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Background

A dynamical system is
a model which formulates the time development of a phenomena.

@ Analysis of the orbit on a system
enables us to understand phenomena.

@ By splitting the state space of a system and giving each area
a symbol, we can express the orbit as a symbolic sequence.

Symbolic dynamics

We say the system is one of the symbolic dynamics
which is obtained by describing a dynamical system with symbols.
@ It is possible that
symbolic dynamics make analysis of phenomena easier.
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Background

@ K : a compact metric space or a countable set
0 0:KZ 5 KZ .

o((...,x0, X1, %2,%3,...)) = (.., X1, X2, X3, Xa, . . . )
o A shift with finite symbol : (A%, o)

A : a finite set

]

] ] ]

] ] ] ]
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Figure: AZ

o A shift with countable symbol : (N%, 7)
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Background

o XY model : (MZ, )
M : a connected and compact manifold

SENEIR N

-2 -1 0 1 2

Figure: XY model where M is S*

@ We want to understand the statistical property of XY model.

@ See the invariant measure on XY model,
in particular, "the Gibbs measure”.

@ Extend conclusions about a shift with finite symbol to XY model.
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Background

Relation between Gibbs measures and Double Variational Principle

M : a connected and

« 3 finite set .
A : a finite se compact manifold

The Ruelle operator

L,F(x) > oy=x e?Wf(y) [ e#(@)f(ax) da
Gibbs measures for Double Variational
a Holder continuous  Variational Principle Principle

function ¢ satisfy with potential?

o [e#(@)f(ax) da: [A.Baraviera, et al. 2011]
@ Double Variational Principle with potential : [M.Tsukamoto, 2020]

2024.5.31 6/31



Backgroud

The invariant measure

o K : a compact metric space or a countable set
e 0 :KZ 5 KZ,
U((...,Xo,Xl,XQ,Xg,,...

) =(...,x1,Xx2,X3,Xa,...)

o #(K%) : The set of Borel probability measures on K*

We say a probability measure p € .#(K?) is invariant if

VE € B(K%), u(o 1E) = u(E).
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Background

@ The Gibbs measure

@ The equilibrium measure

@ If the invariant measure satisfies Variational Principle,

we call it the equilibrium measure.

A shift with finite symbol

‘Variational Principle‘

(=@ Dobruschin’ s Theorem|[3]
(=@ Lanford-Ruelle Theorem[4]

XY model

Double Variational
Principle
with potential?

My study
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Main result

o K =1[0,1]
0 0:[0,1)% = [0,1)% ; o((Xm)mez) = (Xm+1)mez : the shift
o d : the metric on [0,1]% ;

d(XaY) = Z 2_|m||Xm - Ym‘a (X = (Xm)meZa Yy = (Ym)mEZ)
mezZ

o ¢ :[0,1]% = [0,1] ; ¢((Xm)mez) = xo : a potential
e VN e N, VAl,Az,.. AN E ,%’([0,1]),
p(-x[0,1] x A x Ay X -+ x Ay x [0,1] x...)

N
fore )
= e?x1) dxl/ e?02) dx,. / e?ON) dxp.
(f[o,l] e?() dx> Al Az An
Then, d and p satisfy Double Variational Principle with potential.
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Background

Variational Principle

© 0

A T(X) := {Invariant measures on (X, T)} where
X is a compact metric space and T is a continuous map on X to itself

htop : the topolpgical entropy
h,, : a measure-theoretic entropy
@ : X — R : the continuous potential

Pop(+) : Topological pressure

htop = supuejﬂ(x) hl“
Prop(A) = sup e 47 (x)(hu + [ ¢ du).

Let (X, T) = (A%, 0).

Then, if ¢ is Holder, the Gibbs measure for ¢ is the unique measure
which attains the supremum of (2) [R.Bowen, 1975]

and we say ¢ satisfies Variational Principle.

2024.5.31 10 /31



Background

It is known that

hiop([0, 1]%, 0) = .

@ It makes no sense to hold Variational Principle on XY model and
Double Variational Principle is introduced to overcome this problem.
@ Based on the conclusion about a shift with finite symbol,

it is natural to suppose Gibbs measures on XY model relate to
Double Variational Principle with potential.
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Double Variational Principle with potential

Theorem 1 [M.Tsukamoto, 2020]
@ (X, T) : adynamical system which has the marker property

@ ¢: X — R : a continuous function
o /T (X): the set of T-invariant Borel probability measures on X

e 7(X) : the set of distance functions on X
Then,
mdim(X, T,») = min sup <rdim(X, T,d,un) +/ © du)
deD(X) pe.a™(x) X

= min sup rdim(X, T,d, +/ d >
dE-@(X)ue//ﬂ(X)< ( #) X(p :

@ We call this principle
Double Variational Principle with potential.
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([0.1]%,0)

o XY model ([0,1]%,5) : a dynamical system
o [07 1]Z — [Ov 1]Z , U((Xm)mEZ) = (Xm+1)m€Z : the shift
° ¢ :[0,1]% = [0,1] ; ©((Xm)mez) = Xo : a potential

o ([0,1]%,0) doesn't have the marker property.
On the other hand, it is a typical example of XY model.

Calculation of mdim([0, 1]%, o, ) [M.Tsukamoto, 2020]
Denote the mean dimension with potential by mdim(X, T, ¢).
e mdim([0,1]%, 0, ) = 2.

@ Recall
mdim([0, 1]%, 0, ¢) = mdin sup <rdim([0, 1%, 0,d,¢) + /90 du)
o

= minsup<
d u

rdim([0, 1]%, 0, d, ) + /go d,u) .
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Mutual Information

e Fix a probability space (2, P) and
assume that all random variables are defined on (Q2,P).
@ X, Y : r..s taking values in some measurable spaces X, Y

o H(X) == cx P(X =x)logP(X = x)

Mutual Information of finite sets

o X, Y : afinite set
Mutual Information /(X; Y) ;

I(X; Y) := H(X) — H(X]Y).
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Mutual Information

@ Take finite measurable partitions of X', ) (not necessarily finite sets) ;
P={P1,..Pu} Uy Pk=X M<oo Pisa disjoint set,
Q={Q1,..On} U Q=Y N<ox Qisa disjoint set.

@ Forxe X,y €Y, P(x):=Ppm, O(y) =Qy x€Pm y<Q,

@ It is possible to consider Mutual Information /(P o X; QoY)
as the definition of Mutual Information of finite sets.

Mutual Information of any sets
o X, )Y : aset
Mutual Information /(X;Y) ;

I(X;Y) = 17 I(PoX;Q0Y)
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The rate distortion function

Definition of the rate distortion function

e (X, T): adynamical system with a T-invariant measure
@ £c€ R>0
Then, define the rate distortion function by

1(X;Y
R(d,u,s):Nip(fY (X:Y)

N where

e NeN

e X, Y =(Yo,..., Yn_1) : r.v.s defined on a probability space (£2,P),
VX, Yy, they take values in X' and satisfy

X has the distribution p,

N—-1
E <,b 3 d(T"X(w), Y,,(w))) <e Wweq), (1)
n=0

and we call (1) the distortion condition.
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The rate distortion dimension

Definition of the rate distortion dimension

e (X, T): adynamical system with a T-invariant measure
@ d: a metricon X

Define the upper and the lower rate distortion dimensions by

__  R(dme)

dim(X. T, d, ) = | rd, p,e)

rdim K) = lim e og(i/e)
R(d, p¢)

rdim(X, T,d, u) = I|ran_:(r)1f log(1/2)

@ If both of these limits coincide,
we call the value the rate distortion dimension rdim(X, T, d, p).

2024.5.31 17 /31



Calculation of the rate distortion dimension

Calcurate the rate distortion dimension to evaluate the right-hand side
of Double Variational Principle for mean dimension with potential.

e XY model ([0,1]%,0) : a dynamical system
o :[0,1)% = [0,1)% ; o((Xm)mez) = (Xm+1)mez : the shift

o d : the metric on [0,1]% ;

d(X7}/) = Z 27|m||xm - Ym‘a (X = (Xm)mGZa y = (}/m)mGZ)
meZ

° ¢ :[0,1]% = [0,1] ; ¢((xm)mez) = X0 : a potential

We want to calculate
rdim([0, 1%, 0, d, 1) +/ o dp or rdim([0,1]”, 0, d, 1) +/ ¢ du
[0,1]2 [0,1]%

or both.
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Calculation of the rate distortion dimension

Under this setting,
we can construct a Gibbs measure on XY model for a potential
which depends on the first coordinate.

VN € N, VA1, As, ..., Ay € 2([0,1]),

p(---x[0,1] x Ap X Ag x -+« x Ay x [0,1] x ...)

N
5 |,
SN U S £20) g / £202) - .. / e20n) gy
(f[o,l] e?(x) dX> A ' Ao ? A N

e ¢:[0,1]2 = [0,1] ; o((Xm)mez) = X0

@ We call i the Gibbs measure because it is constructed by
the eigenvalue and the eigenfunction for the Ruelle operator L.
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Calculation of the rate distortion dimension

First, calculate rdim(X, 0, d, ).

o Take € € Ryy.

e X, Y =(Yo,..., Yn_1) : r.v.s defined on (Q,P) ; Vw € Q,

X(w) = (Xm(w))mez € [0,1]%, Yi(w) := (Yim(w))mez € [0,1]"
X has the distribution .

Y satisfies the distortion condition (1).

N e N
X,Y =(Yo,..., Yn—1) : r.v.s defined on a probability space (2, P),
VX, Y, they take values in X and satisfy

X has the distribution u,

1 N—-1
E </v > d(T"X(w), Y,,(w))) <e (weQ) (1)

n=0
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Calculation of the rate distortion dimension

I(X;Y) > I1((Xo, X1, - -+, Xn-1); (Yo,0, Y1,05- - - Yn-1,0))
because when we define two maps as following

Y :Q— ([0, 1]2)” ;Y (w) = (Y(w), Yi(w), ..., Ye—1(w)),
f: ([07 1]Z)n — [07 1]n ; f((yO,m)mEZa s (Yn—l,m)mEZ) = (Y0,0a . ,Yn—l,O)a

f oY is measurable and we can use data-processing inequality.

Because Xp, ... X,—1 is independent with respect to the distribution p,

(X0, X1, .-+, Xn-1): (Yo,0, Y1,0,- - -» Yn-1,0))

> Z 1(Xm; (Y0,0, Y1,0,- - -5 Yn—1,0))-
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Calculation of the rate distortion dimension

By the composision of f o Y and the following measurable map
forall m=20,1,...,n—1 and data processing inequality,

Fm . [0, ].]n — [07 1] ; (yoyo, ey ,,_170) —> Ym,0,

3
|
—

1
1(Xm; (Yo.0: Y10, - - -
0

n

) Ynfl,O)) > /(Xm; (Ym,O))~

m=0

3
Il

Hence,
1

I(X;Y)> I(Xmi (Ym,0))-
0

3
|

3
Il

Moreover, because X and Y hold the distortion condition,

n—1 n—1
1 1
— E|Xn — Ymol < —E d(c™ X, Ym )
p \ ol = (mE:O (o )> <e
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Calculation of the rate distortion dimension

Define the value r(e) by r(e) :=infy v I(U; V) where
e U,V : the random variables which take values on [0, 1]
@ U has the distribution ;2 and V holds E|U — V| < e.

Then, from
n—1 1 n—1
YY) > I(Xm; Ymo), — E|Xm — Ym )
I(X; )_mZ::O( 0) an::O | ol <e

n—1

n n

] n—1
1(X;Y) > lzr(mxm_ mol) > r(,l,ZEX’"_ m,0|> > r(e).
m=0

m=0
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Calculation of the rate distortion dimension
Consequently, because R(d, 1,€) :=infy x v (I(X; Y)/N),
R(d,p,e) > r(e).
On the other hand,
r(e) ~|loge| (¢ —0).
Therefore,

R
liminf 7(0”“’6)

> 1.
=0 |loge]

Hence, from the consequence of [Lindenstrauss, et.al 2018],

R(d
Iimsupw <1
e—0  |loge]

o R(d, pye) ~ |loge| (e — 0).
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Calculation of the rate distortion dimension

Therefore,

lim sup 7R(d,,u,5) = liminf 7R(d,,u, D) =

D507 Tog(1/2) T50" Tog(1/e)
As a result,
rdim([0,1]%,0,d, p) = 1.

Hence, because ¥(xm)mez € [0, 1]%, ©((xm))mez < 1 and
the consequences of [M.Tsukamoto, 2020] and [Lindenstrauss, et.al 2018],

rdim([0,1]%, 0, d, 1) +/ @ dp=2.
[0,1]%
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The relation between the Gibbs measure and Double
Variational Principle

mdim([0, 1]%, o, ) = rdim([0, 1]%, 0, d, 1) +/ @ du. ’
[0,1]

This indicates g satisfies
Double Variational Principle for mean dimension with potential.

A Gibbs measure on XY model p

VN € N, VA1, As, ..., Ay € 2([0,1]),

p(---x[0,1] X Ap X Ay x -+« x Ay x [0,1] x ...)

N
o)
N D 20 gy / 0202) g . / 020N) g
(f[o,l] e?() dX) Ay ' A ? A N

° ¢:0, 1]Z = [0,1] 5 o((xm)mez) = xo
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Next goal

| try to

calculate both the mean dimension and the rate distortion dimension
in the case of defining the measure with a potential
which depends on N € N coordinates on the XY model.
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Appendix

The marker property

We say a dynamical sytem (X, T) has the marker property if
VN >0, 3U C X : an open set s.t.

X=JT ", UnT"U=0 (1<Vn<N).
nez

o ([0,1]%,0) doesn't have the marker property.
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