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Introduction

I am interested in RANDOM dynamical systems. One of my
motivations is the following theorem regarding Random
Relaxed Newton’s Methods:

Theorem 1 (Sumi ’21)
If we insert randomness into Newton’s method in a suitable
way, then we can find a root of a given function with
probability one, for every but a finite number of initial points.

Original Newton’s method may fail if we choose a bad initial
point. However, the theorem states that randomness benefits
the algorithm.
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Original Newton’s method

For a given polynomial P , Newton’s map is defined by

NP (x) = x− P (x)

P ′(x)
.

Lemma 2 (Dynamics of NP on C∪{∞})
▶ If P (z∗) = 0, then z∗ is an attracting fixed point of NP .

▶ If z∗ is a simple root, then z∗ is superattracting.

This explains why Newton’s method works well locally. But ...



Newton’s method sometimes fails
If the target is P (z) = z3 − 2z + 2, then NP has a
(super)attracting periodic cycle: 0 7→ 1 7→ 0

P has three simple roots in C . A non-black point belongs to a
basin of attraction, and the black part is the set of initial
points which do not converge to any root.



Every Newton-like method sometimes fails

This target P (z) = z3 − 2z + 2 is not the only bad example,
but there are many. More generally,

Theorem 3 (McMullen)
There is NO algebraic root-finding algorithms which almost
always success.

We can overcome this by randomness.



Relaxed Newton’s Methods

Definition 4 (Relaxed Newton’s map)
For λ ∈ C, define NP,λ(z) = z − λ P (z)

P ′(z)
.

The original map is NP = NP,1.

Lemma 5
Every root z∗ is a common attr fxd pt whenever |1− λ| < 1.

We now randomly choose parameters λ1, λ2, . . . and define

zn+1 = NP,λn+1(zn) = zn − λn+1
P (zn)

P ′(zn)
.



Sample dynamics for NP,λ with P (z) = z3− 2z+2

Figure: Original Newton’s map has an attracting periodic point 0.

Figure: Three sample paths for Random Relaxed Newton’s
Methods (with more larger noise from left to right).



Random Relaxed Newton’s Methods

Setting 6
Choose iid sequences λn following a probability measure µ on
C which is absolutely continuous wrt 2-dim Lebesgue measure.

Typical examples of µ are the uniform distributions on disks
B̄(1, ρ) = {λ ∈ C : |1− λ| ≤ ρ}: µ = Unif(B̄(1, ρ)).

Theorem 7 (Sumi ’21)
Suppose that B̄(1, 1/2) ⋐ suppµ ⋐ B̄(1, 1). Then for every
target polynomial P and for all initial points z0 with finitely
many exceptions, the random orbit
NP,λn ◦ · · · ◦NP,λ2 ◦NP,λ1(z0) converges to some root of P
with probability 1.

In the following, we assume µ = Unif(B̄(1, ρ)) for a while.



Averaged dynamics induced by Unif(B̄(1, ρ))

Figure: Deterministic case (ρ = 0). Four attracting basins.

Figure: Random case (ρ = 0.6). For each initial point, 100 random
orbits were computed and counted to see where they converge (or
not).

The set of “bad initial points” collapses due to noise.



Notes from the dynamical viewpoint

Recall that NP,λ(z) = z − λ P (z)
P ′(z)

.

Remark 8 (How does it work?)
Bounded and multiplicative noise keeps the roots of P as
attracting fixed points. Conversely, sufficiently large noise
affects undesirable attractors.

Question: What is the optimal value for the size of noise?
・If the size of noise is too large, then the speed of local
convergence is slow.
・If the size of noise is too small, then the orbit cannot escape
from bad attractors.

I would like to know the smallest noise size ρ such that the
undesirable attractors disappear.



Numerical experiments with different noise size ρ

Figure: ρ = 0.1

Figure: ρ = 0.01 (need high iterates)

Figure: ρ = 0.005 (too small!)



Speed of convergence
Define random variables by

Zn = NP,•n ◦ · · · ◦NP,•2 ◦NP,•1(z0),

T = T (z0, z
∗, ϵ) = min{n ∈ N : |Zn − z∗| < ϵ}

and calculate conditioned expectation E(T |T < ∞) for every
root z∗.

Figure: x-axis represents ρ, y-axis represents log10 E(T |T < ∞)
with initial point z0 = 0 and ϵ = 0.01



Other type of noise (w/o mathematical reasoning)

Figure: Real noise where λn ∼ Unif([0.975, 1.025])

Figure: Real noise where λn ∼ Unif([0.975, 1])

Figure: “Simulated Annealing” where λn ∼ Unif(B̄(1, 0.5n))



Speed of convergence for other types of noise

Figure: Left: Uniform distribution on [1− ρ, 1 + ρ],
Right: Simulated Annealing where λn ∼ Unif(B̄(1, 0.5n)).
y-axis represents log10 E(T |T < ∞) with initial point z0 = 0 and
ϵ = 0.01

Remark that there is no mathematical guarantee for global
convergence so far.



Another target (1): Q(z) = z4 − 6z2 + 7−8
√
13

3

The deterministic map NQ,1 has two 2-periodic orbits.

Figure: There is symmetry under complex conjugate.



Another target (2): Q(z) = z4 − 6z2 + 7−8
√
13

3

I omitted the symmetrical figures.

Figure: ρ = 0.05 (enough large)

Figure: ρ = 0.01 (too small)



A quick summary
1. Deterministic Newton’s method can have attractors which

do not correspond to the root.

2. Random relaxed Newton’s methods succeeds with prob 1
because undesirable attractors are broken when
sufficiently large noise is inserted (ρ > 1/2 is enough).

3. It may work even with very small noise (e.g. ρ = 0.01)

I want to find the universal and smallest constant ρ. The key
word might be (deterministic or stochastic) bifurcation.



Numerical observations of Random Relaxed Newton’s Methods

Theoretical work on stochastic bifurcation of {z 7→ z2 + c}c∈C



The family of quadratic polynomials

Newton’s maps are rational functions of high degree, but to
simplify the discussion we will examine the family of the
quadratic polynomials in detail.

fc(z) = z2 + c (c ∈ C)

Why {fc}c∈C?

Theorem 9 (McMullen ’00)
“The Mandelbrot set is universal.”

Here, the celebrated Mandelbrot set is the bifurcation
structure of this {fc}c∈C.



Similarity/difference between NP,λ and fc

The quadratic family {fc}c is a simplified model of other
families. In particular,

{NP,λ}λ {fc}c
degree degP 2

type of maps rational polynomial
common fixed point(s) roots of P ∞

Let P (z) = z3 − 2z + 2 and consider c = −1.

NP,1 f−1

superattracting cycles 0 7→ 1 7→ 0 0 7→ −1 7→ 0



The filled Julia set

Definition 10
For c ∈ C, define f ◦n

c = fc ◦ · · · ◦ fc ◦ fc and
Kc = {z0 ∈ C ∪∞ : f ◦n

c (z0) 6→ ∞ (n → ∞)}.

Figure: The black set is Kc (c = 0, −1).

We call K−1 the basilica.



The Mandelbrot set M
The dynamics is determined by the orbit of z = 0.

Theorem 11
The set Kc is connected if and only if the critical orbit is
bounded f ◦n

c (0) 6→ ∞. Otherwise, Kc is totally disconnected.

Definition 12

M = {c ∈ C : Kc is connected} = {c ∈ C : f ◦n
c (0) 6→ ∞}



Random Julia sets
Setting 13
Choose iid sequences c1, c2, . . . following the distribution on
the disk B̄(c, ρ) = {c′ ∈ C : |c′ − c| ≤ ρ}.

Definition 14
For a sequence ω = (cn)

∞
n=1 ∈ B̄(c, ρ)N, define

f (n)
ω := fcn ◦ · · · ◦ fc2 ◦ fc1 .

Also, we define its random filled Julia set as follows.

Kω = {z0 ∈ C ∪∞ : f (n)
ω (z0) 6→ ∞ (n → ∞)}

Figure: Random Julia sets Kω for several different ω’s.



Definition 15 (Fornæss-Sibony ’91, Sumi ’13)
Suppose that fc has an attracting cycle in C (say c = −1).
Then there exists rbif(c) > 0 such that

▶ if 0 < ρ < rbif(c), then ∃T∞ a continuous function s.t.
the random orbit fcn ◦ · · · ◦ fc2 ◦ fc1(z)

diverges to ∞ with probability T∞(z), and
converges to ∃ a planar attractor with prob 1− T∞(z).

▶ if ρ > rbif(c), then for every z, with probability 1,
fcn ◦ · · · ◦ fc2 ◦ fc1(z) → ∞ (n → ∞).

Figure: The function T∞(z), the probability of random orbits
which converge to ∞ (ρ < rbif(c) and ρ > rbif(c))



Main result A: connectedness and bifurcation
Assume a technical condition “ intB̄(c, ρ) contains a
superattracting parameter.”

Main Result A (W. ’22+)
The equivalent statements of the former or the later hold.

1. ρ ≤ rbif(c)．
2. ∀ω ∈ B̄(c, ρ)N, the random Julia set Kω is connected．
3. ∀ω ∈ B̄(c, ρ)N, the critical orbit f

(n)
ω (0) 6→ ∞．

1′. ρ > rbif(c)．
2′. For a.e. ω ∈ B̄(c, ρ)N, Kω is totally disconnected．
3′. For a.e. ω ∈ B̄(c, ρ)N, the critical orbit f

(n)
ω (0) → ∞．

This gives a natural generalization of deterministic theory.
Recall:
M = {c ∈ C : Kc is connected} = {c ∈ C : f ◦n

c (0) 6→ ∞}



Main result B: quantitative estimates for rbif
Main Result B (W. ’22+)

1. For every c ∈ C we have rbif(c) ≤ dist(c, ∂M)．
2. If 0 ≤ c ≤ 1/4, then rbif(c) = 1/4− c.

3. If −1/2 ≤ c < 0, then rbif(c) ≤ 1/4− c− c2.

4. If c = −1, then 0.0386 · · · ≤ rbif(−1) ≤ 0.0399 · · · .

2 shows rbif(c) = dist(c, ∂M),
3 shows rbif(c) < dist(c, ∂M).
In particular,
4 shows rbif(c) � dist(c, ∂M)！

Also, for c3 ≈ −1.7
we have rbif(c3) � dist(c3, ∂M).



Conclusions & Discussions
1. The Newton’s map NP,1 for P (z) = z3 − 2z + 2 has a

2-cycle which does not correspond to any root of P .

2. The randomized root-finding algorithm succeeds if the
size of noise ρ satisfies ρ > 0.01, and fail if ρ < 0.005.

3. This value seems to be related to the “small Mandelbrot
set”.

4. We can rigorously estimate when the stochastic
bifurcation occurs for the quadratic family fc(z) = z2 + c.

5. Both families (seem to) follow the same mechanism.
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