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Background

A dynamical system is
a model which formulates the time development of a phenomena.

Analysis of the orbit on a system
enables us to understand phenomena.

By splitting the state space of a system and giving each area
a symbol, we can express the orbit as a symbolic sequence.

Symbolic dynamics

We say the system is one of the symbolic dynamics
which is obtained by describing a dynamical system with symbols.

It is possible that
symbolic dynamics make analysis of phenomena easier.
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Background

K : a compact metric space or a countable set

σ : KZ → KZ ;
σ((. . . , x0, x1, x2, x3, . . . )) = (. . . , x1, x2, x3, x4, . . . )

A shift with finite symbol : (AZ, σ)

A : a finite set

Figure: AZ

A shift with countable symbol : (NZ, σ)
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Background

XY model : (MZ, σ)

M : a connected and compact manifold

Figure: XY model where M is S1

We want to understand the statistical property of XY model.

See the invariant measure on XY model,
in particular, ”the Gibbs measure”.

Extend conclusions about a shift with finite symbol to XY model.
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Background

Relation between Gibbs measures and Double Variational Principle

K A : a finite set
M : a connected and
compact manifold

The Ruelle operator
Lφf (x)

∑
σy=x e

φ(y)f (y)
∫
eφ(ax)f (ax) da

Gibbs measures for
a Hölder continuous
function φ satisfy

Variational Principle
Double Variational

Principle
with potential?

∫
eφ(ax)f (ax) da : [A.Baraviera, et al. 2011]

Double Variational Principle with potential : [M.Tsukamoto, 2020]
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Backgroud

The invariant measure

K : a compact metric space or a countable set

σ : KZ → KZ ;
σ((. . . , x0, x1, x2, x3, . . . )) = (. . . , x1, x2, x3, x4, . . . )

M (KZ) : The set of Borel probability measures on KZ

We say a probability measure µ ∈ M (KZ) is invariant if

∀E ∈ B(KZ), µ(σ−1E ) = µ(E ).
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Background

1 The Gibbs measure

2 The equilibrium measure

If the invariant measure satisfies Variational Principle,
we call it the equilibrium measure.

A shift with finite symbol XY model

Variational Principle
Double Variational

Principle
with potential?

1○⇒ 2○ Dobruschin’s Theorem[3] My study

2○⇒ 1○ Lanford-Ruelle Theorem[4]
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Main result

K = [0, 1]

σ : [0, 1]Z → [0, 1]Z ; σ((xm)m∈Z) = (xm+1)m∈Z : the shift

d : the metric on [0, 1]Z ;

d(x , y) :=
∑
m∈Z

2−|m||xm − ym|, (x = (xm)m∈Z, y = (ym)m∈Z)

φ : [0, 1]Z → [0, 1] ; φ((xm)m∈Z) = x0 : a potential

∀N ∈ N, ∀A1,A2, . . . ,AN ∈ B([0, 1]),

µ(· · · × [0, 1]× A1 × A2 × · · · × AN × [0, 1]× . . . )

:=

(
1∫

[0,1] e
φ(x) dx

)N ∫
A1

eφ(x1) dx1

∫
A2

eφ(x2) dx2· · ·
∫
AN

eφ(xN) dxN .

Main result

Then, d and µ satisfy Double Variational Principle with potential.
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Background

Variational Principle

M T (X ) := {Invariant measures on (X ,T )} where
X is a compact metric space and T is a continuous map on X to itself

htop : the topolpgical entropy

hµ : a measure-theoretic entropy

φ : X → R : the continuous potential

Ptop(·) : Topological pressure
1 htop = supµ∈MT (X ) hµ,

2 Ptop(A) = supµ∈MT (X )(hµ +
∫
φ dµ).

Let (X ,T ) = (AZ, σ).

Then, if φ is Hölder, the Gibbs measure for φ is the unique measure
which attains the supremum of 2○ [R.Bowen, 1975]
and we say φ satisfies Variational Principle.
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Background

It is known that

htop([0, 1]
Z, σ) = ∞.

It makes no sense to hold Variational Principle on XY model and
Double Variational Principle is introduced to overcome this problem.

Based on the conclusion about a shift with finite symbol,
it is natural to suppose Gibbs measures on XY model relate to
Double Variational Principle with potential.
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Double Variational Principle with potential

Theorem 1 [M.Tsukamoto, 2020]

(X ,T ) : a dynamical system which has the marker property

φ : X → R : a continuous function

M T (X ) : the set of T -invariant Borel probability measures on X
D(X ) : the set of distance functions on X

Then,

mdim(X ,T , φ) = min
d∈D(X )

sup
µ∈MT (X )

(
rdim(X ,T , d , µ) +

∫
X
φ dµ

)
= min

d∈D(X )
sup

µ∈MT (X )

(
rdim(X ,T , d , µ) +

∫
X
φ dµ

)
.

We call this principle
Double Variational Principle with potential.
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([0, 1]Z, σ)

XY model ([0, 1]Z, σ) : a dynamical system
σ : [0, 1]Z → [0, 1]Z ; σ((xm)m∈Z) = (xm+1)m∈Z : the shift

φ : [0, 1]Z → [0, 1] ; φ((xm)m∈Z) = x0 : a potential

([0, 1]Z, σ) doesn’t have the marker property.
On the other hand, it is a typical example of XY model.

Calculation of mdim([0, 1]Z, σ, φ) [M.Tsukamoto, 2020]

Denote the mean dimension with potential by mdim(X ,T , φ).

mdim([0, 1]Z, σ, φ) = 2.

Recall

mdim([0, 1]Z, σ, φ) = min
d

sup
µ

(
rdim([0, 1]Z, σ, d , φ) +

∫
φ dµ

)
= min

d
sup
µ

(
rdim([0, 1]Z, σ, d , φ) +

∫
φ dµ

)
.
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Mutual Information

Fix a probability space (Ω,P) and
assume that all random variables are defined on (Ω,P).
X ,Y : r.v.s taking values in some measurable spaces X ,Y
H(X ) = −

∑
x∈X P(X = x) logP(X = x)

Mutual Information of finite sets

X ,Y : a finite set

Mutual Information I (X ;Y ) ;

I (X ;Y ) := H(X )− H(X |Y ).
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Mutual Information

1 Take finite measurable partitions of X ,Y (not necessarily finite sets) ;

P = {P1, ..,PM}：∪k Pk = X M < ∞ P is a disjoint set,

Q = {Q1, ..,QN}：
∪

k Qk = Y N < ∞ Q is a disjoint set.

2 For x ∈ X , y ∈ Y , P̃(x) := Pm, Q̃(y) := Qn x ∈ Pm, y ∈ Qn

3 It is possible to consider Mutual Information I (P ◦ X ;Q ◦ Y )
as the definition of Mutual Information of finite sets.

Mutual Information of any sets

X ,Y : a set

Mutual Information I (X ;Y ) ;

I (X ;Y ) := sup
P,Q

I (P̃ ◦ X ; Q̃ ◦ Y )
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The rate distortion function

Definition of the rate distortion function

(X ,T ) : a dynamical system with a T -invariant measure µ

ε ∈ R>0

Then, define the rate distortion function by

R(d , µ, ε) = inf
N,X ,Y

I (X ;Y )

N
, where

N ∈ N
X ,Y = (Y0, ...,YN−1) : r.v.s defined on a probability space (Ω,P),
∀X ,Yn, they take values in X and satisfy

X has the distribution µ,

E

(
1

N

N−1∑
n=0

d(T nX (ω),Yn(ω))

)
< ε (ω ∈ Ω), (1)

and we call (1) the distortion condition.
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The rate distortion dimension

Definition of the rate distortion dimension

(X ,T ) : a dynamical system with a T -invariant measure µ

d : a metric on X
Define the upper and the lower rate distortion dimensions by

rdim(X ,T , d , µ) = lim sup
ε→0

R(d , µ, ε)

log(1/ε)
,

rdim(X ,T , d , µ) = lim inf
ε→0

R(d , µ, ε)

log(1/ε)
.

If both of these limits coincide,
we call the value the rate distortion dimension rdim(X ,T , d , µ).
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Calculation of the rate distortion dimension

Calcurate the rate distortion dimension to evaluate the right-hand side
of Double Variational Principle for mean dimension with potential.

Setting

XY model ([0, 1]Z, σ) : a dynamical system

σ : [0, 1]Z → [0, 1]Z ; σ((xm)m∈Z) = (xm+1)m∈Z : the shift

d : the metric on [0, 1]Z ;

d(x , y) :=
∑
m∈Z

2−|m||xm − ym|, (x = (xm)m∈Z, y = (ym)m∈Z)

φ : [0, 1]Z → [0, 1] ; φ((xm)m∈Z) = x0 : a potential

We want to calculate

rdim([0, 1]Z, σ, d , µ) +

∫
[0,1]Z

φ dµ or rdim([0, 1]Z, σ, d , µ) +

∫
[0,1]Z

φ dµ

or both.
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Calculation of the rate distortion dimension

Under this setting,
we can construct a Gibbs measure on XY model for a potential
which depends on the first coordinate.

∀N ∈ N, ∀A1,A2, . . . ,AN ∈ B([0, 1]),

µ(· · · × [0, 1]× A1 × A2 × · · · × AN × [0, 1]× . . . )

:=

(
1∫

[0,1] e
φ(x) dx

)N ∫
A1

eφ(x1) dx1

∫
A2

eφ(x2) dx2· · ·
∫
AN

eφ(xN) dxN .

φ : [0, 1]Z → [0, 1] ; φ((xm)m∈Z) = x0

We call µ the Gibbs measure because it is constructed by
the eigenvalue and the eigenfunction for the Ruelle operator Lφ.
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Calculation of the rate distortion dimension

First, calculate rdim(X , σ, d , µ).

Take ε ∈ R>0.

X ,Y = (Y0, ...,YN−1) : r.v.s defined on (Ω,P) ; ∀ω ∈ Ω,

X (ω) := (Xm(ω))m∈Z ∈ [0, 1]Z, Yk(ω) := (Yk,m(ω))m∈Z ∈ [0, 1]Z

X has the distribution µ.

Yk satisfies the distortion condition (1).

N ∈ N
X ,Y = (Y0, ...,YN−1) : r.v.s defined on a probability space (Ω,P),
∀X ,Yn, they take values in X and satisfy

X has the distribution µ,

E

(
1

N

N−1∑
n=0

d(T nX (ω),Yn(ω))

)
< ε (ω ∈ Ω) (1)
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Calculation of the rate distortion dimension

I (X ;Y ) ≥ I ((X0,X1, . . . ,Xn−1); (Y0,0,Y1,0, . . . ,Yn−1,0))

because when we define two maps as following

Y : Ω → ([0, 1]Z)n ; Y (ω) = (Y0(ω),Y1(ω), . . . ,Yn−1(ω)),

f : ([0, 1]Z)n → [0, 1]n ; f ((y0,m)m∈Z, . . . , (yn−1,m)m∈Z) = (y0,0, . . . , yn−1,0),

f ◦ Y is measurable and we can use data-processing inequality.

Because X0, . . .Xn−1 is independent with respect to the distribution µ,

I ((X0,X1, . . . ,Xn−1); (Y0,0,Y1,0, . . . ,Yn−1,0))

≥
n−1∑
m=0

I (Xm; (Y0,0,Y1,0, . . . ,Yn−1,0)).
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Calculation of the rate distortion dimension

By the composision of f ◦ Y and the following measurable map
for all m = 0, 1, ..., n − 1 and data processing inequality,

f̃m : [0, 1]n → [0, 1] ; (y0,0, . . . , yn−1,0) 7→ ym,0,

n−1∑
m=0

I (Xm; (Y0,0,Y1,0, . . . ,Yn−1,0)) ≥
n−1∑
m=0

I (Xm; (Ym,0)).

Hence,

I (X ;Y ) ≥
n−1∑
m=0

I (Xm; (Ym,0)).

Moreover, because X and Y hold the distortion condition,

1

n

n−1∑
m=0

E|Xm − Ym,0| ≤
1

n
E

(
n−1∑
m=0

d(σmX ,Ym)

)
< ε.
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Calculation of the rate distortion dimension

Define the value r(ε) by r(ε) := infU,V I (U;V ) where

U,V : the random variables which take values on [0, 1]

U has the distribution µ and V holds E|U − V | ≤ ε.

Then, from

I (X ;Y ) ≥
n−1∑
m=0

I (Xm;Ym,0),
1

n

n−1∑
m=0

E|Xm − Ym,0| < ε,

I (X ;Y )

n
≥ 1

n

n−1∑
m=0

r(E|Xm − Ym,0|) ≥ r

(
1

n

n−1∑
m=0

E|Xm − Ym,0|

)
≥ r(ε).
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Calculation of the rate distortion dimension

Consequently, because R(d , µ, ε) := infN,X ,Y (I (X ;Y )/N),

R(d , µ, ε) ≥ r(ε).

On the other hand,

r(ε) ∼ | log ε| (ε → 0).

Therefore,

lim inf
ε→0

R(d , µ, ε)

| log ε|
≥ 1.

Hence, from the consequence of [Lindenstrauss, et.al 2018],

lim sup
ε→0

R(d , µ, ε)

| log ε|
≤ 1.

∴ R(d , µ, ε) ∼ | log ε| (ε → 0).
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Calculation of the rate distortion dimension

Therefore,

lim sup
ε→0

R(d , µ, ε)

log(1/ε)
= lim inf

ε→0

R(d , µ, ε)

log(1/ε)
= 1.

As a result,

rdim([0, 1]Z, σ, d , µ) = 1.

Hence, because ∀(xm)m∈Z ∈ [0, 1]Z, φ((xm))m∈Z ≤ 1 and

the consequences of [M.Tsukamoto, 2020] and [Lindenstrauss, et.al 2018],

rdim([0, 1]Z, σ, d , µ) +

∫
[0,1]Z

φ dµ = 2.

2024.5.31 25 / 31



The relation between the Gibbs measure and Double
Variational Principle

mdim([0, 1]Z, σ, φ) = rdim([0, 1]Z, σ, d , µ) +

∫
[0,1]Z

φ dµ.

This indicates µ satisfies
Double Variational Principle for mean dimension with potential.

A Gibbs measure on XY model µ

∀N ∈ N, ∀A1,A2, . . . ,AN ∈ B([0, 1]),

µ(· · · × [0, 1]× A1 × A2 × · · · × AN × [0, 1]× . . . )

:=

(
1∫

[0,1] e
φ(x) dx

)N ∫
A1

eφ(x1) dx1

∫
A2

eφ(x2) dx2· · ·
∫
AN

eφ(xN) dxN .

φ : [0, 1]Z → [0, 1] ; φ((xm)m∈Z) = x0
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Next goal

I try to

calculate both the mean dimension and the rate distortion dimension
in the case of defining the measure with a potential
which depends on N ∈ N coordinates on the XY model.

2024.5.31 27 / 31



References I

AT Baraviera, LM Cioletti, Artur O Lopes, Joana Mohr, and
Rafael Rigao Souza.
On the general one-dimensional xy model: positive and zero
temperature, selection and non-selection.
Reviews in Mathematical Physics, Vol. 23, No. 10, pp. 1063–1113,
2011.

Rufus Bowen.
Equilibrium states and the ergodic theory of anosov diffeomorphisms.
Lecture notes in mathematics, Vol. 470, pp. 11–25, 1975.

PL Dobruschin.
The description of a random field by means of conditional probabilities
and conditions of its regularity.
Theory of Probability & Its Applications, Vol. 13, No. 2, pp. 197–224,
1968.

2024.5.31 28 / 31



References II

Oscar E Lanford III and David Ruelle.
Observables at infinity and states with short range correlations in
statistical mechanics.
Communications in Mathematical Physics, Vol. 13, No. 3, pp.
194–215, 1969.

Elon Lindenstrauss and Masaki Tsukamoto.
From rate distortion theory to metric mean dimension: variational
principle.
IEEE Transactions on Information Theory, Vol. 64, No. 5, pp.
3590–3609, 2018.

Masaki Tsukamoto.
Double variational principle for mean dimension with potential.
Advances in Mathematics, Vol. 361, p. 106935, 2020.

2024.5.31 29 / 31



References III

Peter Walters.
An introduction to ergodic theory, Vol. 79.
Springer Science & Business Media, 2000.

2024.5.31 30 / 31



Appendix

The marker property

We say a dynamical sytem (X ,T ) has the marker property if

∀N > 0, ∃U ⊂ X : an open set s.t.

X =
∪
n∈Z

T−nU, U ∩ T−nU = ∅ (1 ≤ ∀n ≤ N).

([0, 1]Z, σ) doesn’t have the marker property.
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