Is the penalty function of the hard square shift stable?

Chihiro Oguri

Ochanomizu University

May 31, 2024

Joint work with Mao Shinoda (Ochanomizu University)

Contents

1 The Motivation of this talk

- 2 The stability of one-dimensional
- 3 The stability of two-dimensional
- 4 My ongoing project

Introduction

Ergodic Optimization

 $T:X \rightarrow X$ continuous map on a compact metric space X.

 $f: X \to \mathbb{R}$: continuous function (potential)

Find a T-inv measure μ which maxmize

$$\int f d\mu.$$

We call it a maximizing measure of f.

Remark

In this setting there exists at least one maximizing measure for a continuous function.

Introduction

- We consider symbolic dynamics, especially a fundamental class called SFTs and the potential that penalizes local configurations containing forbidden words for the given SFT.
- For the penalty potential, the maximizing measures are supported on the SFT.
- When the potential is perturbed, there is a difference between one-dimensional and two-dimensional.

The stability of penalty functions

	one-dimensional	two-dimensional
Gonschorowski et.al.	$^{\forall}\mathrm{SFT}$	$^{\exists}\mathrm{SFT}$
	The stability of	The stability of
	the penalty function : \circ	the penalty function :×
		${}^\exists\mathrm{SFT}$ is
		the Robinson tiling.
		ightarrow topological entropy
		is zero.

Question

Does the penalty function of the subshift of finite type (topological entropy is not zero) have the stability?

Setting of one-dimensional

 \mathcal{A} :finite set (alphabet) $\mathcal{A}^{\mathbb{Z}}$:product space ($x \in \mathcal{A}^{\mathbb{Z}} \ x = \{x_i\}_{i \in \mathbb{Z}}$) $\mathbf{A}^{\mathbb{Z}}$ is a compact metric space.

$$d(x,y) = \frac{1}{2^i} \ (i = \inf\{|i| \in \mathbb{Z}_{\ge 0} | x_i \neq y_i\})$$

 ${\hfill\blacksquare}$ Define the shift map $\sigma:\mathcal{A}^{\mathbb{Z}}\to\mathcal{A}^{\mathbb{Z}}$ as

$$\sigma(\{x_i\}) = \{x_{i+1}\}.$$

• $(\mathcal{A}^{\mathbb{Z}}, \sigma)$ is called the full-shift.

• $w = w_0 w_1 \cdots w_{n-1} \in \mathcal{A}^n$, we call w a word of length n.

Setting of one-dimensional

definition 1 (Subshift)

 $X \subset \mathcal{A}^{\mathbb{Z}}, \sigma {:} \textit{the shift map of } \mathcal{A}^{\mathbb{Z}}$

 (X, σ_X) is called subshift if X satisfis the following two conditions:

- X is a closed set.
- $\bullet \ \sigma^{-1}X = X$

definition 2 (Cylinder set)

 $w = w_0 w_1 \cdots w_{n-1} \in \mathcal{A}^n$

$$[w] = \left\{ x \in \mathcal{A}^{\mathbb{Z}} | x_i = w_i \text{ for } i = 0, 1, \cdots, n-1 \right\}$$

• We call [w] the cylinder set.

Setting of one-dimensional

definition 3 (subshift of finite type)

A subshift X is the subshift of finite type

$$\stackrel{\text{def}}{\longleftrightarrow}$$

$$\exists \text{ finite set } F \subset \bigcup_{n \ge 1} \mathcal{A}^n \text{ s.t.}$$

$$X = \{x \in \mathcal{A}^{\mathbb{Z}} : \sigma^n(x) \notin \bigcup_{w \in F} [w] \forall n \in \mathbb{Z}\}$$

• We call F the set of forbidden words.

$$||f||_{Lip} := ||f||_{\infty} + c(f)$$

 $\blacksquare ||f||_{\infty} = \sup |f|$

• c(f):The smallest Lipschitz constant of f

The stability of one-dimensional

Theorem 1 ([Gonschorowski et.al. 2021])

- *F* : the set of forbidden words of length 2
- X = SFT(F) ⊂ A^ℤ:one-dimensional aperiodic irreducible subshift of finite type.
- *f*: the penalty function (Lipschitz) defined by :

$$f(x) = \begin{cases} -1 & \text{if } x_0 x_1 \in F \\ 0 & \text{otherwise} \end{cases}$$

٠

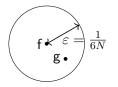
■ $\exists \varepsilon > 0 \ s.t. \ \forall g \in \operatorname{Lip}(\mathcal{A}^{\mathbb{Z}}) \ \textit{with} \ ||f - g||_{Lip} < \varepsilon$,

Every g-maximizing measure is supported on X.

Ideas of the proof of Theorem 1

- X:Aperiodic irreducible subshift of finite type
- $\rightarrow \ ^{\exists}N \geq 0 \ s.t. \ ^{\forall}i,j \in \mathcal{A}, \ ^{\exists}w \text{ word with length } N \text{ s.t. there is no forbidden word in } iwj.$

• Let
$$\varepsilon = \frac{1}{6N}$$



Show that every maximizing measure of g is supported on X.

Ideas of the proof of Theorem 1

 \star Goal of the proof

- μ :invariant measure supported on X^c
- g:Lipschitz function ($||f g||_{Lip} < \varepsilon$)
- $\rightarrow\,$ Show that there exists an invariant probability measure $\nu\,$ supported on X such that

$$\int g d\mu < \int g d\nu.$$

 $I = \{x \in X | f(x) = 0\}$ (i) $\mu(I^c) \ge \frac{1}{2N}$ (ii) $\mu(I^c) < \frac{1}{2N}$

Use the slicing and coupling technique.

Sketch of the coupling and slicing

- μ : ergodic
- By the Birkoff ergodic theorem we have

$$\lim_{n \to +\infty} \frac{1}{n} \# \{ i \in \{0, 1, \cdots, n-1\} \mid \sigma^{i} x \in I^{c} \}$$

$$= \mu(I^c) < \frac{1}{2N} \ \mu\text{-a.e.} x.$$

• Take *x* satisfing above.

Sketch of the coupling and slicing

- Marking $i \in \mathbb{N}$ s.t. $\sigma^i x \in I^c$, we make "bad blocks".
- we replace the words in bad blocks and check this implies

$$\int g d\mu < \int g d\nu$$

for some σ -invariant measure ν supported on X.

Setting of two-dimensional

\mathcal{A} :finite set

■ $\mathcal{A}^{\mathbb{Z}^2} \stackrel{\sigma}{\curvearrowleft} \mathbb{Z}^2$ where $\sigma^{(n,m)}(\{x_{(i,j)}\}_{(i,j)\in\mathbb{Z}^2}) = x_{(i+n,j+m)}$ ■ For each $n \ge 1$

$$\Lambda_n := [-n, n] \times [-n, n] \cap \mathbb{Z}^2$$

For $x \in A^{\mathbb{Z}^2}$ x_{Λ_n} denotes the restriction of x on Λ_n

definition 4

X is the subshift fo finite type if $\exists n \ge 1, \exists F \subset \mathcal{A}^{\Lambda_n}$ s.t.

$$X = \{ x \in \mathcal{A}^{\mathbb{Z}^2} | (\sigma^{(u_1, u_2)}(x))_{\Lambda_n} \notin F, \ \forall (u_1, u_2) \in \mathbb{Z}^2 \}$$

The stability of two-dimensional

Theorem 2 ([Gonschorowski et.al. 2021])

- There exists a shift of finite type X = SFT(F)
- F:the set of 2 × 2 forbidden blocks

• *f*:the penalty function defined by :

$$f(x) = \begin{cases} -1 & \text{if } \frac{x_{01}}{x_{00}} \frac{x_{11}}{x_{10}} \in F \\ 0 & \text{otherwise} \end{cases}$$

•

■
$$\forall \varepsilon > 0, \exists g \in \operatorname{Lip}(\mathcal{A}^{\mathbb{Z}^2})$$
 with $||f - g||_{Lip} < \varepsilon$ and $\exists g - maxmizing$ measure μ_g is supported on X^c .

- The SFT in the previous Theorem is the Robinson tiling.
 - The Robinson tiling has no periodic point.
 - The topological entropy of the Robinson tiling is zero.
- Dynamical properties of the Robinson tiling are much different from one-dimensional SFT.
- ightarrow We pay attention to the two-dimensional SFT with
 - "many" periodic points
 - positive topological entropy.

It is natural to ask whether the stability holds for a SFT where positive topological entropy.

The hard square shift

Define the penalty function

$$f(x) = \begin{cases} -1 & \frac{x_{10} \ x_{11}}{x_{00} \ x_{01}} \in F \\ 0 & \text{otherwise} \end{cases}$$

Problem

$${}^{\exists} \varepsilon > 0 \text{ s.t. } {}^{\forall} g \in \operatorname{Lip}(\mathcal{A}^{\mathbb{Z}^2}) \text{ with } ||f - g||_{\operatorname{Lip}} < \varepsilon$$

Every g-maximizing measure is supported on X.

References

Juliano S. Gonschorowski, Anthony Quas, & Jason Siefken. (2021). Support Stability of Maximizing Measures for Shifts of Finite Type. Ergodic Theory and Dynamical Systems. 41(3). pp. 869 - 880

BRIAN MARCUS & RONNIE PAVLOV. (2013). Approximating entropy for a class of \mathbb{Z}^2 Markov random fields and pressure for a class of functions on \mathbb{Z}^2 shifts of finite type. Ergodic Theory and Dynamical Systems. 33(1). pp. 186 - 220