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Ongoing Work

The motivation behind the problem:
Infectious disease curve

vThere is a global pandemic

The pandemic outlook as at July 2023
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vThere are three stages of infectious disease 



Ongoing Work

The motivation behind the problem:
Infectious disease curve
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COVID-19 weekly new cases in Cameroon showing the inflection point 
PI (red arrow) during the first half part of the second wave between 
week 5 of 2021 and week 12 of 2021



ü  We define indicators for detecting changes and 
transitions between endemic and epidemic phases 
using seven scalars calculated from daily reported 
news cases and deaths. The indicators chosen are 

related to the form of the empirical distribution of new 
cases seen over a fourteen day period chosen to 

smooth out the influence of weekends when fewer 
new cases are registered.

ü We used the Principal Component Analysis  to create 
a score from the seven proposed indicators that allows 

an acceptable level of forecasting performance by 
providing a realistic retro predicted date for the 

rupture of the stationary endemic model corresponding 
to the entry into the epidemic exponential growth 

phase. 

The proposed solution

To develop a robust method for predicting the
changes and transition between endemic and
epidemic phases of an infectious disease, using
COVID outbreak as an example
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The modeling of infectious disease started as early as 1760
by Daniel Bernoulli who proposed the famous deterministic
mathematical model Susceptible Infected SI to solve the
epidemic wave but not modeled the endemic state of smallpox
given as:

𝑑𝑆
𝑑𝑡

= −
𝛽
𝑁
𝑆 𝑡 𝐼 𝑡 ,

𝑑𝐼
𝑑𝑡
=
𝛽
𝑁
𝑆 𝑡 𝐼 𝑡 − n𝐼 𝑡 ,

where n is the specific mortality rate due to the disease, 
𝛽/𝑁  the disease transmission rate, 𝑆 𝑡  the number of 
susceptible individuals, 𝐼(𝑡) the number of infectious 
individuals at time 𝑡 ³	0.

Background
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Background

Schematic diagram of a simple SEIR model
 

𝛽
𝑁 𝑆 𝑡 𝐼 𝑡
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Flow chart illustrating the epidemiology ageing model 
with four age classes, f1 , f2 and f3 are non-zero 
fertility rates, when a disease like an epidemic 
outbreak concerning all the age classes occurs. ν! is 
the probability of remaining in the same state  and ∝! 
is the probability of going to another state. 



Background
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Background
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Background: Phenomenological models
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Background: Phenomenological models

In this figure we plot in blue the first derivative of the 
phenomenological model and in black the data. 
Data is the daily reported number of new cases with
 a 14-day rolling average. 

In this figure we plot with multiple colors the 
phenomenological models obtained for each period. 



Background
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Models

We use in the following a moving window of length 14 days for calculating the empirical distribution of the
 random variable equal to the number of daily reported new cases. The empirical distribution Nt on day t is 
obtained from the daily number of reported new cases considered as a random variable Nt = (N(t−13),N(t−12),...,N(t)). 
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Models
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From these two first 
parameters, we can 
compute the coefficient 
of variation 

CV(Nt)= σ/μ
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Representation of new cases of COVID-19 (in green) and their CV coefficient of variation (in blue) 
during different waves of COVID-19, during the first wave in the USA (B) and during the third wave in 

France and Brazil (A and C).

The Figures shows a variation of the 
coefficient of variation at the frontier 
between endemic and epidemic stages, 
but the sense of this variation varies 
largely between the waves in the same 
country and between countries



Models
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The index of dispersion (ID) 
is defined by the following 
formula:

ID = s2(Nt)/E(Nt) 

 ID is equal to 0 for a constant 
random variable Nt and to 1 for 
a Poisson variable.

ID index (in blue) as predictor of the epidemic 
waves for Japan COVID-19 outbreak, with 
Daily new cases superimposed (in green). 

ID index is a good predictor 
of COVID-19 epidemic peaks



Models
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The normality index KStest is defined as the fitting criterion of the Kolmogorov-Smirnov test of 
adequation to the normal distribution having E(Nt) and s(Nt) as respectively 
expectation and standard deviation of the empirical distribution of Nt.



Models
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The skewness of the random variable Nt  is the third standardized moment 

where the pi are the weights of a histogram on d value intervals of Nt. 
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France 3rd wave USA 1st wave

Daily new cases number
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We calculate at start of first wave in USA the entropy E whose value is equal to:
	−∑"#$% 𝑝" log 𝑝" = 𝑝$ log 𝑝$ + 𝑝& log 𝑝& + 𝑝' log 𝑝' + 𝑝( log 𝑝( + 𝑝) log 𝑝) + 𝑝% log 𝑝% = 0.686

The empirical distribution of the daily new cases at the start of the USA first wave and France third wave
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All indicators were calculated on same moving window respecting following rules: 

• Choose the same length of moving window as for the CV calculation (14 days)
• Use the same time step as for moving the window (1 day)
• Move the window from the start to the end of the COVID-19 outbreak observed 
     between January 2020 and July 2022.
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Days

Values of breakdown parameters

Indicators and New Cases (in grey) in Japan during COVID-19 Outbreak. 
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Principal Component Analysis

By making a principal component analysis
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Principal Component Analysis

0.52CVs(Nt) + 0.55Skews(Nt) + 0.54Kurts(Nt) + 0.37Es(Nt) 
which explains 71% of the variability.
We deduce that Skewness, Kurtosis, and the 
coefficient of variation (in decreasing order of 
importance) best explain the variability. 

In this figure we plot the first principal 
component for Japan. The horizontal green 
lines correspond to ±1.
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Principal Component Analysis

First Principal Component (blue) as predictor of 
COVID-19 Daily new cases waves (green) in Japan

We can conclude that among the 
breakdown parameters, a good 
predictor for epidemic waves is the 
first PCA component because 
its variations anticipate epidemic 
peaks.

PCA1 = 8.86760799e-02 Kurt + 
1.73156383e-02 E + 1.25157924e-02 Skew + 
2.49657969e-02 CV + 9.95518350e-01 ID + 
1.05368220e-05 KS



PCA: Socio-economic-demographic influence

Gini index and social fracture index have
 the highest positive correlation of 0.45 and 0.46 
respectively in PC 1 while percentage of GDP devoted to 
health expenditure and demo-economic index have the 
highest positive correlation in PC 2,  whose values equal 
to 0.65 and 0.41 respectively. 
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Forecasting epidemic dynamics using spatial models
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Summary and Conclusion
v We were able to build a new 

forecasting strategy for predicting an 
epidemic wave that comes after an 
infectious disease's endemic stationary 
period. 

v The predictive power of the first 
principal component can be quantified 
by its performance ratio, that is, by the 
percentage of correct retro predictions  
for France obtained by fixing variation 
thresholds to forecast the occurrence of 
an epidemic wave.
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In this figure we plot the first principal 
component for France. The horizontal green 
lines correspond to ±1.



Summary and Conclusion

v ID index has often the main weight in 
the linear combination expressing PCA 
on the breakdown coefficients. ID 
waves occur in opposition of phase 
with PCA but predicts also well the 
new cases and death waves.
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ID index (in blue) as predictor of the epidemic 
waves for Japan COVID-19 outbreak, with 
Daily new cases superimposed (in green). 



Scientific publications

v J. Waku, K. Oshinubi, U. Muhammed and J. Demongeot, Forecasting the 
endemic/epidemic transition in COVID-19 in some countries: influence of the 
vaccination, Disease, 2023. 

v J. Demongeot, P. Magal and K. Oshinubi, . Forecasting the changes between 
endemic and epidemic phases of a contagious disease, with the example of 
COVID-19. Mathematical Medicine & Biology IMA, 2023 (Under peer review).
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Any questions?


