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The motivation behind the problem:
Infectious disease curve
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I The motivation behind the problem:
Infectious disease curve
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COVID-19 weekly new cases in Cameroon showing the inflection point
P, (red arrow) during the first half part of the second wave between
week 5 of 2021 and week 12 of 2021
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The proposed solution

To develop a robust method for predicting the
changes and transition between endemic and
epidemic phases of an infectious disease, using
COVID outbreak as an example

v" We define indicators for detecting changes and
transitions between endemic and epidemic phases
using seven scalars calculated from daily reported
news cases and deaths. The indicators chosen are

related to the form of the empirical distribution of new

cases seen over a fourteen day period chosen to
smooth out the influence of weekends when fewer
new cases are registered.

v" We used the Principal Component Analysis to create
a score from the seven proposed indicators that allows
an acceptable level of forecasting performance by
providing a realistic retro predicted date for the
rupture of the stationary endemic model corresponding
to the entry into the epidemic exponential growth
phase.
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Background

The modeling of infectious disease started as early as 1760
by Daniel Bernoulli who proposed the famous deterministic
mathematical model Susceptible Infected SI to solve the
epidemic wave but not modeled the endemic state of smallpox

given as:
d — _I — — —
— = S()I(¢), .= Ns(t)l(t) vI(t),

where vis the specific mortality rate due to the disease,
/N the disease transmission rate, S(t) the number of
susceptible individuals, I1(t) the number of infectious
individuals at time t > 0.
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I Background

3 | =

Schematic diagram of a simple SEIR model

Flow chart illustrating the epidemiology ageing model
with four age classes, f,, f and f3 are non-zero
fertility rates, when a disease like an epidemic
outbreak concerning all the age classes occurs. v; is
the probability of remaining in the same state and «;
is the probability of going to another state.
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Background
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I Background: Phenomenological models

Endemic phase: During the endemic phase, the dynamics of new cases appears
to fluctuate around an average value independently of the number of cases.
Therefore the average cumulative number of cases is given by

CR(t) = N() + (t = t()) X a, for ¢ S [t(), tl], (28)

where £y denotes the beginning of the endemic phase, Ny is the number of new
cases at time £p, and a is the average value of the daily number of new cases.

We assume that the average daily number of new cases is constant. Therefore
the daily number of new cases is given by

CR'(t) = a. (2.9)

10
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Background: Phenomenological models
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In this figure we plot with multiple colors the
phenomenological models obtained for each period.
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In this figure we plot in blue the first derivative of the
phenomenological model and in black the data.

Data is the daily reported number of new cases with
a 14-day rolling average.
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Background

NON-SPATIAL MODELS
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. Models

We use in the following a moving window of length 14 days for calculating the empirical distribution of the
random variable equal to the number of daily reported new cases. The empirical distribution N:on day t is
obtained from the daily number of reported new cases considered as a random variable N:= (N(t-13),N(t-12),...,N(t)).

We consider the first four moments of N;. We start with the mean

13
N(t — 1)
0

u=E(N;) = =

14 ’

where E is the expectation operator, with the standard deviation

o =E((N, —u)2>1/2 =\

13
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Models

ID index is a good predictor
of COVID-19 epidemic peaks

The index of dispersion (ID) a- - 100000
is defined by the following 5 =1 £0000
formula: é‘ 2 60000 §

ID = OZ(Nt)/E(Nt) E O - - 20000
- — .

ID is equal to 0 for a constant
random variable N: and to 1 for
a Poisson variable.
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ID index (in blue) as predictor of the epidemic
waves for Japan COVID-19 outbreak, with
Daily new cases superimposed (in green).
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Models

The normality index KStest is defined as the fitting criterion of the Kolmogorov-Smirnov test of
adequation to the normal distribution having E(N:) and o(N:) as respectively
expectation and standard deviation of the empirical distribution of N.
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Models

The skewness of the random variable N:is the third standardized moment

defined as
Ny — 2
Skew(N;) = E (( ta ) ) :

Recall that the skewness verifies

E(N?) — 3uc? — > E(N}) 1 1
Skew(Ny) = L 3 = a3t — 3C’V + ovs )

The kurtosis is the fourth standardized moment, defined as

Kurt(N;) = E ((Nta_ “)4> .

The empirical entropy £ of the empirical distribution is defined as follows:

EN)=— ),  pilogp

i=1:d with p; >0

where the piare the weights of a histogram on d value intervals of N..
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I We calculate at start of first wave in USA the entropy E whose value is equal to:
— Y¢-1pilogp; = pilogps + p;logp, + p3logps + palogps + pslogps + pelogps = 0.686

USA 1st wave

ance 34 wave
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The empirical distribution of the daily new cases at the start of the USA first wave and France third wave
18
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All indicators were calculated on same moving window respecting following rules:

e Choose the same length of moving window as for the CV calculation (14 days)

e Use the same time step as for moving the window (1 day)

e Move the window from the start to the end of the COVID-19 outbreak observed
between January 2020 and July 2022.

Values of the breakdown coefficients during the first two weeks moving windows W(i) (i = 0 to 4)

for Japan during early January 2020.
i kurtosis entropy skew CcVv ID kstest AlID(i)

0 -0.060606 1.098612 1.392621 1.987138 -0.072551 0.000924 (.57
1 -1.100000 1.386294 0.948683 1.640825 -0.113943 0.000924 040
2 -1.644444 1.609438 0.596285 1.392286 -0.159701 0.000924 0.32
3 -1.916667 1.791759 0.288675 1.198289 -0.210853 0.000924 0.275
4 -2.000000 1.945910 0.000000 1.037749 -0.268845 0.000924

19



; Motivation >> Background >-> Ongoing Work > Conclusion >

Values of breakdown parameterss- 300k e :urtosis
~ Entropy
47 — skew
_— v
31 - A _A - ‘ — ID
R ’ ' ' \/ —— KStest
)
o
14
OL{ [ lh“\ A A T Aim M\
|| 1Y Ry
1 - | l
2
Q — Ty -
1 1 L Ll 1 ) 1 IDays
T § £ § § § 8§ 38
~ g ~ & g ~ ~ g
= = =
§ % & 8§ 35 & & 3

Indicators and New Cases (in grey) in Japan during COVID-19 Outbreak.
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Principal Component Analysis

By making a principal component analysis

we obtain the percentage of the variance explained by each principal component

71.62
17.54
6.87
3.97

Ezxplain =

and the matrix giving the projection coefficients of the principal components

0.5234 —-0.2243 0.7969 —0.2018
coef f = 0.5452 —0.2406 —-0.2310 0.7691

0.5401 —-0.1760 —0.5575 —0.6054

0.3703 09278  0.0270  0.0358

By using the first column of the above matrix, we deduce the first principal

component o
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Principal Component Analysis

12

10

0.52CV«(N:) + 0.55Skew;(N:) + 0.54Kurt.(N:) + 0.37E(N) 4
which explains 71% of the variability. .ok b

: s - . B | T R
Y é S Y

. s e ia H $ $ H H H : H H i ‘: i )
We deduce that Skewness, Kurtosis, and the 27 %L B B .‘;g o
PP I - - — 1 L {.1 .

| 4 AR

coefficient of variation (in decreasing order of ., ;::g SOV
importance) best explain the variability. L \ﬁ}‘mwa 5 \-‘,":-,\.t,az’.,, : 3,@- % ,,. ,‘; u‘g, {,‘.s"cxr.\.

a

: .
‘ "‘ :o .'0

Jul2020  Jan 2021' Jul2021  Jan2022  Jul2022  Jan 2023

In this figure we plot the first principal
component for Japan. The horizontal green
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Principal Component Analysis

We can conclude that among the
breakdown parameters, a good
predictor for epidemic waves is the
tirst PCA component because

its variations anticipate epidemic

peaks.
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, . , PCA1 = 8.86760799e-02 Kurt +
First Principal Component (blue) as predictor of
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PCA: Socio-economic-demographic influence
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Gini index and social fracture index have

the highest positive correlation of 0.45 and 0.46 ool ]
respectively in PC 1 while percentage of GDP devoted to | | | o orams | | |
health expenditure and demo-economic index have the

highest positive correlation in PC 2, whose values equal

to 0.65 and 0.41 respectively.
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Forecasting epidemic dynamics using spatial models

EpiMoRPH

Automated Engine

Synthesis with
time-series data

AIM 1

Spatial Model
Construction

How well do models perform?

- Model validation
- Model selection

Model re-fitting Use-case:

forecasts

Forecasting
(Single-model and Ensemble)

Y1

Y2

Y3

Y4

Y5

AIM 1

» Phase 1.1
* Phase 1.2

* Phase 1.3

AIM 2
» Phase 2.1
* Phase 2.2

* Phase 2.3

AIM 3

> Eval

¢ Training

« Select a set of candidate
models from the user-
contributed library (Al-assist)

+ Refit the models to new data
* Evaluate performance
* Produce location-specific

AIM 3

Which models are useful for my municipality, and
what do those models tell me?
User uploads geo-referenced surveillance data (time-series)

Optimization Engine | 92,..9

ann?®

* User-defined priorities and constraints (objective functions)
* Optimization to balance disease outcomes and equity
* Machine-assisted algorithm selection

Output: Output:
Parameterized Model Sets of spatial intervention
Realistic constraints strategies ranked by
and scenarios likelihood of success
25
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Summary and Conclusion

% We were able to builld a new

Wm0 T forecasting strategy for predicting an
" B B | epidemic wave that comes after an
| . B infectious disease's endemic stationary
| period.

L

, % The predictive power of the first
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Summary and Conclusion

- 100000

'\’\/ . 80000

- €0000

v ID index has often the main weight in

(Cases

-40000

the linear combination expressing PCA

Index of Dispersion
¢ B N W &

- 20000

ALl A A SANNMS T, on the breakdown coefficients. ID
§ § § § § § § § Davs waves occur 1n opposition of phase
with PCA but predicts also well the

ID index (in blue) as predictor of the epidemic new cases and death waves.

waves for Japan COVID-19 outbreak, with
Daily new cases superimposed (in green).
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Scientific publications
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% J. Waku, K. Oshinubi, U. Muhammed and J. Demongeot, Forecasting the
endemic/epidemic transition in COVID-19 in some countries: influence of the
vaccination, Disease, 2023.

» J. Demongeot, P. Magal and K. Oshinubi, . Forecasting the changes between
endemic and epidemic phases of a contagious disease, with the example of
COVID-19. Mathematical Medicine & Biology IMA, 2023 (Under peer review).
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