t ∈ R,v ∈ R2, LE
µ (z,v, t) + h > 0},

and zS , zG ∈ R

we define the set of Sobolev curves in R with 2PBV zS , zG

C(zS , zG;R) :=
⋃

{C(zS , zG, T ;R) | T > 0}

And we define the action functional of PER3BP with energy

Ah : C(zS , zG;R) → R, Ah(c
T ) :=

∫

[0,T ]

LE
µ (c(t), ċ(t), t) + h dt

Main Lemma 2 (PER3BP)

For any h,R and zS , zG satisfying the above conditions,
there exists a time-free minimizer cT∗

∗ of Ah in C(zS , zG;R).

i.e. ∃cT∗
∗ ∈ C(zS , zG;R) s.t. Ah(c

T∗
∗ ) = inf{Ah(c) | c ∈ C(zS , zG;R)}.

Furthermore, if cT∗
∗ (0, T∗) ⊂ int(R) holds, then cT∗

∗ is the classical solution of
PER3BP with endpoint’s energy value h.
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How to choose a curve set

14 / 25



Main Result 1・2

PCR3BP(Main Result 1) PER3BP(Main Result 2)

Cond.1 “Positivity of integrand” “Positivity of integrand”

⇒ There exists a time-free minimizer. ⇒ There exists a time-free minimizer.

Cond.2 “External contact condition on Rl,r “External contact condition on Rl,r

for the solution of energy h” for the solution of endpoint’s energy h”

⇒ Time-free minimizer does not reach Rl,r. ⇒ Time-free minimizer does not reach Rl,r.

Cond.3 “Directed (left-to-right) external contact condition “Directed (left-to-right) external contact condition

on Rb for the solution of energy h” on Rb for the solution of endpoint’s energy h”

⇒ Time-free minimizer does not reach Rb. ⇒ Time-free minimizer does not reach Rb.

Cond.4 “If the curve reaches Rt, “If the curve reaches Rt,

then it is not a time-free minimizer.” then it is not a time-free minimizer.”

⇒ Time-free minimizer does not reach Rt. ⇒ Time-free minimizer does not reach Rt.
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External contact condition on Rl✓ ✏
For any solution (x(t), y(t)) of energy (resp. endpoint’s energy) h,

(x(t), y(t)) ∈ Rl, ẋ(t) = 0 ⇒ ẍ(t) < 0.✒ ✑
Rl Rl

16 / 25



Directed (left-to-right) External contact condition on Rb

✓ ✏
For any solution (x(t), y(t)) of energy (resp. endpoint’s energy) h,

(x(t), y(t)) ∈ Rb, ẋ(t) > 0, ẏ(t) = 0 ⇒ ÿ(t) < 0.✒ ✑

Rb Rb
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Previous research and main results

Although many numerical studies suggest the existence of transit orbits,
few mathematical results show their existence.

Mathematical results can be divided into two categories: “those based on the
perturbation theory method” and “those based on the variational method”.
The former cannot verify their existence for concrete situations,
but the latter is important in that it allows us to do so.

Perturbation theory Variational method
PCR3BP Moser(1958,[1]) Moeckel(2005,[2])・Main Result 1
PER3BP Fitzgerald&Ross(2022,[3]) Main Result 2

[1] J. Moser, On the generalization of a theorem of Liapunov, Communications on Pure and
Applied Mathematics, 11:257-271, 1958.

[2] R. Moeckel, A variational proof of existence of transit orbits in the restricted three-body
problem, Dynamical Systems, 20:45-58, 2005.

[3] J. Fitzgerald and S. Ross, Geometry of transit orbits in the periodically-perturbed restricted
three-body problem, Advances in Space Research, 70:144-156, 2022.
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Application to an equal mass system (µ = 1
2) (numerical results)

L1 = (0, 0), EC
1
2
(L1) = −2, max

t∈[0,2π)
EE

1
2
(L1) ≈ −1.9998.

PCR3BP✓ ✏
Energy h:

h = −1.85 (> −2).

Rectangular region centered on L1: R = [−c, c] × [−k, k] ⊂ R2:

c = 0.072, k = 0.134.

Cond.1-3 hold and Cond.4 is satisfied

by taking zS to the lower left of R and zG to the lower right.✒ ✑
PER3BP✓ ✏
Eccentricity e:

e = 2.0 × 10−4.

Energy h:
h = −1.85 (> −1.9998).

Rectangular region centered on L1: R = [−c, c] × [−k, k] ⊂ R2:

c = 0.072, k = 0.134.

Cond.1-3 hold and Cond.4 is satisfied

by taking zS to the lower left of R and zG to the lower right.✒ ✑
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Application to an equal mass PCR3BP (µ = 1
2) (numerical results)

(I) R that satisfies Cond.1-3
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Application to an equal mass PCR3BP (µ = 1
2) (numerical results)

(II) Evaluating the time T∗ of the time-free minimizer

A−(T ) ≤ min{
∫

c
LC

µ + h dt | c ∈ H1((0, T );R2),

{
c(0, T ) ⊂ R,

c(0) = zS , c(T ) = zG
} ≤ A+(T )
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Application to an equal mass PCR3BP (µ = 1
2) (numerical results)

(III) Verification of Cond.4

min{
∫

c
LC

µ + h dt | c ∈ H1((0, T );R2),

{
c(0, T ) ⊂ R,

c(0) = zS , c(T ) = zG
} ≤ A+(T )

B−(T ) ≤ min{
∫

c
LC

µ + h dt | c ∈ H1((0, T );R2),

⎧
⎪⎨

⎪⎩

c(0, T ) ⊂ R,

c(0) = zS , c(T ) = zG

∃t ∈ (0, T ) s.t. c(t) ∈ Rt

}
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Application to an equal mass PER3BP (µ = 1
2) (numerical results)

(I) R that satisfies Cond.1-3
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Application to an equal mass PER3BP (µ = 1
2) (numerical results)

(II) Evaluating the time T∗ of the time-free minimizer

A−(T ) ≤ min{
∫

c
LE

µ + h dt | c ∈ H1((0, T );R2),

{
c(0, T ) ⊂ R,

c(0) = zS , c(T ) = zG
} ≤ A+(T )
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Application to an equal mass PER3BP (µ = 1
2) (numerical results)

(III) Verification of Cond.4

min{
∫

c
LE

µ + h dt | c ∈ H1((0, T );R2),

{
c(0, T ) ⊂ R,

c(0) = zS , c(T ) = zG
} ≤ A+(T )

B−(T ) ≤ min{
∫

c
LE

µ + h dt | c ∈ H1((0, T );R2),

⎧
⎪⎨

⎪⎩

c(0, T ) ⊂ R,

c(0) = zS , c(T ) = zG

∃t ∈ (0, T ) s.t. c(t) ∈ Rt

}
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