Relative Dynamics and Stability of Point Vortices

Tomoki Ohsawa

May 28, 2024

Supported by NSF Grant DMS-2006736

Dynamics of Hurricanes?

Source: U. Washington News & NOAA

Tomoki Ohsawa (UT<u>–Dallas</u>

Dynamics of Hurricanes?

Source: U. Washington News & NOAA

Tomoki Ohsawa (UT–Dallas

Point Vortex on \mathbb{R}^2

Point vortex with circulation
$$\Gamma$$
 at $\mathbf{x}_0 = (x_0, y_0)$
 \uparrow
Vorticity $\xi(\mathbf{x}) = \nabla \times \mathbf{u}(\mathbf{x}) = \Gamma \, \delta(\mathbf{x} - \mathbf{x}_0)$

With $\nabla \cdot \mathbf{u} = 0$,

$$\mathbf{u}(\mathbf{x}) = \frac{\Gamma}{2\pi \|\mathbf{x} - \mathbf{x}_0\|^2} (-(y - y_0), x - x_0)$$

3/32

Dynamics of *N* Point Vortices on \mathbb{R}^2

Each point vortex j located at $\mathbf{x}_j \in \mathbb{R}^2$ is convected by the net velocity of the other vortices:

$$\dot{\mathbf{x}}_j(t) = \sum_{\substack{1 \leq k \leq N \ k \neq j}} \mathbf{u}_k(\mathbf{x}_j(t)),$$

$$\begin{bmatrix} \Gamma_1 > 0 \\ \bullet \\ \mathbf{x}_1 \end{bmatrix} \qquad \begin{bmatrix} \Gamma_3 > 0 \\ \bullet \\ \bullet \\ \mathbf{x}_3 \end{bmatrix}$$

 $rac{1}{r_2} = 0$

which gives, writing $\mathbf{x}_j = (x_j, y_j)$,

$$\dot{x}_{j} = -\frac{1}{2\pi} \sum_{\substack{1 \le k \le N \\ k \ne j}} \Gamma_{k} \frac{y_{j} - y_{k}}{\|\mathbf{x}_{j} - \mathbf{x}_{k}\|^{2}}, \qquad \dot{y}_{j} = \frac{1}{2\pi} \sum_{\substack{1 \le k \le N \\ k \ne j}} \Gamma_{k} \frac{x_{j} - x_{k}}{\|\mathbf{x}_{j} - \mathbf{x}_{k}\|^{2}}.$$

Dynamics of *N* Point Vortices on \mathbb{R}^2

Or, by setting $q_j := x_j + iy_j \in \mathbb{C}$,

$$\dot{q}_j = rac{\mathrm{i}}{2\pi}\sum_{\substack{1\leq k\leq N\k
eq j}} {\sf \Gamma}_k rac{q_j-q_k}{|q_j-q_k|^2}.$$

Also a Hamiltonian system: Writing

$$r_j := \sqrt{|\Gamma_j|} x_j, \qquad p_j := \operatorname{sgn}(\Gamma_j) \sqrt{|\Gamma_j|} y_j,$$

we have

$$\dot{r}_j = \frac{\partial H}{\partial p_j}, \qquad \dot{p}_j = -\frac{\partial H}{\partial r_j},$$

where

$$H(r,p) := -\frac{1}{4\pi} \sum_{1 \leq i < j \leq N} \Gamma_i \Gamma_j \ln \|\mathbf{x}_i - \mathbf{x}_j\|^2.$$

Applications of Point Vortex Dynamics

- Fluid dynamics
- Superfluidity and superconductivity

Abrikosov vortices in Type II superconductor from Essmann and Trauble (1967)

Relative/Shape Dynamics of Hurricanes?

Goal

Dynamics of "shape" of N vortices (regardless of its position and orientation)?

E.g., if N = 3, "shape" of 3 vortices = triangle formed by them

Equations of Relative Motion?

Inter-vortex distance:

$$\ell_{jk} := \|\mathbf{x}_j - \mathbf{x}_k\|$$

Equations of Relative Motion (Newton, Aref,...):

$$\frac{d}{dt}\ell_{jk}^{2} = \frac{2}{\pi} \sum_{\substack{1 \le l \le N \\ l \ne j, l \ne k}} \Gamma_{l}A_{jkl} \left(\frac{1}{\ell_{kl}^{2}} - \frac{1}{\ell_{jl}^{2}}\right),$$
$$\frac{d}{dt}A_{jkl} = ???$$

where $A_{jkl} :=$ signed area of vortex triangle jkl.

Equations of Relative Motion?

Inter-vortex distance:

$$\ell_{jk} := \|\mathbf{x}_j - \mathbf{x}_k\|$$

Equations of Relative Motion (Newton, Aref,...):

$$\frac{d}{dt}\ell_{jk}^2 = \frac{2}{\pi} \sum_{\substack{1 \le l \le N \\ l \ne j, l \ne k}} \Gamma_l A_{jkl} \left(\frac{1}{\ell_{kl}^2} - \frac{1}{\ell_{jl}^2} \right),$$
$$\frac{d}{dt} A_{jkl} = ???$$

where $A_{jkl} :=$ signed area of vortex triangle *jkl*.

Question

Hamiltonian formulation of relative dynamics?

SE(2)-Action on the Plane \mathbb{R}^2

• Symmetry group

 $\begin{aligned} \mathsf{SE}(2) &:= \mathsf{SO}(2) \ltimes \mathbb{R}^2 \\ &= \mathsf{AII \ rotations \ of \ } \mathbb{R}^2 \text{ and translations of \ } \mathbb{R}^2 \text{ combined} \end{aligned}$

• SE(2)-action on \mathbb{R}^2 :

$\mathsf{SE}(2)\text{-}\mathbf{Action}$ on the Plane \mathbb{R}^2

• Symmetry group

 $\begin{aligned} \mathsf{SE}(2) &:= \mathsf{SO}(2) \ltimes \mathbb{R}^2 \\ &= \mathsf{All \ rotations \ of \ } \mathbb{R}^2 \text{ and } \text{ translations of } \mathbb{R}^2 \text{ combined} \end{aligned}$

• SE(2)-action on \mathbb{R}^2 :

Reduction by \mathbb{R}^2 **: 1st Stage of** SE(2)-**Reduction**

• Translational action by $\mathbb{R}^2\cong\mathbb{C}:$

 $\mathbb{C} imes \mathbb{C}^{N} o \mathbb{C}^{N}; \qquad (a,\mathbf{q}:=(q_{1},\ldots,q_{N}))\mapsto (q_{1}+a,\ldots,q_{N}+a)$

• Momentum map (conserved quantity):

$$\mathsf{I}(\mathsf{q}) \coloneqq -\mathrm{i} \sum_{j=1}^{N} \mathsf{\Gamma}_{j} q_{j}$$
 ("linear impulse")

\mathbb{R}^2 -Reduced Space

For $\Gamma \neq 0$, \mathbb{R}^2 -Reduced Space:

$$Z := \mathbf{I}^{-1}(0) \cong \mathbb{C}^{N-1} \\ = \{ (z_1, \dots, z_{N-1}) \},\$$

where z_i 's are relative coordinates w.r.t. last vortex:

$$(z_1,\ldots,z_{N-1}) := (q_1-q_N,\ldots,q_{N-1}-q_N).$$

Reduction by SO(2): 2nd Stage of SE(2)-Reduction

• SO(2)
$$\cong$$
 \mathbb{S}^1 -action on \mathbb{C}^{N-1} :

$$\mathbb{S}^1 \times \mathbb{C}^{N-1} \to \mathbb{C}^{N-1}; \ \left(e^{\mathrm{i}\theta}, z = (z_1, \dots, z_{N-1})\right) \mapsto \left(e^{\mathrm{i}\theta}z_1, \dots, e^{\mathrm{i}\theta}z_{N-1}\right)$$

Momentum map (conserved quantity):

$$\mathcal{K}(z)=-rac{1}{2}z^{*}\mathcal{K}z$$
 ("angular impulse"),

where \mathcal{K} is a non-singular matrix depending on $\{\Gamma_j\}_{j=1}^N$.

• Reduced space $K^{-1}(c_0)/\mathbb{S}^1$; this is where the **relative dynamics** is.

Reduction by SO(2): 2nd Stage of SE(2)-Reduction

• SO(2)
$$\cong$$
 \mathbb{S}^1 -action on \mathbb{C}^{N-1} :

$$\mathbb{S}^1 \times \mathbb{C}^{N-1} \to \mathbb{C}^{N-1}; \ \left(e^{\mathrm{i}\theta}, z = (z_1, \dots, z_{N-1})\right) \mapsto \left(e^{\mathrm{i}\theta}z_1, \dots, e^{\mathrm{i}\theta}z_{N-1}\right)$$

Momentum map (conserved quantity):

$$\mathcal{K}(z)=-rac{1}{2}z^{*}\mathcal{K}z$$
 ("angular impulse"),

where \mathcal{K} is a non-singular matrix depending on $\{\Gamma_j\}_{j=1}^N$.

• Reduced space $K^{-1}(c_0)/\mathbb{S}^1$; this is where the **relative dynamics** is.

Problem

 $K^{-1}(c_0)/\mathbb{S}^1$ is a rather awkward space to work with.

Getting Around $K^{-1}(c_0)/\mathbb{S}^1$ via Symplectic Geometry

Recall:

$$Z=\{(z_1,\ldots,z_{N-1})\}\cong (\mathbb{C}ackslash\{0\})^{N-1} \quad ext{and} \quad \mathcal{K}(z)=-rac{1}{2}z^*\mathcal{K}z.$$

Getting Around $K^{-1}(c_0)/\mathbb{S}^1$ via Symplectic Geometry

Recall:

$$Z = \{(z_1, \ldots, z_{N-1})\} \cong (\mathbb{C} \setminus \{0\})^{N-1}$$
 and $K(z) = -\frac{1}{2}z^*\mathcal{K}z.$

Consider Lie group

$$\mathsf{U}(\mathcal{K}) = \left\{ U \in \mathbb{C}^{(N-1) \times (N-1)} \mid U^* \mathcal{K} U = \mathcal{K} \right\}$$

and its Lie algebra

$$\mathfrak{u}(\mathcal{K}) = \left\{ \tilde{\mu} \in \mathbb{C}^{(N-1) \times (N-1)} \mid \tilde{\mu}^* \mathcal{K} + \mathcal{K} \tilde{\mu} = 0 \right\}$$
$$\cong \left\{ i \mu \in \mathbb{C}^{(N-1) \times (N-1)} \mid \mu^* = \mu \right\} \cong \mathfrak{u}(N)$$

via $i\mu := \mathcal{K}\tilde{\mu}$, and consider

$$\mathbf{J}\colon Z\to \mathfrak{u}(\mathcal{K})^*\cong \mathfrak{u}(\mathcal{K}); \qquad z\mapsto \mathrm{i} z z^*,$$

Getting Around $K^{-1}(c_0)/\mathbb{S}^1$ via Symplectic Geometry

Then

$$\mathcal{K}^{-1}(c_0)/\mathbb{S}^1\cong ext{coadjoint orbit }\mathcal{O}_{\mu_0} ext{ in }\mathfrak{u}(\mathcal{K})^*,$$

where

$$\mathcal{O}_{\mu_0} = \left\{ U\mu_0 U^* \in \mathbb{C}^{(N-1)\times(N-1)} \mid U \in \mathsf{U}(\mathcal{K}) \right\} \subset \underbrace{\mathfrak{u}(\mathcal{K})^*}_{\mathsf{U}}$$

vector space!

Hamiltonian Formulation of Relative Dynamics

Theorem

The relative dynamics of N point vortices with non-vanishing angular impulse is governed by a Lie–Poisson equation in u(K)* ≃ u(N):

$$\dot{\mu} = -\operatorname{ad}_{Dh(\mu)}^* \mu = -\mu Dh(\mu) \mathcal{K}^{-1} + \mathcal{K}^{-1} Dh(\mu) \mu,$$

where $\mu := \mathbf{J}(z) = \mathbf{i} z z^*$ and h is the Hamiltonian, i.e., $H = h \circ \mathbf{J}$. **2** $C_j(\mu) := \operatorname{tr}((\mathbf{i} \, \mathcal{K} \mu)^j)$ is a **Casimir (conserved quantity)** for any $j \in \{1, \dots, N-1\}$.

Remark

Lie–Poisson equations are a special class of Hamiltonian systems defined on the dual of a Lie algebra.

Example: N = 3

Example: Relative Dynamics for N = 3

$$\dot{\mu} = -\operatorname{ad}_{Dh(\mu)}^{*}\mu \quad \text{with} \quad \mu = \mathrm{i} \begin{bmatrix} \mu_{1} & \mu_{3} + \mathrm{i}\,\mu_{4} \\ \mu_{3} - \mathrm{i}\,\mu_{4} & \mu_{2} \end{bmatrix} \in \mathfrak{u}(\mathcal{K})^{*} \cong \mathfrak{u}(2)$$

where

are the shape variables.

Application of Relative Dynamics

Next Goal

Apply the above formulation to stability of relative equilibria.

Next Goal

Apply the above formulation to stability of relative equilibria.

A relative equilibrium is a solution $t \mapsto \{\mathbf{x}_j(t)\}_{j=1}^N$ of the original *N*-vortex system where each $\{\mathbf{x}_j(t)\}_{j=1}^N$ is obtained by a rigid (Euclidean) transformation of the initial point $\{\mathbf{x}_j(0)\}^N$.

Example of Relative Equilibrium

Example (N = 3; Equilateral Triangle)

$$(\Gamma_1,\Gamma_2,\Gamma_3)=(1,2,3)$$

 $(\Gamma_1, \Gamma_2, \Gamma_3)$ being at the vertices of an equilateral triangle gives a relative equilibrium.

Stability of Relative Equilibria

The stability of equilateral triangle relative equilibria depends on the circulations:

 $(\Gamma_1, \Gamma_2, \Gamma_3) = (1, 2, 3)$ $(\Gamma_1, \Gamma_2, \Gamma_3) = (1, -2, 3)$

Relative Equilibria is a Fixed Point in Relative Dynamics

Relative Equilibria is a Fixed Point in Relative Dynamics

Main Idea

Analyze the stability of the former by doing it for the latter.

Main Drawback of Lie–Poisson Relative Dynamics

No free lunch!

- Advantage: Our relative dynamics is defined on a vector space u(N) (as opposed to a complicated manifold)
- **Disadvantage**: The matrix μ becomes huge as N increases:

$$\mu = \mathbf{i} \begin{bmatrix} \mu_1 & \mu_{12} \cdots \cdots & \mu_{1,N-1} \\ \mu_{12}^* & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \mu_{N-2,N-1} \\ \mu_{1,N-1}^* \cdots & \mu_{N-2,N-1}^* & \mu_{N-1} \end{bmatrix} \in \mathfrak{u}(N) \cong \mathbb{R}^{(N-1)^2},$$

i.e., μ has many redundant variables—the price we pay for formulating the dynamics in a vector space.

Rank-1 Constraint in Lie–Poisson Relative Dynamics

Recall that μ is defined as

$$\mu = i \underbrace{zz^*}_{\text{Hermitian}} \text{ with } z := \begin{bmatrix} q_1 - q_N \\ \dots \\ q_{N-1} - q_N \end{bmatrix} \neq 0 \text{ ,i.e., rank } \mu = 1.$$

Rank-1 Constraint in Lie–Poisson Relative Dynamics

Recall that $\boldsymbol{\mu}$ is defined as

$$\mu = i \underbrace{zz^*}_{\text{Hermitian}} \text{ with } z := \begin{bmatrix} q_1 - q_N \\ \dots \\ q_{N-1} - q_N \end{bmatrix} \neq 0 \text{ ,i.e., rank } \mu = 1.$$

Lemma

Let $A = (a_{ij}) \in \mathbb{C}^{n \times n}$ be a Hermitian matrix with no vanishing elements with $n \ge 2$. Then rank A = 1 iff the determinants of all the 2×2 submatrices shown below vanish.

a_{11}	a_{12}	a_{13}	•••		a_{1n}
a_{21}	a_{22}	a_{23}			a_{2n}
a_{31}	a_{32}	<i>a</i> ₃₃		•••	a_{3n}
a_{41}	a_{42}	a_{43}			a_{4n}
:	÷	÷	:		÷
a_{n1}	a_{n2}	a_{n3}		•••	a_{nn}

Constraints in Relative Dynamics

Proposition

Let

 $\mathfrak{u}(N) := \{\mu \in \mathfrak{u}(N) \mid all \text{ entries of } \mu \text{ are non-zero} \}$

and set

$$R: \mathfrak{u}(N) \to \mathbb{R}^{(N-2)^2};$$

 $\mu \mapsto all real and imaginary parts of the above determinants.$

Then the relative dynamics $t \mapsto \mu(t)$ is constrained in the submanifold

$$\{\mu\in \mathfrak{i}(\mathsf{N})\mid ext{ rank }\mu=1\}=\mathsf{R}^{-1}(0).$$

of dimension 2N - 3.

Summary of Lie–Poisson Relative Dynamics

Dynamics: Lie–Poisson equation (special class of Hamiltonian system) in u(N):

$$\dot{\mu} = -\operatorname{ad}^*_{Dh(\mu)}\mu$$

• Invariants: Casimirs

$$C_j(\mu) := \operatorname{tr}((\operatorname{i} \mathcal{K} \mu)^j) \quad \forall j \in \{1, \dots, N-1\}$$

• Constraints: The dynamics is constrained to the zero level set

$$R^{-1}(0) = \{ \mu \in \mathfrak{u}(N) \mid \operatorname{rank} \mu = 1 \}$$

of function R taking values in $\mathbb{R}^{(N-2)^2}$.

Stability of Relative Equilibria

Theorem (Stability Condition for Relative Equilibria)

Let $\mu_0 \in R^{-1}(0)$ be a fixed point of the Lie–Poisson dynamics, and $\{C_j\}_{j=1}^K$ be a subset of the Casimirs $\{C_j\}_{j=1}^{N-1}$ such that $\{C_j\}_{j=1}^K \cup \{R\}$ are independent at μ_0 . Suppose that there exist constants $\mathbf{a}_0 \in \mathbb{R} \setminus \{0\}$, $\{\mathbf{a}_i \in \mathbb{R}\}_{i=1}^K$ and $\{\mathbf{b}_i \in \mathbb{R}\}_{i=1}^{(N-2)^2}$ such that

$$f(\mu) := a_0 h(\mu) + \sum_{i=1}^{\kappa} a_i C_i(\mu) + \sum_{i=1}^{(N-2)^2} b_i R_i(\mu)$$

satisfies the following:

() $Df(\mu_0) = 0; and$

1 the Hessian $D^2 f(\mu_0)$ is positive definite on the tangent space at μ_0 of the level set

$$M \mathrel{\mathop:}= R^{-1}(0) \cap \left(igcap_{j=1}^\kappa C_j^{-1}(C_j(\mu_0))
ight).$$

Then μ_0 is Lyapunov stable.

Stability of Relative Equilibria

Intuitive idea behind the theorem:

The Hamiltonian h (which is an invariant of dynamics) takes a local minimum at fixed point μ_0 on M.

- Hamiltonian $h(\mu) = -\frac{1}{4\pi} \left(\Gamma_1 \Gamma_3 \ln \mu_1 + \Gamma_2 \Gamma_3 \ln \mu_2 + \Gamma_1 \Gamma_2 \ln(\mu_1 + \mu_2 - 2\mu_3) \right)$
- Casimir $C_1(\mu) = \frac{\Gamma_2(\Gamma_1+\Gamma_3)\mu_1+\Gamma_1(\Gamma_2+\Gamma_3)\mu_2-2\Gamma_1\Gamma_2\mu_3}{\Gamma_1+\Gamma_2+\Gamma_3}$
- Constraint $R(\mu) = \det \mu = \mu_1 \mu_2 \mu_3^2 \mu_4^2 = 0$
- Fixed point $\mu_0 := (1, 1, 1/2, -\sqrt{3}/2)$

satisfies (i) $Df(\mu_0) = 0$ and (ii) $D^2f(\mu_0) > 0$ on the tangent space at μ_0 of $R^{-1}(0) \cap C_1^{-1}(C_1(\mu_0))$.

Proposition (Reproducing Synge (1949) and Aref (1979))

An equilateral triangle relative equilibrium is stable if $\Gamma_1\Gamma_2 + \Gamma_1\Gamma_3 + \Gamma_2\Gamma_3 > 0$ and is unstable if $\Gamma_1\Gamma_2 + \Gamma_1\Gamma_3 + \Gamma_2\Gamma_3 < 0$.

$$\begin{array}{c} (\Gamma_1,\Gamma_2,\Gamma_3)=(1,2,3) \\ \Longrightarrow \ \Gamma_1\Gamma_2+\Gamma_1\Gamma_3+\Gamma_2\Gamma_3=11>0 \end{array} \qquad (\Gamma_1,\Gamma_2,\Gamma_3)=(1,-2,3) \\ \Longrightarrow \ \Gamma_1\Gamma_2+\Gamma_1\Gamma_3+\Gamma_2\Gamma_3=-5<0 \end{array}$$

Examples: Equilateral Triangle with Center

Equilateral triangle/Square with center:

Relative equilibria $\forall \gamma \in \mathbb{R}$.

Example: Equilateral Triangle with Center

Proposition

Equilateral triangle with center is Lyapunov stable if $\gamma < -3$ or $0 < \gamma < 1$ and linearly unstable if $\gamma > 1$.

$$\gamma = 1/2$$
 $\gamma = 3$

Example: Square with Center

Proposition

Square with center is Lyapunov stable if 0 < γ < 9/4 and linearly unstable if γ < -1/2 or γ > 9/4.

$$\gamma = 2$$
 $\gamma = 3$

- Hamiltonian formulation of *N*-vortex relative dynamics
 - Dynamics in (the dual of) a Lie algebra, i.e., a vector space
 - with constraints and invariants
- Found a sufficient condition for stability of relative equilibria.
 - Can be used to derive stability condition in terms $\{\Gamma_i\}_{i=1}^N$
 - Used to find stability condition of following relative equibria:
 - ★ equilateral triangle with center
 - ★ square with center